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Abstract

This paper proposes an attention pooling based representation

learning method for speech emotion recognition (SER). The

emotional representation is learned in an end-to-end fashion by

applying a deep convolutional neural network (CNN) directly

to spectrograms extracted from speech utterances. Motivated

by the success of GoogleNet, two groups of filters with dif-

ferent shapes are designed to capture both temporal and fre-

quency domain context information from the input spectrogram.

The learned features are concatenated and fed into the subse-

quent convolutional layers. To learn the final emotional rep-

resentation, a novel attention pooling method is further pro-

posed. Compared with the existing pooling methods, such as

max-pooling and average-pooling, the proposed attention pool-

ing can effectively incorporate class-agnostic bottom-up, and

class-specific top-down, attention maps. We conduct extensive

evaluations on benchmark IEMOCAP data to assess the effec-

tiveness of the proposed representation. Results demonstrate a

recognition performance of 71.8% weighted accuracy (WA) and

68% unweighted accuracy (UA) over four emotions, which out-

performs the state-of-the-art method by about 3% absolute for

WA and 4% for UA.

Index Terms: speech emotion recognition, high-level feature

learning, convolutional neural network, second-order pooling.

1. Introduction

Speech emotion recognition (SER) is the task of automatically

identifying human emotions from the analysis of utterances.

With the rapid growth of speech-based human-computer inter-

action applications, including intelligent service robotics, au-

tomated call centers, and remote education, SER has attracted

steadily increasing interest from researchers over the past two

decades.

A key to the success of SER systems is to find an ef-

fective emotional representation for speech segments. This is

challenging due to the complexity of emotional expressions

and the lack of large datasets. Traditional SER methods gen-

erally consist of frontend frame-based feature extraction and

backend utterance representation for classification or regres-

sion [1, 2, 3]. Slaney et.al. applied Gaussian Mixture Mod-

els (GMM) with Mel-Frequency Cepstral Coefficients (MFCC)

for SER [1]. In [2, 3], the prosodic features were extracted

to train Support Vector Machine (SVM) classifiers. However,

these hand-crafted features may not be optimal for characteriz-

ing emotional information in speech, which would lead to un-

satisfactory performance.

Motivated by the success of deep learning techniques in var-

ious application domains, such as large scale image and speech

recognition [4, 5], several Deep Neural Network (DNN) or Con-

volutional Neural Network (CNN) based SER methods have re-

cently been proposed [6, 7, 8, 9, 10, 11, 12]. In [6, 7], a multi-

stage procedure was applied, in which the DNN and CNN net-

work were trained for frontend feature extraction, followed by a

backend emotion recognizer such as SVM and Extreme Learn-

ing Machine (ELM). More recent works have taken advantage

of end-to-end training schemes [9, 11]. For example, Trige-

orgis et. al [9] fed raw audio into a CNN for frontend feature

extraction, followed by Long Short-Term Memory (LSTM) lay-

ers for emotional representation learning. The model parame-

ters can be jointly optimized with back-propagation algorithms.

In [8, 10] a max-pooling operation was applied over time to ob-

tain an utterance representation from salient regions. Neumann

el. al [12] further introduced an attention mechanism after the

max-pooling operation. while Mirsamadi et. al [13] applied

weighted pooling to an RNN output.

Despite recent improvements in deep learning based SER

methods, several issues still exist. Firstly, speech emotional in-

formation may be embodied in both the temporal and frequency

domains. However it is still unclear how to design a suitable

neural network architecture to exploit temporal and frequency

information in deriving an effective speech emotional repre-

sentation. In [14, 15], 2D Time-Frequency (TF) LSTM and

Grid-LSTM were proposed to model the variation over time and

frequency for large scale automatic speech recognition (ASR).

However, complex model architectures are prone to overfitting

on a small scale dataset such as IEMOCAP [16]. Furthermore,

simply average-pooling or max-pooling may be insufficient to

derive effective representations for complex emotional expres-

sions that require analysis of higher order statistics. Some re-

cent works show the benefit of introducing an attention mech-

anism for representation learning [12, 13, 10]. However, they

generally derive salient regions from the features in a bottom-

up manner.

To address these issues, we propose an attention pooling

based representation learning method for SER, as shown in

Fig. 1. A deep CNN is applied directly to the spectrogram ex-

tracted from speech, in which two groups of convolutional fil-

ters with different shapes are designed to capture both temporal

and frequency domain context information. Results presented

in Section 3.2 will show that convolution filter shapes may af-

fect the effectiveness of emotion representation. Motivated by

GoogLeNet [17], the learned features are further concatenated

and fed into the following convolutional layers. For effective

representation learning, a novel attention pooling method is pro-

posed. Unlike existing attention-based SER methods, two atten-

tion maps, i.e. class-agnostic and class-specific, are combined

for effective emotion representation. The first attention map is



Figure 1: The CNN architecture for attention pooling. The size of convolution filter is denoted by height× width× channelinput ×
channeloutput. The window size of max-pooling is 2× 2.

derived in a bottom-up manner, while the second is directly re-

lated to the emotion types. The effectiveness of the proposed

representation is extensively evaluated using the IEMOCAP im-

provised dataset [16]. The results demonstrate an SER perfor-

mance of 71.8% for WA and 68.0% for UA, both of which sig-

nificantly outperform existing state-of-the-art methods.

2. Attention pooling based representation
learning

In this section, we will first describe the feature extraction pro-

cess, followed by a description of the CNN architecture for

SER, as shown in Fig. 1. We will then introduce the two

groups of convolution filters designed to capture time-specific

and frequency-specific context information from the input spec-

trogram. Finally, the derivation of attention pooling is detailed.

2.1. Input spectrogram calculation

The CNN input is a spectrogram extracted from speech. Given

an utterance, we segment it into 2 s segments for training, and

use an overlap of 1 s to enable us to obtain more training data.

Each segment is assigned to the same label as the corresponding

utterance. For test utterances, the overlap is set to 1.6 s, and

the final prediction is obtained by averaging the score for each

segment.

A spectrogram is then calculated for each speech segment.

A sequence of overlapping 40 ms Hamming windows is first

applied to the speech signal, with a shift of 10 ms. Since it has

been determined that a high frequency resolution can enhance

system performance [11], a DFT of length 1600 (corresponding

to 10 Hz grid resolution) is then calculated. We use a frequency

range of 0 to 4 kHz for the DFT as input features. Following

aggregation of the short-time spectra, the spectrogram is finally

represented by a 400×200 matrix. The matrix is further pro-

cessed by a normalization step in which we first linearly trans-

form it to a range of [-1, 1], and then apply a µ-law expansion

to each entry x as follows

F (x) = sgn(x)
ln(1 + µ|x|)

ln(1 + µ)
,−1 ≤ x ≤ 1 (1)

where µ = 255. Compared with log-spectrogram post-

processing, the µ-law expansion will decrease the difference

between the maximum and minimum value, which in practice

improves the stability of the training process.

2.2. CNN architecture

Assuming that the input feature maps have size (H,W,Cin),
where H is the feature map height and W is the width, Cin is

the number of channels. A standard CNN architecture will pro-

cess it through multiple convolutional layers, in which a con-

volution layer computes the kth output feature map Coutk as

follows:

Coutk = bi +

Cin∑

i=1

ω(Coutk , i) ∗ input(Cini
) (2)

where b is the bias, ω is the weight matrix, ∗ is the convolution

operation. The CNN filters convolve the input feature maps, and

output their learned representation. In a CNN architecture, a

high-level representation can be learned through the application

of multiple convolutional layers.

Once the features learned from a different time-frequency

domain have been obtained, the next step for the CNN is extrac-

tion of a high-level representation for emotion recognition. Fol-

lowing the network design of image feature extraction [4] [18],

we use 4 convolution layers with 3 × 3 sized filters, and use

2× 2 max-pooling to down-sample the feature maps.

2.3. Time-specific and frequency-specific filters designed

for input spectrogram

The role of the first convolution layer is to extract features from

raw spectrograms. As convolution filters receive a rectangu-

lar part at each location, that means each output contains a

specific range of time-frequency information. This rectangu-

lar time×frequency window is also called the receptive field.

In SER systems, the receptive field may be important, but few

works have investigated this in detail.

In order to explore the influence of receptive field and fur-

ther obtain an appropriate time and frequency range for emo-

tional representation learning, the process of Conv1 filter shape

design is carried out in the following steps. Firstly the convo-

lutional filter’s receptive field on the frequency axis is set to a

minimal value of 2, then the receptive field on the time axis is

adjusted. This process aims to find the time span over which

an emotional representation is predominantly confined, while

at the same time minimizing the influence of frequency infor-

mation. Then a similar process is applied to the frequency axis.

Motivated by the inception module in [17], the channel con-

catenation is applied on the time-specific and frequency-specific

feature maps, which aim to exploit both time and frequency in-

formation. In Section 3.2, experimental results from different

filter shapes will be explored.



2.4. Attention pooling method

Generally, CNNs use several fully-connected (FC) layers to pro-

duce probability scores on target labels. However direct con-

catenating the convolutional features and feeding it into FC lay-

ers may result in over-parameterization, which makes training

difficult, especially for a small-scale dataset. A pooling function

that can downsample the feature maps and keep the representa-

tional ability of high-level features is important. In this work,

two different pooling methods are investigated as follows;

2.4.1. Global average pooling

Global pooling uses a pooling window that covers the entire fea-

ture map. For feature map X with a size of (HW )×C, where

HW represents the reshaped 2-dimensional feature map and C
is the channel size, the kth prediction score can be computed

using

score(k) = 1TXWk (3)

where Wk is the C × 1 class-specific fully-connected weight

matrix, 1 is a vector of all ones and 1TX sums the input feature.

A frequently used method in CNN is Global Average Pooling

(GAP), which averages the sum-pooled feature and outputs a

1 × 1 × C feature vector. GAP has been proven to be efficient

in many computer vision tasks, such as in [4] [18].

2.4.2. Attention pooling

Simple global pooling methods can efficiently downsample the

feature maps to 1-dimensional vectors. But these methods treat

all input data equally, which implies that they don’t consider

regional saliency. Within spectrograms, many regions may have

little relation to emotional information. Thus a better pooling

method is needed to improve SER performance. Motivated by

attention pooling proposed by Girdhar et. al [19], we introduce

an attention pooling layer after Conv5.

Attention pooling is based on second-order pooling [20,

21], which has been proven useful for fine-grained classification

tasks. This second-order pooling is implemented by first con-

structing the feature XTX , which has a size of C × C. Then

using a C × C fully-connected weight matrix, and replacing

the inner product by the trace. The kth class prediction can be

written as:

score(k) = Tr(XT
XW

T
k ) (4)

In practice, Wk is high-dimensional, leading to over-fitting

problems when the dataset size is inadequate. The experiment

reported in Section 3.3 will demonstrate this point. Therefore a

low-rank estimation is needed, based upon which the attention

pooling is proposed. Firstly the weight matrix Wk is decom-

posed into the product of two C × 1 vectors:

score(k) = Tr(XT
Xbka

T
k ) (5)

Using the cyclic property of the trace operation, where

Tr(ABC) = Tr(CAB), and noting that the trace of a scalar

is itself, Equation (5) can be rewritten:

score(k) = Tr(aT
k X

T
Xbk) (6)

= a
T
k X

T
Xbk

= (Xak)
T (Xbk)

Thus the prediction score on the kth class can be seen as

the combination of two attention map Xak and Xbk. Instead

of making them both class-specific, Xbk can be set to class-

agnostic, so that bk = b. Then the final attention model can

be obtained, by combining the class-specific top-down attention

Xak and class-agnostic bottom-up attention Xb:

score(k) = (Xak)
T (Xb) (7)

The combination of top-down and bottom-up maps are mo-

tivated by biological vision [22], which indicates it can also

be simply implemented by a element-wise multiplication and

global pooling:

score(k) = 1T (Xak ◦Xb) (8)

3. Experiments and Analysis

3.1. Experiment setting

We use the Interactive Emotional Dyadic Motion Capture

database (IEMOCAP) [16] for all experiments. IEMOCAP con-

tains approximately 12 hours of audiovisual data performed by

10 skilled actors. The entire database is divided into 5 sections,

each containing one male and one female actor. According to

the recording scenarios, the data can be further divided into an

improvised speech section, and a scripted speech section. Each

utterance in the dataset is annotated by multiple annotators into

8 emotion labels. Following previous works [10, 11], we choose

4 emotion types for our experiments (namely neutral, happy,

angry and sad) from the improvised speech for study, since

scripted data may contain undesired contextual information.

Adopting the methodology of previous works [10, 11, 23,

24], we perform a 10-fold cross-validation using a leave-one-

out strategy. In each training process, 9 speakers are used as

training data and the remained one is used for testing data. For

CNN training we make use of the PyTorch [25] deep learn-

ing framework. The optimization method is standard Stochastic

Gradient Descent (SGD) with a mini-batch size of 64. We use a

Nesterov momentum of 0.9 and a weight decay of 0.0001. The

CNNs are trained over 50 epochs. The initial learning rate is

0.05, reducing by a factor of 10 at the 21, 31 and 41 epochs. We

adopt a batch normalization [26] layer after each convolution

layer and the activation function used is the Rectified Linear

Unit (ReLU). The objective function for optimization uses the

cross-entropy (CE) criterion. The SER performance is evalu-

ated using the following metrics:

Weighted Accuracy (WA), which is the classification accuracy

of all utterances.

Unweighted Accuracy (UA), which averages the accuracy of

each individual emotion class.

3.2. Experimental with time-specific and frequency-specific

filters

In order to find optimal filter shapes while excluding other fac-

tors, the first convolution layer is tested independently. We

directly applied GAP to its feature map and used the fully-

connected layer (16:4) to produce prediction scores. Dozens of

configurations were investigated, including heights in the range

2. . . 100 (corresponding to 20. . . 1000 Hz) and widths in the

range 2. . . 80 (corresponding to 20. . . 800 ms). These results

are shown in Fig. 2 and reveal the following: (1) When increas-

ing height (frequency), WA and the accuracy of the neutral class

also increases. However the trend flattens at a height of around

10 (100 Hz) beyond which further increases in receptive field

frequency range offer no significant improvement. (2) When

increasing the width (time), WA firstly increases to a peak at a



Figure 2: WA and accuracies of neutral, happy and sad on dif-

ferent filter shapes. Top: fix filter width at 2 (20 ms) and adjust

height between 2 and 100 (20 and 1000 Hz), bottom: fix height

at 2 (20 Hz) and adjust width between 2 and 80 (20 and 800 ms)

width of around 8 (80 ms), then gradually decreases. Interest-

ingly, the accuracy of the angry class decreases rapidly when the

receptive field time span becomes large, which indicates that an-

gry emotions are expressed through short-time representations.

(3) In these experiments, the happy class achieved the worst ac-

curacy and doesn’t relate to filter shape, hence is excluded from

the figure for clarity. This may indicate that the happy class is

better learned from a higher-level representation.

Based on the WA results, we separately choose the best fil-

ter shapes of 10×2 and 2×8, and concatenate them as separate

channels in Conv1. There are two aspects to this channel con-

catenation: Firstly, the following layers are able to receive a

large region in both time and temporary domain, offering more

information for high-level representation learning. Secondly,

compared with using large filters in both dimensions, this sig-

nificantly reduces parameters and hence reduces the chance of

over-fitting (which is especially problematic in small-scale tasks

such as this).

3.3. Experimental with different pooling methods

To evaluate the attention pooling method, we report results from

three different pooling methods, including

CNN TF GAP, the baseline CNN architecture. Following the

observation from Section 3.2, we use 8-channel 2×8 filters and

8-channel 10×2 filters. These are then concatenated by channel

in Conv1.

CNN TF Bilinear replaces the GAP with second-order pool-

ing, using the original implementation in [20]. The feature map

produced by Conv5 is multiplied by its transposition to generate

6400-dimensional features, followed by l2-normalization and

signed square-root. Finally, a fully-connected layer (6400:4) is

employed to obtain the final prediction score.

CNN TF Att.pooling where the GAP is replaced by attention

pooling. For implementation, we use a 1× 1 convolution layer

after Conv5 to generate a top-down attention map (with size

H×W×4, corresponding to 4 emotion labels), and use another

1 × 1 convolution layer to generate bottom-up attention maps

(with size H × W × 1). A softmax operation is then applied

to the bottom-up attention map. Finally, the two types of atten-

tion map are element-wise multiplied and spatially averaged to

obtain prediction scores for all 4 emotion classes.

Table 1: UA and WA of proposed networks and previous works

(in %), obtained by 10-fold cross validation

Model WA UA

DNN-ELM [6][24] 57.91 52.13

RNN-ELM [24] 62.85 63.89

CNN-LSTM [11] 68.80 59.40

CNN-LSTM (two-step predictor) 67.30 62.00

CNN TF GAP 71.35 67.54

CNN TF Bilinear 69.17 64.16

CNN TF Att.pooling 71.75 68.06

These architectures are run through the strategy mentioned

in Section 3.1. Then UA and WA are computed and summarized

in Table 1. The performances of previous works [6, 11, 24]

which have the same configurations, are also listed for com-

parison. The experimental results show that our baseline

network has already outperformed state-of-the-art results and

achieved 71.35% (WA) and 67.54% (UA), which proves the ef-

fectiveness of our network design. CNN TF Bilinear performs

slightly worse than the CNN TF GAP baseline. This is due to

over-fitting, caused by the large number of parameters in the

fully-connected layer. The performance of attentional pooling,

named as CNN TF Att.pooling, is shown in the last row of Ta-

ble 1. It has the highest WA and UA among all configurations.

In our work filters were selected by their WA score. We be-

lieve that more careful selection, for example considering per-

formance on specific emotions, can further improve the accu-

racy.

4. Conclusions

In this paper, an attention pooling based CNN has been pro-

posed for the SER task. Specifically, we firstly demonstrated

that filter shape plays an important role in emotional represen-

tation learning through a series of experiments. From this, dif-

ferent shape filters are defined for the first layer to capture time

and frequency representations. These representations are con-

catenated and fed into high-level representation learning. An

attention pooling layer is further introduced on the learned rep-

resentation to model both time and frequency saliency. The

experiments demonstrate that the proposed CNN has excellent

WA and UA, which separately achieve 71.75% and 68.06%, an

absolute increase of about 3% and 4% respectively over pre-

vious works. These results demonstrate the strong emotional

representation ability of the proposed CNN architecture.
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