
Abstract

This paper describes a real-time beat tracking system that

recognizes a hierarchical beat structure comprising the

quarter-note, half-note, and measure levels in real-world

audio signals sampled from popular-music compact discs.

Most previous beat-tracking systems dealt with MIDI signals

and had difficulty in processing, in real time, audio signals

containing sounds of various instruments and in tracking

beats above the quarter-note level. The system described here

can process music with drums and music without drums 

and can recognize the hierarchical beat structure by using

three kinds of musical knowledge: of onset times, of chord

changes, and of drum patterns. This paper also describes

several applications of beat tracking, such as beat-driven

real-time computer graphics and lighting control.

1 Introduction

The goal of this study is to build a real-time system that can

track musical beats in real-world audio signals, such as those

sampled from compact discs. I think that building such a sys-

tem that even in its preliminary implementation can work in

real-world environments is an important initial step in the com-

putational modeling of music understanding. This is because,

as known from the scaling-up problem (Kitano, 1993) in the

domain of artificial intelligence, it is hard to scale-up a system

whose preliminary implementation works only in laboratory

(toy-world) environments. This real-world oriented approach

also facilitates the implementation of various practical appli-

cations in which music synchronization is necessary.

Most previous beat-tracking related systems had difficulty

working in real-world acoustic environments. Most of them

(Dannenberg & Mont-Reynaud, 1987; Desain & Honing,

1989, 1994;Allen & Dannenberg, 1990; Driesse,1991; Rosen-

thal,1992a,1992b;Rowe,1993;Large,1995)usedas their input

MIDI-like representations, and their applications are limited

because it is not easy to obtain complete MIDI representations

from real-world audio signals. Some systems (Schloss, 1985;

Katayose, Kato, Imai, & Inokuchi, 1989; Vercoe, 1994; Todd,

1994; Todd & Brown, 1996; Scheirer, 1998) dealt with audio

signals, but they either did not consider the higher-level beat

structureabovethequarter-notelevelor did not process popular

music sampled from compact discs in real time. Although I

developed two beat-tracking systems for real-world audio

signals, one for music with drums (Goto & Muraoka, 1994,

1995, 1998) and the other for music without drums (Goto &

Muraoka, 1996, 1999), they were separate systems and the

former was not able to recognize the measure level.

This paper describes a beat-tracking system that can deal

with the audio signals of popular-music compact discs in real

time regardless of whether or not those signals contain drum

sounds. The system can recognize the hierarchical beat

structure comprising the quarter-note level (almost regularly

spaced beat times), the half-note level, and the measure level

(bar-lines).1 This structure is shown in Figure 1. It assumes

that the time-signature of an input song is 4/4 and that the

tempo is roughly constant and is either between 61 M.M.2 and

185 M.M. (for music with drums) or between 61M.M. and

120 M.M. (for music without drums). These assumptions fit

a large class of popular music.
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1 Although this system does not rely on score representation, for con-

venience this paper uses score-representing terminology like that

used by Rosenthal (1992a, 1992b). In this formulation the quarter-

note level indicates the temporal basic unit that a human feels in

music and that usually corresponds to a quarter note is scores.
2 Mälzel’s Metronome: the number of quarter notes per minute.
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The main issues in recognizing the beat structure in real-

world musical acoustic signals are (1) detecting beat-tracking

cues in audio signals, (2) interpreting the cues to infer the beat

structure, and (3) dealing with the ambiguity of interpreta-

tion. First, it is necessary to develop methods for detecting

effective musical cues in audio signals. Although various cues

– such as onset times, notes, melodies, chords, and repetitive

note patterns – were used in previous score-based or MIDI-

based systems (Dannenberg & Mont-Reynaud, 1987; Desain

& Honing, 1989, 1994; Allen & Dannenberg, 1990; Driesse,

1991; Rosenthal, 1992a, 1992b; Rowe, 1993; Large, 1995),

most of those cues are hard to detect in complex audio signals.

Second, higher-level processing using musical knowledge is

indispensable for inferring each level of the hierarchical beat

structure from the detected cues. It is not easy, however, to

make musical decisions about audio signals, and the previous

audio-based systems (Schloss, 1985; Katayose et al., 1989;

Vercoe, 1994; Todd, 1994; Todd & Brown, 1996; Scheirer,

1998) did not use such musical-knowledge-based processing

for inferring the hierarchical beat structure. Although some 

of the above-mentioned MIDI-based systems used musical

knowledge, the processing they used cannot be used in audio-

based systems because the available cues are different. Third,

it must be taken into account that multiple interpretations of

beats are possible at any given time. Because there is not nec-

essarily a single specific sound that directly indicates the beat

position, there are various ambiguous situations. Two exam-

ples are those in which several detected cues may correspond

to a beat and those in which different inter-beat intervals (the

difference between the times of two successive beats) seem

plausible.

The following sections introduce a new approach to the

beat-tracking problem and describe a beat-tracking model that

addresses the issues mentioned above. Experimental results

obtained with a system based on that model are then shown,

and several of its beat-tracking applications are described.

2 Beat-tracking problem (inverse problem)

In my formulation the beat-tracking problem is defined as a

process that organizes musical audio signals into the hierar-

chical beat structure. As shown in Figure 2, this problem can

be considered the inverse problem of the following three

forward processes by music performers: the process of indi-

cating or implying the beat structure in musical elements

when performing music, the process of producing musical

sounds (singing or playing musical instruments), and the

process of acoustic transmission of those sounds. Although

in the brains of performers music is temporally organized

according to its hierarchical beat structure, this structure is

not explicitly expressed in music; it is implied in the rela-

tions among various musical elements which are not fixed

and which are dependent on musical genres or pieces. All the

musical elements constituting music are then transformed

into audio signals through the processes of musical sound

production and acoustic transmission.

The principal reason that beat tracking is intrinsically dif-

ficult is that it is the problem of inferring an original beat

structure that is not expressed explicitly. The degree of beat-

tracking difficulty is therefore not determined simply by the

number of musical instruments performing a musical piece;

it depends on how explicitly the beat structure is expressed

in the piece. For example, it is very easy to track beats in a

piece that has only a regular pulse sequence with a constant

interval. The main reason that different musical genres and

instruments have different tendencies with regard to beat-

tracking difficulty is that they have different customary ten-

dencies with regard to the explicitness with which their beat

structure is indicated.

In audio-based beat tracking, furthermore, it is also diffi-

cult to detect the musical elements that are beat-tracking

cues. In that case, the more musical instruments played

simultaneously and the more complex the audio signal, the

more difficult is the detection of those cues.

3 Beat-tracking model (inverse model)

To solve this inverse problem, I developed a beat-tracking

model that consists of two component models: the model of

Musical audio signals

Measure level
(measure times)

Half-note level
(half-note times)

time

Quarter-note level
(beat times)

Hierarchical beat structure

Fig. 1. Beat-tracking problem.
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extractingmusicalelementsfromaudiosignals,andthe inverse

model of indicating the beat structure (Fig. 3). The three issues

raised in the Introduction are addressed in this beat-tracking

model as described in the following three sections.

3.1 Model of extracting musical elements: detecting 

beat-tracking cues in audio signals

In the model of extracting musical elements, the following

three kinds of musical elements are detected as the beat-

tracking cues:

1. Onset times

2. Chord changes

3. Drum patterns

As described in Section 3.2, these elements are useful when

the hierarchical beat structure is inferred. In this model, onset

times are represented by an onset-time vector whose dimen-

sions correspond to the onset times of different frequency

ranges. A chord change is represented by a chord-change pos-

sibility that indicates how much the dominant frequency com-

ponents included in chord tones and their harmonic overtones

change in a frequency spectrum. A drum pattern is represented

by the temporal pattern of a bass drum and a snare drum.

These elements are extracted from the frequency spec-

trum calculated with the FFT (1024 samples) of the input 

(16 bit/22.05 kHz) using the Hanning window. Since the

window is shifted by 256 samples, the frequency resolution

is consequently 21.53Hz and the discrete time step (1 frame-

time3) is 11.61ms. Hereafter p(t, f ) is the power of the spec-

trum of frequency f at time t.

3.1.1 Onset-time vector

The onset-time vectors are obtained by an onset-time vec-

torizer that transforms the onset times of seven frequency

ranges (0–125 Hz, 125–250 Hz, 250–500 Hz, 0.5–1 kHz, 1–

2kHz, 2–4kHz, and 4–11kHz) into seven-dimensional

onset-time vectors (Fig. 4). This representation makes it pos-

sible to consider onset times of all the frequency ranges at

the same time. The onset times can be detected by a fre-

quency analysis process that takes into account such factors

as the rapidity of an increase in power and the power present

in nearby time-frequency regions as shown in Figure 5 (Goto

& Muraoka, 1999). Each onset time is given by the peak time

found by peak-picking4 in a degree-of-onset function D(t) =
Sfd(t, f ) where
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Fig. 3. Beat-tracking model.

3 The frame-time is the unit of time used in this system, and the 

term time in this paper is the time measured in units of the frame-

time.

Fig. 4. Examples of a frequency spectrum and an onset-time

vector sequence.
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4 D(t) is linearly smoothed with a convolution kernel before its peak

time is calculated.
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Because PrevPow considers p(t - 1, f ± 1), a false non-onset

power increase from p(t - 1, f ) to p(t, f ) is not picked up

even if there is a rising frequency component holding high

power on both p(t - 1, f - 1) and p(t, f ). The onset times in

the different frequency ranges are found by limiting the fre-

quency range of Sf.

3.1.2 Chord-change possibility

Because it is difficult to detect chord changes when using

only a bottom-up frequency analysis, I developed a method

for detecting them by making use of top-down information,

provisional beat times (Goto & Muraoka, 1996, 1999). The

provisional beat times are a hypothesis of the quarter-note

level and are inferred from the onset times as described in

Section 3.2.1. Possibilities of chord changes in a frequency

spectrum are examined without identifying musical notes or

chords by name. The idea for this method came from the

observation that a listener who cannot identify chord names

can nevertheless perceive chord changes. When all frequency

components included in chord tones and their harmonic over-

tones are considered, they are found to tend to change sig-

nificantly when a chord is changed and to be relatively stable

when a chord is not changed. Although it is generally diffi-

cult to extract all frequency components from audio signals

correctly, the frequency components dominant during a

certain period of time can be roughly identified by using a

histogram of frequency components. The frequency spec-

trum is therefore sliced into strips at the provisional beat

times and the dominant frequencies of each strip are esti-

mated by using a histogram of frequency components in the

strip (Fig. 6). Chord-change possibilities are then obtained

by comparing dominant frequencies between adjacent strips.

Because the method takes advantage of not requiring musical

notes to be identified, it can detect chord changes in real-

world audio signals, where chord identification is generally

difficult.

For different purposes, the model uses two kinds of pos-

sibilities of chord changes, one at the quarter-note level and

the other at the eighth-note level, by slicing the frequency

spectrum into strips at the provisional beat times and by

slicing it at the interpolatd eighth-note times. The one

obtained by slicing at the provisional beat times is called the

quarter-note chord-change possibility and the one obtained

by slicing at the eighth-note times is called the eighth-note

chord-change possibility. They respectively represent how

likely a chord is, under the current beat-position hypothesis,

to change on each quarter-note position and on each eighth-

note position. The detailed equations used in this method are

described in a paper focusing on beat tracking for music

without drum-sounds (Goto & Muraoka, 1999).

3.1.3 Drum pattern

A drum-sound finder detects the onset time of a bass drum

(BD) by using onset components and the onset time of a

snare drum (SD) by using noise components. Those onset

times are then formed into the drum patterns by making use

of the provisional beat times (top-down information) (Fig. 7).

[Detecting BD onset times]

Because the sound of a BD is not known in advance, the

drum-sound finder learns the characteristic frequency of a

BD by examining the extracted onset components d(t, f )

(a) Frequency spectrum

(b) Histograms of frequency components in spectrum strips sliced at provisional beat times

(c) Quarter-note chord-change possibilities

Fig. 6. Example of obtaining a chord-change possibility on the basis of provisional beat times.
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(Equation (1)). For times at which onset components are

found, the finder picks peaks along the frequency axis and

makes a histogram of them (Fig. 8). The finder then judges

that a BD has sounded at times when an onset’s peak fre-

quency coincides with the characteristic frequency that is

given by the lowest-frequency peak of the histogram.

[Detecting SD onset times]

Since the sound of a SD typically has noise components

widely distributed along the frequency axis, the finder needs

to detect such components. First, the noise components 

n(t, f ) are given by the following equations:

n t , f( ) =

p t , f( ) min HightFreqAve , LowFreqAve( )Ê
Ë

>
1

2
p t, f( )̂̄ ,

0 otherwise( ),

Ï

Ì

Ô
Ô

Ó

Ô
Ô

(4)

(5)

where HighFreqAve and LowFreqAve respectively represent

the local averages of the power in higher and lower regions

of p(t, f ). When the surrounding High Freq Ave and Low Freq

Ave are both larger than half of p(t, f ), the component p(t, f )

is not considered a peaked component but a noise compo-

nent distributed almost uniformly. As shown in Figure 8, the

noise components n(t, f ) are quantized: the frequency axis

of the noise components is divided into subbands (the

number of subbands is 16) and the mean of n(t, f ) in each

subband is calculated. The finder then calculates c(t), which

represents how widely noise components are distributed

along the frequency axis: c(t) is calculated as the product of

all quantized components within the middle frequency range

(from 1.4kHz to 7.5 kHz). Finally, the SD onset time is

obtained by peak-picking of c(t) in the same way as in the

onset-time finder.

3.2 Inverse model of indicating the beat structure:

interpreting beat-tracking cues to infer the 

hierarchical beat structure

Each level of the beat structure is inferred by using the

inverse model of indicating the beat structure. The inverse

model is represented by the following three kinds of musical

knowledge (heuristics) corresponding to the three kinds of

musical elements.

3.2.1 Musical knowledge of onset times

To infer the quarter-note level (i.e., to determine the provi-

sional beat times), the model uses the following heuristic

knowledge:
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Fig. 7. Forming a drum pattern by making use of provisional beat

times.
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(a-1) “A frequent inter-onset interval is likely to be the inter-

beat interval.”

(a-2) “Onset times tend to coincide with beat times (i.e.,

sounds are likely to occur on beats).”

The reason the term the provisional beat times is used is that

the sequence of beat times obtained below is just a single

hypothesis of the quarter-note level: multiple hypotheses are

considered as explained in Section 3.3.

Byusingautocorrelationand cross-correlation of the onset-

time vectors, the model determines the inter-beat interval and

predicts the next beat time. The inter-beat interval is deter-

mined by calculating the windowed and normalized vectorial

autocorrelation function Ac(t) of the onset-time vectors:5

(6)

where o
Æ

(t) is the onset-time vector at time t, c is the current

time, and AcPeriod is the autocorrelation period. The window

function win(t, s) whose window size is s is

(7)

According to the knowledge (a-1), the inter-beat interval is

given by the t with the maximum height in Ac(t) within an

appropriate inter-beat interval range. To predict the next beat

time by using the knowledge (a-2), the model forms a 

prediction field (Fig. 9) by calculating the windowed 

cross-correlation function Cc(t) between the sum O(t) of all

dimensions of o
Æ

(t) and a tentative beat-time sequence

Ttmp(t, m) whose interval is the inter-beat interval obtained

using Equation (6):
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where I(t) is the inter-beat interval at time t, CcPeriod 

(= CcNumBeats I(c)) is the window size for calculating the

cross-correlation, and CcNumBeats (= 12) is a constant factor

that determines how many previous beats are considered in

calculating the cross-correlation. The prediction field is thus

given by Cc(t) where 0 £ t £ I(c) - 1. Finally, the local-

maximum peak in the prediction field is selected as the next

beat time while considering to pursue the peak close to the

sum of the previously selected one and the inter-beat interval.

The reliability of each hypothesis of the provisional beat

times is then evaluated according to how closely the next beat

time predicted from the onset times coincides with the time

extrapolated from the past beat times (Fig. 9).

3.2.2 Musical knowledge of chord changes

To infer each level of the structure, the model uses the fol-

lowing knowledge:

(b-1) “Chords are more likely to change on beat times than

on other positions.”

(b-2) “Chords are more likely to change on half-note times

than on other positions of beat times.”

(b-3) “Chords are more likely to change at the beginnings

of measures than at other positions of half-note times.”

Figure 10 shows a sketch of how the half-note and measure

times are inferred from the chord-change possibilities.

According to the knowledge (b-2), if the quarter-note chord-

change possibility is high enough, its time is considered to

indicate the position of the half-note times. According to the

knowledge (b-3), if the quarter-note chord-change possibil-

ity of a half-note time is higher than that of adjacent half-

note times, its time is considered to indicate the position of

the measure times (bar-lines).

The knowledge (b-1) is used for reevaluating the reliabil-

ity of the current hypothesis: if the eighth-note chord-change

possibility tends to be higher on beat times than on eighth-

note displacement positions, the reliability is increased.

3.2.3 Musical knowledge of drum patterns

For music with drum-sounds, eight prestored drum patterns,

like those illustrated in Figure 11, are prepared. They repre-

d x
x

x
( ) =

=( )
π( )

Ï
Ì
Ó
1 0

0 0

,

,

(by cross-correlation)
prediction field

Provisional beat times

(by autocorrelation)
inter-beat interval

extrapolate
time evaluate

coincidence

Fig. 9. Predicting the next beat.

5 Vercoe (1994) also proposed the use of a variant of autocorrela-

tion for rhythmic analysis.
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sent the ways drum-sounds are typically used in a lot of

popular music. The beginning of a pattern should be a half-

note time, and the length of the pattern is restricted to a half

note or a measure. In the case of a half note, patterns repeated

twice are considered to form a measure.

When an input drum pattern that is currently detected in

the audio signal matches one of the prestored drum patterns

well, the model uses the following knowledge to infer the

quarter-note and half-note levels:

(c-1) “The beginning of the input drum pattern indicates a

half-note time.”

(c-2) “The input drum pattern has the appropriate inter-beat

interval.”

Figure 10 also shows a sketch of how the half-note times are

inferred from the best-matched drum pattern: according to

the knowledge (c-1), the beginning of the best-matched

pattern is considered to indicate the position of a half-note

time. Note that the measure level cannot be determined 

this way: the measure level is determined by using the

quarter-note chord-change possibilities as described in

Section 3.2.2.

The knowledge (c-2) is used for reevaluating the reliabil-

ity of the current hypothesis: the reliability is increased

according to how well an input drum pattern matches one of

the prestored drum patterns.

3.2.4 Musical knowledge selection based on the 

presence of drum-sounds

To infer the quarter-note and half-note levels, the musical

knowledge of chord changes ((b-1) and (b-2)) and the

musical knowledge of drum patterns ((c-1) and (c-2)) should

be selectively applied according to the presence or absence

of drum-sounds as shown in Table 1. I therefore developed a

method for judging whether or not the input audio signal con-

tains drum-sounds. This judgement could not be made simply

by using the detected results because the detection of the

drum-sounds is noisy. According to the fact that in popular

music a snare drum is typically played on the second 

and fourth quarter notes in a measure, the method judges 

that the input audio signal contains drum-sounds only when

autocorrelation of the snare drum’s onset times is high

enough.

3.3 Dealing with ambiguity of interpretation

To enable ambiguous situations to be handled when the beat-

tracking cues are interpreted, a multiple-agent model in

which multiple agents examine various hypotheses of the

beat structure in parallel as illustrated in Figure 12 was devel-

oped (Goto & Muraoka, 1996, 1999). Each agent uses its

own strategy and makes a hypothesis by using the inverse

model described in Section 3.2. An agent interacts with

another agent to track beats cooperatively and adapts to 

the current situation by adjusting its strategy. It then eval-

uates the reliability of its own hypothesis according to 

BD
SD

BDBD
SD

time

provisional

chord change

half-note

measure

half-note

best-matched

beat times

possibilities

times

times

times

drum patterns

predict

Fig. 10. Knowledge-based inferring.
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(3) (4)
Pattern 1
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1 2
Pattern 2

BD

SD

3 4

1 2

beat: 2
|X...|O...|
|o...|X...|

SD
BD

beat: 4
|X...|O...|X...|O...|
|o...|x.Xx|X.O.|x...|

SD
BD

O :  1.0
o :  0.5
. :  0.0
x : -0.5
X : -1.0

Matching weight

Fig. 11. Examples of prestored drum patterns.

Table 1. Musical knowledge selection for music with drum-sounds and music without drum-sounds.

Beat structure Without drums With drums

Measure level quarter-note chord-change possibility quarter-note chord-change possibility

(knowledge (b-3)) (knowledge (b-3))

Half-note level quarter-note chord-change possibility drum pattern (knowledge (c-1))

(knowledge (b-2))

Quarter-note level eighth-note chord-change possibility drum pattern (knowledge (c-2))

(knowledge (b-1))
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how well the inverse model can be applied. The final beat-

tracking result is determined on the basis of the most reliable

hypothesis.

3.4 System overview

Figure 13 shows an overview of the system based on the beat-

tracking model. In the frequency-analysis stage, the system

detects the onset-time vectors (Section 3.1.1), detects onset

times of bass drum and snare drum sounds (Section 3.1.3),

and judges the presence or absence of drum-sounds (Section

3.2.4). In the beat-prediction stage, each agent infers the

quarter-note level by using the autocorrelation and cross-

correlation of the onset-time vectors (Section 3.2.1). Each

higher-level checker corresponding to each agent then

detects chord changes (Section 3.1.2) and drum patterns

(Section 3.1.3) by using the quarter-note level as the top-

down information. Using those detected results, each agent

infers the higher levels (Section 3.2.2 and Section 3.2.3) 

and evaluates the reliability of its hypothesis. The agent 

manager gathers all hypotheses and then determines the final

output on the basis of the most reliable one. Finally, the beat-

tracking result is transmitted to other application programs

via a computer network.

4 Experiments and results

The system was tested on monaural audio signals sampled

from commercial compact discs of popular music. Eighty-

five songs, each at least one minute long, were used as the

inputs. Forty-five of the songs had drum-sounds (32 artists,

tempo range: 67–185M.M.) and forty did not (28 artists,

tempo range: 62–116M.M.). Each song had the 4/4 time-

signature and a roughly constant tempo.

In this experiment the system output was compared with

the hand-labeled hierarchical beat structure. To label the

correct beat structure, I developed a beat-structure editor

program that enables a user to mark the beat positions in a

digitized audio signal while listening to the audio and watch-

ing its waveform (Fig. 14). The positions can be finely

adjusted by playing back the audio with click tones at beat

times, and the half-note and measure levels can also be

labeled. The recognition rates were evaluated by using the

quantitative evaluation measures for analyzing the beat-

tracking accuracy that were proposed in earlier papers (Goto

& Muraoka, 1997, 1999). Unstably tracked songs (those for

which correct beats were obtained just temporarily) were not

considered to be tracked correctly.

4.1 Results of evaluating recognition rates

The results of evaluating the recognition rates are listed in

Table 2. I also evaluated how quickly the system started to

track the correct beats stably at each level of the hierarchical

beat structure, and the start time of tracking the correct beat
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Fig. 13. Overview of the beat-tracking system.

Fig. 14. Beat-structure editor program.
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structure is shown in Figure 15. The horizontal axis repre-

sents the song numbers (#) arranged in order of the start time

of the quarter-note level up to song #32 (for music without

drums) and #34 (for music with drums). The mean,

minimum, and maximum of the start time of all the correctly

tracked songs are listed in Table 3 and Table 4. These results

show that in each song where the beat structure was eventu-

ally determined correctly, the system initially had trouble

determining a higher rhythmic level even though a lower

level was correct.

The following are the results of analyzing the reasons the

system made mistakes:

[Music without drums]

The quarter-note level was not determined correctly in five

songs. In one of them the system tracked eighth-note dis-

placement positions because there were too many syncopa-

tions in the basic accompaniment rhythm. In three of the

other songs, although the system tracked correct beats tem-

Table 2. Results of evaluating recognition rates at each level of

the beat structure.

Beat structure Without drums With drums

Measure level 32 of 34 songs 34 of 39 songs

(94.1%) (87.2%)

Half-note level 34 of 35 songs 39 of 39 songs

(97.1%) (100%)

Quarter-note level 35 of 40 songs 39 of 45 songs

(87.5%) (86.7%)
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Fig. 15. Start time of tracking the correct beat structure.

Table 3. Start time of tracking the correct beat structure (music

without drums).

Beat structure mean min max

Measure level 18.47 s 3.42s 42.56s

Half-note level 13.74 s 3.42s 36.75s

Quarter-note level 10.99 s 0.79s 36.75s

Table 4. Start time of tracking the correct beat structure (music

with drums).

Beat structure mean min max

Measure level 22.00 s 6.32s 40.05s

Half-note level 17.15 s 4.20s 41.89s

Quarter-note level 13.87 s 0.52s 41.89s

porarily (during from 14 to 24 s), it sometimes got out of

position because the onset times were very few and irregu-

lar. In the other song the tracked beat times deviated too

much during a measure, although the quarter-note level was

determined correctly during most of the song.

In a song where the half-note level was wrong, the system

failed to apply the musical knowledge of chord changes

because chords were often changed at the fourth quarter note

in a measure.

In two songs where only the measure level was mistaken,

chords were often changed at every other quarter-note and

the system was not able to determine the beginnings of 

measures.
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[Music with drums]

The quarter-note level was not determined correctly in six

songs. In two of them the system correctly tracked beats in

the first half of the song, but the inter-beat interval became

0.75 or 1.5 times of the correct one in the middle of the song.

In two of the other songs the quarter-note level was deter-

mined correctly except that the start times were too late: 

45.3 s and 51.8 s (the start time had to be less than 45s for

the tracking to be considered correct). In the other two songs

the tracked beat times deviated too much temporarily,

although the system tracked beat times correctly during most

of the song.

The system made mistakes at the measure level in five

songs. In one of them the system was not able to determine

the beginnings of measures because chords were often

changed at every quarter-note or every other quarter-note. In

two of the other songs the quarter-note chord-change possi-

bilities were not obtained appropriately because the fre-

quency components corresponding to the chords were too

weak. In the other two songs the system determined the

measure level correctly except that the start times were too

late: 48.3 s and 49.9 s.

The results mentioned above show that the recognition rates

at each level of the beat structure were more than 86.7

percent and that the system is robust enough to deal in real

time with real-world audio signals containing sounds of

various instruments.

4.2 Results of measuring rhythmic difficulty

It is important to measure the degree of beat-tracking diffi-

culty for the songs that were used in testing the beat-

tracking system. As discussed in Section 2, the degree of

beat-tracking difficulty depends on how explicitly the beat

structure is expressed. It is very difficult, however, to

measure its explicitness because it is influenced from various

aspects of the songs. In fact, most previous beat-tracking

studies have not dealt with this issue. I therefore tried, as a

first step, to evaluate the power transition of the input audio

signals. In terms of the power transition, it is more difficult

to track beats of a song in which the power tends to be lower

on beats than between adjacent beats. In other words, the

larger the number of syncopations, the greater the difficulty

of tracking beats.

I thus proposed a quantitative measure of the rhythmic dif-

ficulty, called the power-difference measure,6 that considers

differences between the power on beats and the power on

other positions. This measure is defined as the mean of all

the normalized power difference diffpow(n) in the song:

(11)diff n
pow n pow n

pow n pow n
pow

other beat

other beat

( ) =
( ) - ( )

( ) ( )
+0 5 0 5.

max( , )
. ,

where powbeat(n) represents the local maximum power on 

the n-th beat7 and powother(n) represents the local maximum

power on positions between the n-th beat and (n + 1)-th 

beat (Fig. 16). The power-difference measure takes a value

between 0 (easiest) and 1 (most difficult). For a regular pulse

sequence with a constant interval, for example, this measure

takes a value of 0.

Using this power-difference measure, I evaluated the

rhythmic difficulty of each of the songs used in testing 

the system. Figure 17 shows two histograms of the measure,

one for songs without drum-sounds and the other for 

songs with drum-sounds. Comparison between these two his-

tograms indicates that the power-difference measure tends to

be higher for songs without drum-sounds than with drum-

sounds. In particular, it is interesting that the measure

exceeded 0.5 in more than half of the songs without drum-

sounds; this indicates that the power on beats is often lower

than the power on other positions in those songs. This also

suggests that a simple idea of tracking beats by regarding

large power peaks of the input audio signal as beat positions

is not feasible.

Figure 17 also indicates the songs that were incorrectly

tracked at each level of the beat structure. While the power-

difference measure tends to be higher for the songs that were

incorrectly tracked at the quarter-note level, it’s value is not

clearly related to the songs that were incorrectly tracked at

the half-note and measure levels: the influence from various

other aspects besides the power transition is dominant in

inferring the half-note and measure levels. Although this

measure is not perfect for evaluating the rhythmic difficulty

and other aspects should be taken into consideration, it

should be a meaningful step on the road to measuring the

beat-tracking difficulty in an objective way.

5 Applications

Since beat tracking can be used to automate the time-

consuming tasks that must be completed in order to 

synchronize events with music, it is useful in various appli-

cations, such as video editing, audio edition, and human-

computer improvisation. The development of applications 

6 The detailed equations of the power-difference measure are

described by Goto and Muraoka (1999).
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Fig. 16. Finding the local maximum of the power.

7 The hand-labeled correct quarter-note level is used for this 

evaluation.
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is facilitated by using a network protocol called RMCP

(Remote Music Control Protocol) (Goto, Neyama, &

Muraoka, 1997) for sharing the beat-tracking result among

several distributed processes. RMCP is designed to share

symbolized musical information through networks and it

supports time-scheduling using time stamps and broadcast-

based information sharing without the overhead of multiple

transmission.

• Beat-driven real-time computer graphics

The beat-tracking system makes it easy to create real-

time computer graphics synchronized with music and has

been used to develop a system that displays virtual dancers

and several graphic objects whose motions and positions

change in time to beats (Fig. 18). This system has several

dance sequences, each for a different mood of dance

motions. While a user selects a dance sequence manually,

the timing of each motion in the selected sequence is deter-

mined automatically on the basis of the beat-tracking

results. Such a computer graphics system is suitable for

live stage, TV program, and Karaoke uses.

• Stage-lighting control

Beat tracking facilitates the automatic synchronization 

of computer-controlled stage lighting with the beats in a

Power-difference measure(easy) (difficult)

0.4

0

2

4

6

8

10

0.450.25 0.3 0.5 0.550.35

T
h

e 
n

u
m

b
er

 o
f 

so
n

g
s

Song that was tracked correctly

at the measure level
Song that was incorrectly tracked

Song that was incorrectly tracked
at the quarter-note level

at the half-note level
Song that was incorrectly tracked

0.4

0

2

4

6

8

10

0.450.25 0.3 0.5 0.550.35

Power-difference measure(easy) (difficult)

T
h

e 
n

u
m

b
er

 o
f 

so
n

g
s

Song that was tracked correctly

Song that was incorrectly tracked
at the quarter-note level

at the measure level
Song that was incorrectly tracked

(a) Histogram for 40 songs without drum-sounds.

(b) Histogram for 45 songs with drum-sounds.

Fig. 17. Evaluating beat-tracking difficulty: histograms of the evaluated power-difference measure.

Fig. 18. Virtual dancer “Cindy”.



170 Masataka Goto

musical performance. Various properties of lighting – such

as color, brightness, and direction – can be changed in time

to music. At the moment this application is simulated on a

computer graphics display with virtual dancers.

• Intelligent drum machine

A preliminary system that can play drum patterns in time

to input musical audio signals without drum-sounds has

been implemented. This application is potentially useful

for automatic MIDI-audio synchronization and intelligent

computer accompaniment.

The beat-structure editor program mentioned in Section 4 is

also useful in practical applications. A user can correct or

adjust the output beat structure when the system output

includes mistakes and can make the whole hierarchical beat

structure for a certain application from scratch.

6 Conclusion

This paper has described the beat-tracking problem in

dealing with real-world audio signals, a beat-tracking model

that is a solution to that problem, and applications based 

on a real-time beat-tracking system. Experimental results

show that the system can recognize the hierarchical beat

structure comprising the quarter-note, half-note, and measure

levels in audio signals of compact disc recordings. The

system has also been shown to be effective in practical 

applications.

The main contributions of this paper are to provide a view

in which the beat-tracking problem is regarded as an inverse

problem and to provide a new computations model that can

recognize, in real time, the hierarchical beat structure in

audio signals regardless of whether or not those signals

contain drum-sounds. The model uses sophisticated 

frequency-analysis processes based on top-down information

and uses a higher-level processing based on three kinds of

musical knowledge that are selectively applied according 

to the presence or absence of drum-sounds. These features

made it possible to overcome difficulties in making musical

decisions about complex audio signals and to infer the hier-

archical beat structure.

The system will be upgraded by enabling it to follow

tempo changes and by generalizing it to other musical

genres. Future work will include integration of the 

beat-tracking model described here and other music-

understanding models, such as one detecting melody and

bass lines (Goto, 1999, 2000).

Acknowledgments

This paper is based on my doctoral dissertation supervised

by Professor Yoichi Muraoka at Waseda University. I 

thank Professor Yoichi Muraoka for his guidance and sup-

port and for providing an ideal research environment full 

of freedom.

References

Allen, P.E. & Dannenberg, R.B. (1990). Tracking Musical Beats

in Real Time. In Proceedings of the 1990 International Com-

puter Music Conference, pp. 140–143. Glasgow: ICMA.

Dannenberg, R.B. & Mont-Reynaud, B. (1987). Following 

an Improvisation in Real Time. In Proceedings of the 1987

International Computer Music Conference (pp. 241–248).

Champaign/Urbana: ICMA.

Desain, P. & Honing, H. (1989). The Quantization of Musical

Time: A Connectionist Approach. Computer Music Journal,

13(3), 56–66.

Desain, P. & Honing, H. (1994). Advanced issues in beat induc-

tion modeling: syncopation, tempo and timing. In Proceed-

ings of the 1994 International Computer Music Conference

(pp. 92–94). Aarhus: ICMA.

Driesse, A. (1991). Real-Time Tempo Tracking Using Rules to

Analyze Rhythmic Qualities. In Proceedings of the 1991

International Computer Music Conference (pp. 578–581).

Montreal: ICMA.

Goto, M. (1999). A Real-time Music Scene Description System:

Detecting Melody and Bass Lines in Audio Signals. In

Working Notes of the IJCAI-99 Workshop on Computational

Auditory Scene Analysis (pp. 31–40). Stockholm: IJCAII.

Goto, M. (2000). A Robust Predominant-F0 Estimation Method

for Real-time Detection of Melody and Bass Lines in CD

Recording. In Proceedings of the 2000 IEEE International

Conference on Acoustics, Speech, and Signal Processing (pp.

II–757–760). Stanbul: IEEE.

Goto, M. & Muraoka, Y. (1994). A Beat Tracking System 

for Acoustic Signals of Music. In Proceedings of the 

Second ACM International Conference on Multimedia

(pp. 365–372). San Francisco: ACM.

Goto, M. & Muraoka, Y. (1995). A Real-time Beat Tracking

System for Audio Signals. In Proceedings of the 1995 Inter-

national Computer Music Conference (pp. 171–174). Banff:

ICMA.

Goto, M. & Muraoka, Y. (1996). Beat Tracking based on 

Multiple-agent Architecture – A Real-time Beat Tracking

System for Audio Signals –. In Proceedings of the Second

International Conference on Multiagent Systems (pp.

103–110). Kyoto: AAAI Press.

Goto, M. & Muraoka, Y. (1997). Issues in Evaluating Beat

Tracking Systems. In Working Notes of the IJCAI-97 Work-

shop on Issues in AI and Music (pp. 9–16). Nagoya: IJCAII.

Goto, M. & Muraoka, Y. (1998). Music Understanding At The

Beat Level – Real-time Beat Tracking For Audio Signals. In

D.F. Rosenthal & H.G. Okuno (Eds.), Computational Audi-

tory Scene Analysis (pp. 157–176). New Jersey: Lawrence

Erlbaum Associates, Publishers.

Goto, M. & Muraoka, Y. (1999). Real-time Beat Tracking for

DrumlessAudioSignals:Chord Change Detection for Musical

Decisions. Speech Communication, 27(3–4), 311–335.

Goto, M., Neyama, R., & Muraoka, Y. (1997). RMCP: Remote

Music Control Protocol – Design and Applications –. In 

Proceedings of the 1997 International Computer Music Con-

ference (pp. 446–449). Thessaloniki: ICMA.



Audio-based real-time beat tracking 171

Katayose, H., Kato, H., Imai, M., & Inokuchi, S. (1989). “An

Approach to an Artificial Music Expert,” In Proceedings 

of the 1989 International Computer Music Conference

(pp. 139–146). Columbus: ICMA.

Kitano, H. (1993). “Challenges of Massive Parallelism,” In 

Proceedings of the Thirteenth International Joint Confe-

rence on Artificial Intelligence (pp. 813–834). Chambery:

IJCAII.

Large, E.W. (1995). Beat Tracking with a Nonlinear 

Oscillator. In Working Notes of the IJCAI-95 Workshop 

on Artificial Intelligence and Music (pp. 24–31). Montreal:

IJCAII.

Rosenthal, D. (1992a). “Emulation of Human Rhythm Percep-

tion,” Computer Music Journal, 16(1), 64–76.

Rosenthal, D. (1992b). Machine Rhythm: Computer Emulation

of Human Rhythm Perception. Ph.D. thesis, Massachusetts

Institute of Technology.

Rowe, R. (1993). Interactive Music Systems. Massachusetts:

MIT Press.

Scheirer, E.D. (1998). “Tempo and beat analysis of 

acoustic musical signals,” Journal of the Acoustical Society

America, 103(1), 588–601.

Schloss, W.A. (1985). On The Automatic Transcription of 

Percussive Music – From Acoustic Signal to High-Level

Analysis. Ph.D. thesis, CCRMA, Stanford University.

Todd, N.P.M. (1994). “The Auditory ‘Primal Sketch”: A Multi-

scale Model of Rhythmic Grouping,” Journal of New Music

Research, 23(1), 25–70.

Todd, N.P.M. & Brown, G.J. (1996). “Visualization of Rhythm,

Time and Metre,” Artificial Intelligence Review, 10, 253–273.

Vercoe, B. (1994). “Perceptually-based music pattern recogni-

tion and response,” In Proceedings of the Third International

Conference for the Perception and Cognition of Music (pp.

59–60). Liège: ESCOM.




