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An Audio-Visual System for Object-Based Audio:

From Recording to Listening
Philip Coleman , Andreas Franck , Jon Francombe , Qingju Liu , Teofilo de Campos, Richard J. Hughes,

Dylan Menzies , Marcos F. Simón Gálvez, Yan Tang , James Woodcock, Philip J. B. Jackson, Frank Melchior,

Chris Pike , Filippo Maria Fazi, Trevor J. Cox, and Adrian Hilton

Abstract—Object-based audio is an emerging representation for
audio content, where content is represented in a reproduction-
format-agnostic way and, thus, produced once for consumption on
many different kinds of devices. This affords new opportunities
for immersive, personalized, and interactive listening experiences.
This paper introduces an end-to-end object-based spatial audio
pipeline, from sound recording to listening. A high-level
system architecture is proposed, which includes novel audio-
visual interfaces to support object-based capture and listener-
tracked rendering, and incorporates a proposed component
for objectification, that is, recording content directly into an
object-based form. Text-based and extensible metadata enable
communication between the system components. An open
architecture for object rendering is also proposed. The system’s
capabilities are evaluated in two parts. First, listener-tracked
reproduction of metadata automatically estimated from two
moving talkers is evaluated using an objective binaural localization
model. Second, object-based scene capture with audio extracted
using blind source separation (to remix between two talkers) and
beamforming (to remix a recording of a jazz group) is evaluated
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with perceptually motivated objective and subjective experiments.
These experiments demonstrate that the novel components of the
system add capabilities beyond the state of the art. Finally, we
discuss challenges and future perspectives for object-based audio
workflows.

Index Terms—Audio systems, audio-visual systems.

I. INTRODUCTION

O
BJECT-BASED audio representations are extremely im-

portant for future spatial audio and multimedia content

consumption [1]. In the object-based audio paradigm, the con-

tent is represented as a virtual sound scene, which is a collection

of sound-emitting objects. The audio for each individual object

is transmitted, together with metadata describing how it should

be rendered [2]. The renderer, part of the end user’s sound repro-

duction equipment, interprets the object-based scene and derives

the audio to be played out of each loudspeaker or headphone

channel. This both ensures that the listener receives the best

experience afforded by their setup, and gives new opportuni-

ties for individual listeners to personalize content. For instance,

a hearing-impaired listener might adjust the balance between

dialog and background sounds to improve speech intelligibil-

ity [3], or a football fan might choose to hear the match as if

they are seated with their own team’s fans in the stadium [4]. Fur-

thermore, the object-based representation can allow the content

itself to respond to user input based on semantic metadata [5],

for instance to dynamically create a documentary of a certain

length while retaining the key narrative [6].

To realize the full potential of object-based audio, system

components must share common interfaces, covering the end-

to-end signal pipeline from recording to listening. As there is

a single, unified representation of the audio scene, which is in-

dependent of the reproduction context, the content can be said

to be format-agnostic, i.e., in the production stage the producer

is only required to create a single version of the content for all

systems [7]. This, in turn, has implications for how content is

commissioned, captured, produced, represented prior to render-

ing, and experienced by the end user. Recent standardization

activity has resulted in a number of object metadata schemes.

For example, MPEG-H [8] contains an object-based transmis-

sion pipeline, the audio definition model (ADM) [9] defines an

extension to broadcast wave files to share and archive object-

based content, and the multi-dimensional audio (MDA) [10]
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is a metadata model for object-based content including a bit-

stream representation. These standards generally take a minimal

approach to object description, and specify the object level in ad-

dition to spatial properties such as the egocentric object position

and its spread, size (extent) or diffuseness. Similarly, standards

are emerging for coding [8], [11] and rendering [12]; the ren-

dering techniques are usually based on mature panning or sound

field control techniques [2], [8]. The ORPHEUS project is cur-

rently investigating the object-based broadcast workflow from

production to rendering, using ADM and MPEG-H [13].

One significant limitation of the above systems is that they do

not fully consider the end-to-end signal pipeline. For example,

an audio object usually originates by being manually created by

a producer inside a production tool, rather than being directly

captured from an acoustic scene. There are many situations

where automated audio object creation would be beneficial, such

as in live productions. Similarly, in reproduction, the state of the

art workflows usually consider the rendering to be complete once

the loudspeaker audio has been obtained, but make assumptions

about the listeners (for instance, that they have positioned the

loudspeakers correctly and are positioned in the sweet spot).

Motivated by these limitations, this paper proposes a novel

end-to-end system for object-based spatial audio, integrating

state of the art components to demonstrate the capability of

future object-based audio systems. There are two main engi-

neering contributions:
� Novel system architecture: The proposed system includes

novel interfaces for: object-based capture, to allow pro-

ducers to directly capture audio and/or metadata into an

object-based format; visual input, to allow tracking of per-

formers (for metadata encoding) and listeners (for sweet-

spot adaptation); and perceptual meters, to monitor either

the object-based scene or the rendered loudspeaker chan-

nels. Moreover, we propose an open, extensible metadata

scheme for communication between components. Liter-

ature relevant to each component is reviewed. The pro-

posed architecture will facilitate further research into the

individual components as well as system-level scientific

evaluations beyond the ones introduced below.
� Open object rendering architecture: We propose an open,

flexible architecture for rendering format-agnostic con-

tent over various loudspeaker setups and over headphones.

Baseline implementations of the renderer are available to

the research community for evaluation and development

of new object rendering approaches.1

The engineering contributions above lead to the following

scientific contributions:
� Evaluation of end-to-end system with visual interfaces: We

show that audio-depth performer tracking can be used to

capture position metadata that allow format-agnostic ren-

dering, and demonstrate the advantages of listener tracking

with perceptually-motivated quantitative evaluation by a

binaural localization model.
� Evaluation of objectification components: We show that

objects captured, by blind source separation (BSS) for

1http://cvssp.org/data/s3a/

Fig. 1. Capture, production, representation, rendering and monitoring pipeline
for (a) channel-based; (b) object-based audio, including the proposed Objectifi-

cation stage and novel audio-visual interfaces for capture and rendering.

speech and by beamforming for music, facilitate per-

sonalization of channel-based recordings, where no close

microphones are available. In the speech scenario, listen-

ers increased the clarity of the target talker by adjusting the

object level, while retaining acceptable audio quality com-

pared to the channel-based reference. Objective scores for

speech quality and intelligibility support the perceptual re-

sults. In the music scenario, listeners preferred mixes aug-

mented with the object, compared to the channel-based

baseline.

In Section II, we present an overview of the proposed end-

to-end system. In Section III, components for capture are elab-

orated, and the production tools and perceptual meters are de-

scribed in Section IV. Section V introduces the proposed ob-

ject representation. Section VI describes the object rendering

architecture and its application to a number of reproduction

approaches. In Section VII we present several end-to-end sys-

tem application examples and discuss the system’s capabilities,

limitations, and future opportunities. Finally, we summarize in

Section VIII.

II. SYSTEM OVERVIEW

In this section, we review how an object-based system differs

from a traditional channel-based one, highlight the novelties in

our proposed system architecture, and outline our component-

based design approach.

A. Object-Based Workflow

Fig. 1 shows an overview of the end-to-end audio production

chain, i.e., from acquisition to reproduction and monitoring of

acoustic signals. Audio signals are first captured with micro-

phones. Many different kinds of microphones can be used, such

as: close microphones, where the microphone is placed near to

the sound source; spatial microphone arrays, which aim to cap-

ture the overall scene including spatial information; and room
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microphones, which aim to capture the ambient properties of

the recording room [14], [15]. Special microphones, such as

binaural microphones, ambisonic microphones, and dense mi-

crophone arrays, may also be used. In production, the producer

brings together content captured in various formats, and, in very

general terms, mixes, processes and augments the audio until

the piece of content is formed. Finally, the content is encoded

into a certain object-based representation for distribution. In

the rendering stage, audio is sent to the loudspeakers that will

reproduce the content, and the monitoring stage describes the

content being metered or experienced by a listener.

Fig. 1 illustrates the differences between traditional channel-

based audio production and the object-based paradigm. Fig. 1(a)

shows the channel-based approach, illustrating that in order to

achieve the best quality and maintain the producer’s artistic in-

tent, content must be recorded, produced, represented, rendered,

and monitored with knowledge of the target reproduction sys-

tem. For instance, stereo microphone techniques are optimally

reproduced over an ideal stereo loudspeaker setup [14]. Simi-

larly, binaural recordings can give a convincing 3D audio experi-

ence over headphones, but the effect is lost if the same two audio

channels are reproduced over loudspeakers without suitable sig-

nal processing. In practice, one path is usually adopted for any

given production context, with simultaneous production to mul-

tiple formats where budget constraints allow. Furthermore, there

exist upmixing and downmixing techniques to translate content

among different channel layouts, although these assume ideal

loudspeaker setups.

On the other hand, Fig. 1(b) shows an object-based produc-

tion chain. The key to such a production is the object-based

representation, which is said to be format-agnostic. The pro-

posed metadata representation, based closely on the ADM [9],

is described in Section V. The representation of a sound scene

by means of audio and associated metadata has implications for

all other parts of the signal chain. After the content has been

captured, it is immediately objectified, i.e., converted to a set of

audio objects comprising audio and metadata (see Section III).

In production (see Section IV), there are new opportunities to

develop tools suitable for authoring format-agnostic content.

The rendering stage (see Section VI) is critically important in

an object-based pipeline, because it can exploit opportunities

to optimize the listener experience for a certain system, includ-

ing modification of the loudspeaker signals based on tracked

listener locations, and personalization through local metadata

modifications controlled by the user. Finally, the monitoring

stage is exemplified in our system through perceptual meters

for loudness and intelligibility. These meters are described in

the context of production tools (see Section IV), but can also

potentially be used within the renderer. Furthermore, our evalua-

tions in Section VII represent a discussion on scene monitoring.

A scene-based production pipeline [2], for example based

on Higher Order Ambisonics (HOA), would also look similar

to that depicted in Fig. 1(b). For instance, the scene could ini-

tially be encoded onto HOA basis functions, manipulated and

represented in this domain, and finally decoded to the available

loudspeakers or binaurally rendered to headphones. The main

advantage that object-based audio offers over this kind of repre-

sentation is the availability of individual objects at the renderer.

This retains the opportunity for personalization, giving the ren-

derer the greatest flexibility for adapting a scene to the local

reproduction system and the user’s preferences.

B. Component-Based Design

The integration of the different components into an end-to-

end system is one of the main contributions of this paper. We

followed an approach based on component-based software en-

gineering, e.g., [16], where the different parts of the system

communicate using a set of interfaces. Specifically, these inter-

faces are: multichannel audio streams; JSON (JavaScript Object

Notation [17]) encoded metadata; and UDP (User Datagram

Protocol) network communication.

This design increases the flexibility of the proposed system.

On the one hand, the individual components are interchange-

able, i.e., they can be replaced by other tools and techniques

implementing the same interfaces. On the other hand, the sys-

tem structure can be changed easily, for instance by adding new

tools or processing stages into the system.

III. CAPTURE

The current production workflow for object-based audio re-

quires a producer to import some audio and uses a spatialization

tool to create object metadata [18], [19]. However, in future

content production, it might be possible to capture media assets

directly into an object-based form. This approach has been ap-

plied for experimental live sports broadcasting [20], [21], but

is not yet commonplace for audio production. The proposed

system offers new opportunities for object-based audio capture

based on performer tracking (to obtain metadata) and the ap-

plication of BSS and beamforming techniques to spatial audio

capture (to acquire separated object audio). Adaptive beam-

forming has previously been used to capture moving talkers for

reproduction by wave field synthesis [22]. Our proposed sys-

tem has refined audio-visual talker tracking, extracts the scene

as objects (which can be edited in production), generalizes the

source separation to use BSS in addition to beamforming, and

evaluates the approach for both speech and music in the con-

text of broadcast audio. The proposed objectification stage is

shown in Fig. 2. Input includes RGB-D (i.e., color + depth)

video, and audio in various formats. The system blocks in the

metadata estimation stage (see Section III-A) create metadata

unsupervised or with minimal supervision, and the supervised

objectification functionality is also provided for producers to

manually add metadata to single audio channels. The acoustic

scene segmentation stage (see Section III-B) uses audio signal

processing techniques to estimate individual objects present in

a recorded sound scene. Finally, the outputs of each component

are collated into an object stream.

A. Metadata Estimation

The concept of automatically capturing metadata from a live

recording can be transformative for object-based audio record-

ing. The overall aim is that, by combining appropriate audio
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Fig. 2. System components for the objectification stage.

and visual inputs, objects from a live or session recording could

appear in a user interface at their estimated position, and with

other properties also pre-populated. The producer could then

modify the scene as desired. The current version of our sys-

tem is capable of tracking human performers, with applications

in television, radio, and theatre recording. Similarly, our capa-

bility currently focuses on the core talker tracking technology

and encoding the output as an audio object, and we have not

yet developed the envisaged production tool. To date, we have

developed tracking approaches using visual and audio-visual

modalities.

1) Visual Tracking: Visual tracking was used both for audio

caputre and reproduction. For our goal of talker objectification,

the most important aspect was to estimate talkers’ head locations

(especially their mouths). Similarly, to apply visual tracking for

listeners (see Section VI), the most important aspect is to track

the head and ear locations. Therefore, our approach was to use

a 3D head tracker capable of tracking multiple people, so that

the same tracker could be used for both applications. A num-

ber of methods have been proposed to detect and track people

in depth images [23], [24], particularly those generated using

sensors based on structured light projection. We performed a

set of preliminary experiments comparing state of the art im-

plementations of 3D head tracking from depth measurements

such as the method of [25], and color image (RGB) methods,

such as [26]. These methods were compared against Microsoft

Kinect for Windows v2.02 (termed Kinect2 hereafter), a state

of the art commodity RGB-D sensor that emits near infra-red

pulses and estimates depth based on phase differences. We used

the skeletal tracking implementated in the sensor’s native soft-

ware development kit; our qualitative observations indicated

that this method achieves state of the art accuracy in head po-

sition estimation while being more robust than other real-time

methods, as it swiftly re-initializes tracklets after occlusions.

Furthermore, since it was designed to work in living rooms, the

range of distances where it operates (0.5–4.5 m) is well suited

to our applications. Fig. 3 shows the skeletons, i.e., leg, arm,

2URL: http://www.microsoft.com/en-us/kinectforwindows/meetkinect/feat-
ures.aspx (checked 10/2016)

Fig. 3. RGB and depth map showing skeletal tracking results of performers
(or listeners) on an RGB-D frame. (a) RGB. (b) Depth map.

torso and head position estimates, detected in a sample image

from Kinect2, showing (a) RGB and (b) depth channels. We in-

tegrated this tracking method into our system by streaming the

skeleton positions over a network via UDP, using a structured

JSON text string. For performer tracking (unsupervised meta-

data capture), the performer positions were converted to audio

object metadata and linked to the corresponding audio (recorded

using close microphones or acquired using unsupervised object

separation techniques). The same JSON format is used in repro-

duction to inform the object-based renderer of listener positions

(see Section VI).

2) Audio-Visual Tracking: Audio information can improve

the robustness of visual-only tracking, and in particular can help

overcome limitations in the visual data such as poor illumination

and occlusions [27]. An overview of the current state of audio-

visual fusion can be found in [28]. We developed a novel cross-

modal person tracking algorithm combining information from a

visual depth sensor and simultaneous binaural audio recordings.

We acquired data using Kinect2, as above, and a Cortex Manikin

MK2 binaural head and torso simulator (Cortex MK2 HATS).

Fig. 4(a) shows a video frame used for audio-depth tracking.

When there are occlusions in the visual data, inconsistencies

are observed in the depth head tracking results both spatially

(clutters) and temporally (mis-detections). To remove clutters,

we used a modified probability hypothesis density (PHD) filter-

ing method [29] with an adaptive clutter intensity model, which

takes into account measurement-driven occlusion detection as

well as the depth sensor’s field of view. After PHD filtering, we

applied an identity (ID) association scheme [30], to ensure that

the detected ID of each tracked person was consistent through-

out a whole scene. Finally, to compensate mis-detections, addi-

tional information extracted from the binaural recordings was

exploited. The audio-depth fusion method contains three steps.

First, within segments (i.e., the time periods that contain tra-

jectories without interruption), trajectory constraints for each

detected target are learned via plane fitting, under the assump-

tion that head positions from the depth tracker lie on a plane.

Second, given the HATS position, the azimuth of each target

relative to the HATS is calculated via depth-azimuth mapping,

using 3D points projected on the plane associated with the target.

Third, during each gap between segments, time-difference-of-

arrival (TDOA) cues are calculated by comparing the difference

between the binaural microphones, via the generalized cross

correlation (GCC) [31]. Audio azimuths can be obtained from

these TDOA cues based on a third-order polynomial mapping,

which extends to 3D locations using a gap filling technique,
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Fig. 4. Illustration of audio-depth tracking for two talkers, showing the video
frame and the corresponding position estimates. The estimated locations were
directly encoded into the audio object metadata for unsupervised objectification.
(a) Video frame. (b) Localization plot.

where the learned trajectory constraints and depth-based az-

imuths enclosing this gap are enforced.

The proposed PHD filter for audio-depth tracking greatly mit-

igates outliers in the skeletal motion. Quantitative evaluations

on a dataset recorded in a typical living room showed that the

average outlier rate (the number of frames containing either

mis-detections or clutters) was reduced from 4.45% to 1.82%

after PHD filtering. In addition, the average recall (the num-

ber of frames in which the person was successfully detected

over the total number of frames containing active talkers) in-

creased from 81.9% in the original recordings to 91.3% after

applying our proposed multimodal tracking method. Fig. 4(b)

shows a localization plot obtained by audio-depth tracking. In

the proposed system, the position information was linked to the

corresponding audio and used to populate audio object meta-

data (see Section V), as described in the application example in

Section VII-B.

B. Acoustic Scene Segmentation

In certain scenarios it is not practical to record all individual

sound sources, and instead one or more microphones in an array

might be positioned to capture the overall sound scene. In order

to directly capture audio objects, these signals can be processed

to estimate the audio from the sources in the scene. An early

investigation into audio object separation was conducted in [32],

where experiments applied BSS and deconvolution to separate

speech from two talkers in a conference room. In our system,

we investigate BSS alongside beamforming for the application

of object-based audio capture.

1) Blind Source Separation: In situations where it is imprac-

tical to place a microphone near sound sources, such as multiple

talkers in a theatre production, techniques from BSS can help to

estimate audio objects due to the individual talkers, facilitating

remixing in post-production. Potential tools include indepen-

dent component analysis [33], sparsity-based time-frequency

(TF) masking [34], [35], non-negative matrix factorization [36]

and deep neural networks [37]. In our system we applied a

TF masking method [35]. This method exploits the interaural

level differences (ILD) and interaural phase differences (IPD)

in the spectral domain, while enforcing a sparsity constraint

that each TF cell is dominated by at most one sound source,

which is a valid approximation especially for speech signals.

We used the Cortex MK2 HATS to acquire simultaneous speech

from two talkers in a reverberant room, and evaluated the BSS

performance. Perceptual evaluation of speech quality

(PESQ [38]) scores in the range 2.2–2.6 were obtained for sep-

arated sources (over different test phrases). When the separated

sources were re-mixed with different gains, as would be the case

in a typical audio production, the PESQ scores increased up to

3.0, which indicates ‘fair’ audio quality. These experiments are

discussed fully in [39]. We also applied BSS to remix a scene

with two talkers, while maintaining acceptable audio quality, in

a perceptual test described in Section VII-C.

2) Beamforming: Array signal processing techniques can

also be used to estimate object audio signals due to a number of

sources in a sound scene. In general, the spatial processing re-

quires the source position(s) a-priori, which could be provided

by the producer (live or during post-processing) or by using

output from the tracking techniques described above. Once the

source directions with respect to the array are known, the micro-

phone array can be steered towards sounds from the target direc-

tions and suppress sound from other directions. Many excellent

reviews of beamforming techniques are available [40]–[42]. We

evaluated the ability of a number of classical additive beam-

formers to extract individual objects from a sound scene [43].

For target speech, delay and sum beamforming on the data de-

scribed above gave a PESQ score of 2.35, compared to 1.99 for

a single reference omnidirectional microphone. The approaches

with more complex cost functions (e.g., data-based processing

and spatial null creation) tended to introduce further artefacts.

However, a microphone array deployed in a sound scene could

still be useful to derive audio objects to send alongside chan-

nels, allowing the scene to be edited when no close micro-

phone signals are available. We investigate this application in

Section VII-C.

C. Discussion

We propose the concept of objectification, i.e., direct acqui-

sition of acoustic signals into an object-based representation.

Metadata was captured by tracking performers and converting

the tracked positions to our proposed streaming metadata (see

Section V). Audio corresponding to individual objects was es-

timated from audio mixtures using BSS and beamforming. The

latter aspect of objectification is a very challenging process for

real-world scenes, even using state of the art approaches. In

reverberant rooms, a dereverberation front-end may be a use-

ful addition to the objectification pipeline, as pre-processing

to the approaches implemented here. The state of the art in

dereverberation has recently been summarized and evaluated in

relation to the REVERB challenge [44]. In addition, it would

be beneficial to access a purpose-designed perceptual model;

PESQ only covers speech and can only evaluate the quality of

individual objects, not a whole scene. Informal listening with

the BSS-estimated audio used in [39] revealed that we were

able freely to respatialize these objects without exposing the

interfering speech (although there were audible degradations

to the target audio). Thus, we conclude that while state of the

art techniques cannot provide sufficient audio quality to cap-
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Fig. 5. System components for the production stage, showing the baseline

tools (Spatial Audio Workstation (SAW) and Nuendo), scene mastering, pro-
duction rendering and perceptual scene metering tools.

ture a purely object-based scene at this time, they do already

provide sufficient interference rejection to allow remixing or

respatializing. Nevertheless, BSS and beamforming can be used

to estimate object signals to be transmitted alongside channel

feeds and allow these scenes to be manipulated in a meaningful

way without unacceptably degrading the audio quality, as the

channel signals may mask any artefacts of the source separation.

Current standards [8], [11] support this kind of hybrid scene.

These applications are explored in Section VII-C.

IV. PRODUCTION

In object-based production, the audio assets are sent directly

to the renderer, while the spatialization tools operate on the

metadata and not on the audio (as would be the case for a

panning-based control in channel-based production). The pro-

duction tool components in the system are shown in Fig. 5.

A. Baseline Tools and Mastering

Our system used a commercial solution, the Spatial Audio

Workstation (SAW)3, as the main object-based production tool.

The SAW is a plugin for Nuendo4 that includes an interface for

positioning objects in 3D, and generates metadata that we sub-

sequently converted to our JSON representation and sent over

UDP. The audio channels corresponding to each object were sent

to the renderer over a MADI [45] connection. Conceptually, the

SAW is simultaneously used here for supervised objectification

(see Fig. 2) and for the producer to set object positions in the

metadata as part of object-based production [see Fig. 1(b)].

To combine the object streams from the SAW with output

from the proposed objectification tools, we created a simple

Max/MSP5 program to aggregate the two metadata streams into

a single stream (the audio was routed directly to the renderer).

3URL: http://www.iosono-sound.com (checked 10/2016)
4URL: http://www.steinberg.net/en/products/nuendo_range/nuendo/start.html

(checked 10/2016)
5URL: https://cycling74.com/products/max/ (checked 12/2016)

This program received both object streams and stored the val-

ues into an internal dictionary representation, before making

the attributes available for editing and finally writing the full

scene into metadata and sending it to the renderer. We also in-

corporated a simple metadata-based mastering control, whereby

a different gain could be applied to an object’s level field de-

pending on the value of the corresponding priority field. This

approach could also enable the end user to personalize their

listening experience in a practical system.

B. Perceptual Scene Metering

The object-based audio workflow presents opportunities for

perceptual metering. Our system includes interfaces for meters

based on the object scene and the rendered scene. We exempli-

fied these interfaces by implementing meters for speech intelli-

gibility and loudness.

1) Speech Intelligibility: Speech intelligibility is naturally

an important consideration for audio scenes with dialog, es-

pecially for hearing-impaired listeners. A meter based on the

binaural distortion-weighted glimpse proportion metric (BiD-

WGP) [46] was integrated into the proposed system. The output

of BiDWGP is an index falling into the range 0–1, with a larger

number indicating higher intelligibility. In our prototype, this

value was presented directly to the producer. The meter directly

accepts the object audio and metadata as inputs, and creates

an internal binaural representation for input to the model. This

provides an approximation of intelligibility of the object-based

scene design prior to rendering. The meter does not at this stage

account for degredations due to the limitations of a particular

renderer, or other local environmental noise. Nevertheless, we

believe ours to be the first object-based speech intelligibility

meter integrated into a 3D object based mixing workflow.

2) Scene Loudness: Loudness for multichannel audio has

recently been studied [47], [48], and the International Telecom-

munication Union (ITU) have standardized an algorithm for

predicting the perceived loudness of reproduction systems with

an arbitrary number of loudspeakers at any position [49]. The

loudness meters implemented in the proposed system are based

on this standard and predict loudness either from (i) the loud-

speaker feeds, or (ii) a binaural auralization of the loudspeaker

reproduction (see Section VI-C). In (i), the model receives the

rendered loudspeaker feeds and the loudspeaker positions, and

uses the coefficients specified in [47]. This approach allows the

producer to assess changes in loudness caused by rendering

to different loudspeaker setups, and to mix the scene accord-

ingly. In (ii), the model receives the binaural signal and pre-

dicts its loudness using a modified version of [49], in which

the head-shadowing filter was bypassed [50]. The binaural in-

put facilitates assessment of the loudness of a direct binaural

render or metering of real-world setups using binaural auraliza-

tion. Francombe et al. [48] showed similar accuracy in both of

these approaches to loudness prediction (with marginally better

performance statistics for the loudspeaker feed model).

V. REPRESENTATION

The object-based scene representation (i.e., the object meta-

data) is a central part of the end-to-end system, because it links
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Fig. 6. Object metadata representation type hierarchy.

all stages of the system. Existing object-based scene representa-

tions in audio research include the Audio Scene Description For-

mat (ASDF) [51] and SpatDIF [52]. We chose the JSON-based

representations over these formats, as they are either purely file-

based (ASDF), or their network encoding based on open sound

control6 limits extensibility and the addition of semantic meta-

data (SpatDIF). The proposed object representation is loosely

based on the ADM [9], in particular regarding object features

and attributes, but there are significant differences. Firstly, ADM

is a static description of a complete scene, including its temporal

behavior, contained as an XML representation within a Broad-

cast Wave Format file. In contrast, the proposed object scheme

is a streaming representation where object data is transmitted

repeatedly, typically over a network connection, to convey the

time-varying state of the audio scene. Secondly, while existing

metadata representations as in ADM or MPEG-H feature only a

single object type with several, often inactive attributes, the pro-

posed object format features an extensible hierarchy of object

types. The motivation of this type hierarchy is the ability to rep-

resent different parts of the audio scene using the best-matching

object representations, to utilize the rendering resources effi-

ciently, and to add new object types and corresponding render-

ing techniques as the system evolves. Recently, the reverberant

spatial audio object [53] has exploited this extensibility.

Within the proposed system, we chose a metadata representa-

tion based on JSON. This text-based representation was chosen

to allow for human readability, convenient metadata transfor-

mations, easy incorporation of new metadata, and extensibility.

As a text-based format, the proposed representation does not

at this stage put emphasis on the required bandwidth or coding

efficiency, as done, for example, in transmission formats such

as MPEG-H [54], MDA [10], or AC-4 bitstreams [11]. Fig. 6

shows the object type hierarchy. The base type Object contains

6URL: http://opensoundcontrol.org

Fig. 7. Block diagram of the format-agnostic rendering.

attributes shared by all types: an object id, type label, the associ-

ated audio signal channels, grouping information, and a priority

value. Currently supported object types are plane waves, point

sources, and diffuse sound events. The Diffuse Point Source and

Extended Source types extend the basic Point Source type by

specific attributes, i.e., a controllable amount of diffuse sound

or a physical source extent, respectively. A higher order Am-

bisonics (HOA) object type is also provided to represent sound

fields, similar to the scene container in MPEG-H.

VI. RENDERING

The object-based renderer transforms the object audio signals

and metadata, together with additional control data such as the

listener’s position and preferences, into loudspeaker or head-

phone signals for the actual reproduction configuration. Fig. 7

shows the overall signal flow of the proposed rendering system.

The Object Rendering stage forms the core of the system. Its

architecture is described in Section VI-A, and the currently im-

plemented rendering algorithms are outlined in Section VI-B.

The Binaural Auralization module, which can be used to present

the output of a loudspeaker rendering over headphones, is de-

scribed in Section VI-C. Section VI-D describes the imple-

mented Transaural Rendering as an additional reproduction

method to reproduce object-based binaural audio over loud-

speaker arrays.

A. Software Renderer Architecture

The object renderer follows the principles of component-

based software design outlined in Section II-B. To this end,

it is implemented as a modular, extensible, and portable C++

framework. Within this framework, the rendering algorithms

are modeled as a signal flow consisting of interconnected ac-

tive elements, termed components. Fig. 8 shows the signal flow

of the current object renderer. Components can represent ei-

ther configurable, generic functionalities such as gain matrices,
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Fig. 8. Signal flow of the proposed object renderer.

delay lines, or multichannel filtering kernels, or bespoke func-

tionality as the gain calculation of a specific panning algorithm.

Components interchange both audio data and parameter data of

arbitrary types, which range from complete object metadata to

low-level parameters such as matrix gains or filter coefficients.

In contrast to other frameworks for multichannel audio, such

as the SoundScape Renderer [55], the proposed software ren-

dering platform focuses on the implementation of the signal

processing algorithms and their interaction to form complex

rendering schemes. While the former places much importance

on the distribution of low-level processing tasks to multiple pro-

cessor cores, the proposed software framework handles tasks

such as the transmission of audio and parameter data, as well

as parallelization, in runtime libraries which do not require user

intervention. This enables rapid development and refinement

of complex signal flows, and makes it easier to apply the same

approach on different platforms. The key signal flows for object-

based rendering are described below.

B. Object Rendering

The overall structure of the object-based renderer reflects

the hierarchical object model described in Section V, which

results in specific processing resources and signal flows for

the different object types. A number of components form the

infrastructure common to all object types. This includes the

Object Vector, which represents the decoded metadata,

the Signal Routing block that distributes the object audio

signals to the processing resources, and the summation block

that combines the loudspeaker signals of the different render-

ing approaches. The EQ/Gain/Delay component adjusts the

output signals to the actual loudspeakers, and the optional Com-

pensation Calculator with Gain/Delay Compen-

sation functionality is used for adapting to listener position.

In the following the core reproduction methods used for object

rendering are described. Although the representation and archi-

tecture support multichannel HOA objects (which are decoded

to the loudspeakers using the All-round Ambisonic Decoding

(AllRAD) [56] approach), here we focus on the rendering of

objects corresponding to a single audio channel.

1) Point Source and Plane Wave Rendering: Point sources

and plane waves represent localized, point-like objects, at fi-

nite or infinite distances from the listener, respectively. They

are among the key object types to model sound scenes. The

proposed system uses Vector Base Amplitude Panning (VBAP)

[57] for these object types. As standard VBAP considers only

the object’s direction, and not its distance, both object types

are rendered identically unless the listener-adaptive panning

(see Section VI-B3) is active. The implementation is parti-

tioned into theVBAP Gain Calculator and thePanning

Gain Matrix components. The former divides the spherical

loudspeaker setup into a mesh of triplets and inverts a gain matrix

for each triplet at startup time. The panning gains are calculated

at runtime by selecting the matching loudspeaker matrix and

multiplying it with the object position. The Panning Gain

Matrix applies these gains to the object’s audio signal to form

a set of loudspeaker signals, ensuring good audio quality by

providing smooth gain transitions in case of position changes.

2) Diffuse and Spread Object Rendering: The object types

Diffuse Source and Diffuse Point Source represent either fully

diffuse, omnidirectional sound events or directed sources with

a adjustable fraction of diffuse energy, similar to the “spread”

parameter in ADM [9]. TheDiffusion Calculator com-

putes a diffusion gains, which are used by the Diffusion

Gains component to mix the object signals into a mono down-

mix. Finally, theDecorrelation Filters component ap-

plies a bank of random-phase allpass filters to create decor-

related loudspeaker feeds that are combined with the panned

objects to form the final loudspeaker feeds.

3) Listener-Adaptive Panning: The rendering methods also

incorporate a listener tracking functionality (described in Sec-

tion III-A1 in the context of performer tracking), to fix images

in absolute space. Parallax cues can then provide an improved

overall sense of space as the listener moves. This was previously

described for stereo panning [58], [59]. When the listener moves,

the egocentric angular locations of the loudspeakers change, so

the VBAP triplet inverse matrices are recalculated. In the sig-

nal flow (see Fig. 8), this is represented by the Compensation

Calculator component that transmits listener position updates

to the VBAP Gain Calculator block. The vectors pointing to

the loudspeakers and sources are recalculated by subtraction of

the listener position. The delays and gains of the final feeds are

compensated for the distance of the listener to the corresponding

loudspeakers by the Gain/Delay Compensation component.

C. Binaural Auralization

In the proposed system, we also implemented a binaural au-

ralization stage, as shown in Fig. 7. The objects are first rendered

to a loudspeaker setup, and the channel feeds are auralized. This

provided a good spatial impression and required a sparse mesh

of measured head-related transfer functions (HRTFs), compared

to directly spatializing each object. Defining the system inter-

face in this way enabled us to interchangeably use anechoic

HRTF sets with virtual loudspeakers [60] or measurements of

specific loudspeaker systems installed in listening rooms. Bin-

aural signals provided signals for transaural processing, and for

production meters.

D. Transaural Rendering

The proposed system architecture also allows the object-

based scenes to be reproduced over a soundbar. The interface
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to transaural rendering (binaural reproduction with loudspeak-

ers, Fig. 7) is especially important because soundbar systems

can feasibly be deployed in living-room type listening environ-

ments. Transaural audio has been studied using arrangements

of two loudspeakers [61], leading to the development of ge-

ometries such as the stereo dipole [62] and the optimal source

distribution (OSD) [63]. Recent advances in transaural repro-

duction have incorporated head-tracking and hence adapt the

audio reproduction to the instantaneous listener position. Sev-

eral works have been carried out in this area, using ensembles of

loudspeaker pairs [64] and also larger loudspeaker arrays [65].

The implemented listener-adaptive transaural processing stage

is fully described in [66]; cross-talk cancelation filters were

created for the on-axis listening position and combined with a

network of delays that steer the array output according to the in-

stantaneous listener position (assuming that the listener is facing

the center of the array). Informal listening showed the spatial

impression to be convincing even when listening off-axis.

VII. DISCUSSION: APPLICATIONS AND OPPORTUNITIES

In this section, three main applications of the proposed sys-

tem are evaluated: scene composition with clean object audio

and manual metadata authoring, scene capture with automated

metadata, and scene capture utilizing audio segmentation. Then,

we discuss the overall capabilities and limitations of the system,

and highlight key areas for future work.

A. Manual Scene Recording and Authoring

An early version of the proposed system, prior to the inte-

gration of the objectification component, was utilized in the

production of three object-based audio drama scenes [67]. Dia-

log for the scenes was recorded in a semi-anechoic environment;

each actor had a separate microphone and they were asked not

to overlap their lines. Additional objects utilized in the final

scenes were also recorded as cleanly as possible. However, it is

a time consuming process to capture clean audio and manually

author metadata. The use-cases described below demonstrate

how our system has the potential to overcome these limitations

of traditional audio workflows. In addition to the clean audio

recordings, a number of “live” takes were recorded. As the ac-

tors were in this case allowed to overlap their lines, the sound

designer commented that they could “really tell...how much

[the semi-anechoic recording] process affected acting”. This

suggests that automatic encoding of the actors’ positions might

lead to more natural performances from the actors, as well as

reducing production effort.

B. Scene Capture With Automated Metadata

The proposed system allows spatial audio content to be

captured in an object-based form, and rendered in a format-

agnostic way. As an example, consider the scene described in

Section III-A, comprising two moving talkers. Through audio-

visual tracking by the method of Section III-A2, the talkers’

positions over a 20 s sequence were tracked and converted to

the object metadata as point sources, forming a two-object scene

Fig. 9. Predicted localization of a two-object scene captured with automated
metadata estimation and rendered over a “9 + 10 + 3” loudspeaker setup. DOA
predictions were made using binaural auralizations of the 22 loudspeakers with
(a) anechoic HRTFs, (b) measured BRIRs in a listening room in a position
outside the sweet spot, (c) as (b) but with the listener tracking compensation
active. Candidate DOAs (first ° and second + peaks detected from the DOA
histogram) are shown, alongside the estimated talker trajectories (thick lines)
and the ground-truth metadata positions (thin black lines).

which was then sent to the renderer over UDP. These positions

are considered as the ground-truth positions of the two talkers

in the scene. Audio recorded using lapel microphones worn by

each talker was also sent to the renderer, and the scene was

rendered over a “9 + 10 + 3” setup [68], in addition to a dense

circular array of 36 virtual loudspeakers (i.e., having 10° spac-

ing). Finally, binaural feeds were acquired by auralization of the

virtual loudspeaker layouts (see Fig. 7). Two cases were con-

sidered: ideal rendering using anechoic HRTF measurements of

a Neumann KU 100 dummy head [69], and auralization of a

listening room using binaural room impulse responses (BRIRs)

acquired in the BBC listening room [70], both at the sweet spot

and in a second position 62 cm forward and 65 cm left of the

sweet spot.

To predict the resulting listening experience, a perceptual

model combining ITD and ILD features and an auditory model-

ing front-end was utilized [71], using the implementation in the

Auditory Modeling Toolbox [72]. This model is able to localize

multiple concurrent speakers. For each time frame (2.5 s) and

frequency band, the model gives as output a histogram of the

estimated DOAs. Histograms were averaged over 500–1400 Hz,

following [71], and processed by picking at most two prominent

peaks in each time frame. Candidate DOAs associated with

these peaks were used to update the states of particles, from

which the talker trajectories were estimated using particle fil-

tering [73]. Quantitative estimates of localization performance

were obtained by taking the root-mean-square-error (RMSE),

comparing the trajectories to the ground-truth metadata posi-

tions over the 20 s sequence.

Fig. 9 shows the localization results for three cases, each

utilizing a 9 + 10 + 3 loudspeaker setup. On each plot, the

extracted candidate DOAs are shown, together with the two es-

timated talker trajectories (thick lines) and the original object

metadata values (dashed lines). Metadata positions outside the

range ±90° are wrapped to be within the range for plotting, as

front-back ambiguities cannot be resolved with ITD and ILD

features. Fig. 9(a) shows the case where anechoic HRTFs were

used for rendering. Here, it can be seen that the estimated tra-
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jectories fit the target positions very well, especially over the

first 10 s of the sequence. The RMSE (9.5° averaged over both

talkers) over the 20 s sequence is comparable to that of the dense

circular loudspeaker array (10.2°). These kinds of virtual loud-

speaker setup could be used for headphones or with transaural

processing, accurately conveying the perceived metadata while

limiting the need to store HRTFs for a full range of potential

object positions.

Fig. 9(b) and (c) show the effect of activating the listener

tracking in a listening room. Fig. 9(b) shows the estimated

localization for an off-center listener, while Fig. 9(c) shows

the localization when the listener’s position is compensated. In

both cases, the listening room BRIRs were used for auraliza-

tion, which limits the DOA model’s performance, especially

towards the lateral positions. Nevertheless, over the 20 s se-

quence, activating the listener compensation gave an RMSE of

12.3°, compared to 20.4° for the uncompensated case (and 11.6°

for the listening room sweet spot BRIR).

C. Scene Capture Utilizing Acoustic Scene Segmentation

For the final use-case, we consider two live recording sce-

narios. A common approach is to mix close microphone object

signals with a channel-based capture of the entire scene, facili-

tating greater editing capability. If close microphone signals are

not available (for example, if there is limited setup time or close

microphones must be avoided for visual reasons), the methods

described in Section III-B can be employed to estimate object

signals. These object signals can then be broadcast alongside

the channel feeds, to allow a content producer or end-user to

modify the overall balance of the scene. This kind of hybrid

approach is supported in current standards [8], [11]. We present

two examples, utilizing the BSS and beamforming components,

respectively. Performances were recorded in a large recording

studio (RT60 1.1 s), with a 48 channel microphone array in addi-

tion to a variety of spatial microphone techniques (documented

in [74]). The listening tests reported below were conducted using

a standardized “0 +5 + 0” setup [68] with Genelec 8020B loud-

speakers in an acoustically-treated listening room with RT60

conforming to the ITU recommendation [75] above 400 Hz.

1) Blind Source Separation: To investigate the utility of BSS

to enable object-based remix of stereo speech content, subjec-

tive and objective perceptual experiments were conducted. Dif-

ferent TIMIT sentences spoken simultaneously by two talkers

were recorded with a pair of high-quality omnidirectional micro-

phones, 18 cm apart, approximately 4 m from the talkers. Lapel

microphone signals were also recorded, to provide close refer-

ence signals for the objective evaluation. In the stereo recording,

one talker was 4.6 dB louder than the other, according to the

estimated signal-to-interference ratios (SIRs) calculated by BSS

Eval [76]. Mandel’s method [35] was used to estimate the qui-

eter talker as an object, with a view to allowing a producer or

listener to adjust the level of that talker to make the associated

speech clearer. The extracted speech object had 3.54 dB SIR.

In the subjective experiment, listeners were presented with

the reference stereo recording (left and right signals rendered

directly to ±30 °) and the BSS-estimated object. They were

asked to “adjust the slider [controlling the extracted object

Fig. 10. Relative objective STOI (left) and PESQ (right) scores as a function
of level, for an object extracted by BSS mixed into a stereo recording, with the
mixture-only (⊳) and object-only (⊲) scores. Perceptual thresholds of audibility
(grey) and acceptability (blue) with 95% confidence intervals are also shown.

level] until the target talker is as clear and easy to understand

as possible, whilst ensuring that the overall audio quality re-

mains at an acceptable level (compared to the reference).” The

BSS object was rendered at azimuths {0, 15, 30°}, with three

repeats, giving nine ratings per listener. Additionally, a thresh-

old of audibility was determined: listeners were presented with

the same stimulus (object at 0°) and asked to “adjust the [ob-

ject] level to the point immediately before the mix is different

to the reference.” This part also included three repeats. Ten ex-

perienced listeners completed the tests, of whom seven were

native English speakers. In a post-screening of the data, the re-

sults of one participant were removed as they were found to

give inconsistent threshold judgments; the remaining threshold

judgements were normally distributed. The results are shown as

horizontal error bars in Fig. 10. The mean mixing level averaged

over azimuth (0.2 dB relative to the reference) differed signifi-

cantly from the threshold of audibility (−14.9 dB) according to

a two-sample t-test (t = 9.73, p < 0.01). This shows the benefit

of BSS; there is a region in which the BSS-extracted object is

audible and makes the target talker clearer while maintaining

acceptable quality. An analysis of variance (ANOVA) showed

no significant effects of azimuth (F = 0.85, p = 0.43) or repeat

(F = 0.98, p = 0.38) on the acceptability threshold.

The objective evaluation employed metrics of short-time ob-

jective intelligibility (STOI [77]), which predicts speech intel-

ligibility, and PESQ, which predicts speech quality. The mono

sum of the stereo reference, mixed with the extracted speech

object at relative levels in the range ±20 dB, was presented to

the models. Prior to processing, all signals were downsampled

to 16 kHz and each test mixture was loudness matched to have

the same loudness as the reference lapel microphone signal.

Objective scores were calculated as the average over those for

sentence-level clips in the recording (4 clips with average dura-

tion 3.2 s for the target talker; 5 clips with average duration 2.7 s

for the interfering talker). After BSS, the extracted object had

STOI and PESQ scores of 0.44 and 1.87, respectively. Never-

theless, the judgement about whether one talker is clearer than

another depends on the relative mix of both talkers. Therefore

relative objective scores were calculated (target talker score −
interfering talker score) and are plotted as curves in Fig. 10.

The −0.1 relative STOI score for the target talker in the original

stereo recording (SIR −0.48 dB) confirms that the interfering

talker is more intelligible than the target talker before mixing the

extracted object into the scene. By increasing the object’s level
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in the mixture, the relative STOI and PESQ scores increased.

At the mean mixing level determined in the subjective tests, the

relative scores are both positive, confirming that introducing the

separated speech into the mix has resulted in an enhancement.

2) Beamforming: A jazz group (piano, guitar, bass guitar,

drums), arranged roughly along an arc approximately 4 m

from the 48-channel microphone array, was also recorded. A

5-channel baseline mix was produced [74, Sec. 4]. In the result-

ing mix, the piano had a lower acoustic level than the other in-

struments, and was distant and lacked definition. Consequently,

in order to improve the overall mix, the microphone array was

steered towards the piano to extract an object signal. The beam-

former applied was a frequency-independent 9th order hyper-

cardioid, created by least-squares matching of the beampatterns

while constraining the white noise gain not to move below 10 dB.

The extracted object signal was bandlimited using two paramet-

ric equalization sections with gains of −23.7/−17.0 dB, center

frequencies 231/6695 Hz, and Q factors 3.8/0.5, giving upper

and lower −6 dB points at 325 Hz and 5 kHz, respectively, ap-

proximately corresponding to the effective frequency range of

the beamformer.

A perceptual test was conducted to evaluate the effect of the

extracted object in the context of the overall scene. The chan-

nels from the reference 5-channel mix were played as point

source objects located at the loudspeaker positions, and the pi-

ano object was mixed into the scene with six different levels

(−4, −2, 0, 2, 4, and 6 dB relative to the reference) and two

positions (10 degrees—corresponding to the approximate po-

sition of the piano in the reference scene—and 25 degrees).

Stimuli were loudness-matched using the meter described in

Section IV-B [49]. The thirteen stimuli (six levels × two posi-

tions, plus a hidden reference, which was identical to the explicit

reference) were presented to the listeners on a multiple stimulus

interface, and listeners were asked to rate their preference for

the test stimuli compared to the explicit reference (where the

mid-point of the scale was no preference). Twelve experienced

listeners—of whom four had extensive experience creating 3D

audio mixes—completed the tests. To compensate for different

use of the scale by participants, the scores were normalized by

dividing all scores by the standard deviation of the scores [78].

The results from two participants were discarded (one partici-

pant was shown to be inconsistent; the other misidentified the

hidden reference).

An ANOVA was performed, showing a significant effect of

beamformer object level on preference (F = 29.1, p < 0.01).

The results are shown in Fig. 11, which shows that an increase

in preference was given when the beamformer object level was

−2 dB (at 25 degrees) or −4 dB (at both angles). In these cases,

the object helped to make the piano less distant in the mix

without affecting the overall quality. On the other hand, as the

mix ratio increased, artifacts due to the beamforming (namely

band limiting and the effect of the interfering sources altering

the spatial image) were more exposed. There was a small, non-

significant increase in preference for the piano object rendered

at 25 degrees compared to 10 degrees. Comments recorded

from participants suggested that this had the effect of widening

the perceived piano image. In summary, subtle addition of the

separated object was shown to be preferred by the listeners to

Fig. 11. Listener preference as a function of level and object position, for a
jazz group recording including a piano object extracted by beamforming.

just the channel-based mix, even where no close microphone

signals were available.

D. System Capabilities, Limitations and Future Opportunities

State-of-the-art object-based audio workflows require clean

audio, manually authored metadata, and listeners positioned in

the sweet spot. Our proposed system overcomes these limita-

tions by the inclusion of audio-visual interfaces for metadata

capture and listener-tracked rendering, and novel applications

of BSS and beamforming signal processing for use in clean

audio acquisition. Furthermore, the integration of state-of-the-

art components means that our system is able, for example, to

deliver an accurate perception of moving talkers for a listener

outside of the sweet spot.

We demonstrated in Sections VII-B and VII-C that the pro-

posed objectification components can be used to capture object

audio and metadata, even where no close microphone signals are

available. The producer thus has greater control over the scene

than for recordings made with traditional channel-based tech-

niques. Our subjective evaluations showed that this approach to

capture and editing improved the resulting listener experience.

An ongoing challenge for object-based audio segmentation is

to estimate clean, high quality, objects. Informally, we observed

amplitude panning effects when attempting to re-spatialize ex-

tracted objects with imperfect separation. This effectively im-

poses an upper limit on the spatial remixing achievable for

objects captured in this way. In addition, there is a need for

production tools which incoporate objectification.

The object-based representation underpins the whole end-to-

end system. Of the object types currently in our model (see

Section V), point source and plane wave objects are the most

commonly used. Our objectificaton techniques and production

tools do not yet support the other, more experimental, object

types. Nevertheless, these object types, combined with new de-

scriptive or semantic fields, may support the producer to encode

their artistic intent into the scene. Future object-based work-

flows should support multiple object types across the whole

end-to-end pipeline.

The renderer is of vital importance for object-based scenes.

Although the VBAP rendering is said to be format-agnostic,

in practice performance depends on the available loudspeakers.

For instance, the estimated RMSE in localization performance

for an ideal 5 channel system rendering the 20 s scene from
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Section VII-B was 19.6°, averaged over both objects. The main

cause of this degradation is that the scene contains objects in

positions where the loudspeakers are not sufficiently close to-

gether for amplitude panning to be effective (i.e., behind the

listener). Future object renderers may be able to account for

such limitations, as well as to be able to convincingly render

objects with extent, diffuseness, and varying distance, that have

been captured by the other future system components.

Finally, the transition from channel-based to object-based

representations of audio raises a number of interesting questions

about how listeners experience the content. In particular, future

work should investigate how listeners would use controls to

interact with the sound scene, and what kinds of controls they

would like to have.

VIII. SUMMARY

In this paper, we proposed an audio-visual system for spa-

tial audio, covering the full pipeline of audio production from

capture of acoustic signals to monitoring by a perceptual me-

ter or listener. The proposed system has a novel architecture,

including audio-visual interfaces for capture and rendering and

a novel component for direct capture of content into an object-

based representation. We propose a new object metadata scheme

and describe the design and implementation of an open, flexible

rendering architecture. A discussion of the system’s capabilities

was formed around three end-to-end use-cases: production of

radio drama scenes; scene capture with metadata estimated from

moving talkers, rendered over different loudspeaker setups, and

evaluated using an objective binaural localization model; and

scene capture with audio extracted using BSS (to remix be-

tween two talkers) and beamforming (to remix a recording of

a jazz group), evaluated in formal listening tests. The latter ex-

periments showed that extracted audio objects can be added to

channel-based recordings, thus allowing remixing and respatial-

ization, while maintaining acceptable audio quality. Finally, we

discussed future opportunities.
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