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AN AUGMENTED INCOMPLETE FACTORIZATION APPROACH
FOR COMPUTING THE SCHUR COMPLEMENT IN STOCHASTIC

OPTIMIZATION∗

COSMIN G. PETRA† , OLAF SCHENK‡ , MILES LUBIN§ , AND KLAUS GÄERTNER¶

Abstract. We present a scalable approach and implementation for solving stochastic optimiza-
tion problems on high-performance computers. In this work we revisit the sparse linear algebra
computations of the parallel solver PIPS with the goal of improving the shared-memory performance
and decreasing the time to solution. These computations consist of solving sparse linear systems
with multiple sparse right-hand sides and are needed in our Schur-complement decomposition ap-
proach to compute the contribution of each scenario to the Schur matrix. Our novel approach
uses an incomplete augmented factorization implemented within the PARDISO linear solver and
an outer BiCGStab iteration to efficiently absorb pivot perturbations occurring during factoriza-
tion. This approach is capable of both efficiently using the cores inside a computational node and
exploiting sparsity of the right-hand sides. We report on the performance of the approach on high-
performance computers when solving stochastic unit commitment problems of unprecedented size
(billions of variables and constraints) that arise in the optimization and control of electrical power
grids. Our numerical experiments suggest that supercomputers can be efficiently used to solve power
grid stochastic optimization problems with thousands of scenarios under the strict “real-time” re-
quirements of power grid operators. To our knowledge, this has not been possible prior to the present
work.
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1. Introduction. In this paper, we present novel linear algebra developments
for the solution of linear systems arising in interior-point methods for the solution of
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C140 C. G. PETRA, O. SCHENK, M. LUBIN, AND K. GÄERTNER

structured optimization problems of the form

(1.1)

min
xi,i=0,...,N

(
1

2
xT
0 Q0x0 + cT0 x0

)
+

1

N

N∑
i=1

(
1

2
xT
i Qixi + cTi xi

)

subject to (s.t.) T0x0 = b0,

T1x0 + W1x1 = b1,

T2x0 + W2x2 = b2,

...
. . .

...

TNx0 + WNxN = bN ,

x0 ≥ 0, x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0.

Optimization problems of the form (1.1) are known as convex quadratic optimiza-
tion problems with dual block-angular structure. Such problems arise as the exten-
sive form in stochastic optimization, being either deterministic equivalents or sample
average approximations (SAAs) of two-stage stochastic optimization problems with
recourse [34]. Two-stage stochastic optimization problems are formulated as

min
x

(
1

2
xT
0 Q0x+ cTx0

)
+ Eξ[G(x0, ξ)]

s.t. T0x0 = b0, x0 ≥ 0,

(1.2)

where the recourse function G(x0, ξ) is defined by

G(x0, ξ) = min
x

1

2
xTQξx+ cTξ x

s.t. Tξx0 +Wξx = bξ, x ≥ 0.

(1.3)

The expected value E[·], which is assumed to be well defined, is taken with respect
to the random variable ξ, which contains the data (Qξ, cξ, Tξ,Wξ, bξ). The SAA
problem (1.1) is obtained by generatingN samples (Qi, ci, Ti,Wi, bi) of ξ and replacing
the expectation operator with the sample average. The matrix Qξ is assumed to be
positive semidefinite for all possible ξ. Wξ, the recourse matrix, is assumed to have
full row rank. Tξ, the technology matrix, need not have full rank. The deterministic
matrices Q0 and T0 are assumed to be positive semidefinite and of full row rank,
respectively. The variable x0 is called the first-stage decision, which is a decision to
be made now. The second-stage decision x is a recourse or corrective decision that
one makes in the future after some random event occurs. The stochastic optimization
problem finds the optimal decision to be made now that has the minimal expected
cost in the future.

Stochastic optimization is one of the main sources of extremely large dual block-
angular problems. SAA problems having billions of variables can be easily obtained in
cases when a large number of samples is needed to accurately capture the uncertain-
ties. Such instances necessitate the use of distributed-memory parallel computers.
Dual block-angular optimization problems are also natural candidates for decom-
position techniques that take advantage of the special structure. Existing parallel
decomposition procedures for the solution of dual angular problems are reviewed by
Vladimirou and Zenios [37]. Subsequent to their review, Linderoth and Wright [15]
developed an asynchronous approach combining l∞ trust regions with Benders decom-
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position on a large computational grid. Decomposition inside standard optimization
techniques applied to the extensive form has been implemented in the state-of-the-art
software package OOPS [10] as well as by some of the authors in PIPS-IPM [20, 19, 24]
and PIPS-S [18]. OOPS and PIPS-IPM implement interior-point algorithms and
PIPS-S implements the revised simplex method. The decomposition is obtained by
specializing linear algebra to take advantage of the dual block-angular structure of
the problems.

This paper revisits linear algebra techniques specific to interior-point methods
applied to optimization problems with dual block-angular structure. Decomposition
of linear algebra inside interior-point methods is obtained by applying a Schur com-
plement technique (presented in section 3). The Schur complement approach requires
at each iteration of the interior-point method solving a dense linear system (the Schur
complement) and a substantial number of sparse linear systems for each scenario
(needed to compute each scenario’s contribution to the Schur complement). For a
given scenario, the sparse systems of equations share the same matrix, a situation
described in the linear algebra community as solving linear systems with multiple
right-hand sides. The number of the right-hand sides is large relative to the num-
ber of the unknowns or equations for many stochastic optimization problems, which
is unusual in traditional linear algebra practices. Additionally, the right-hand sides
are extremely sparse, a feature that should be exploited to reduce the number of
floating-point operations.

The classical Schur complement approach is very popular not only in the opti-
mization community [10], but also in domain decomposition [8, 14, 16, 17, 27, 28, 29]
and parallel threshold-based incomplete factorizations [26, 27, 28, 41] of sparse ma-
trices. A complete list of applications is virtually impossible because of its popularity
and extensive use. Previously, we followed the classical path in PIPS-IPM and com-
puted the exact Schur complement by using off-the-shelf linear solvers, such as MA57
and WSMP, and solved for each right-hand side (in fact for small blocks of right-hand
sides). However, this approach has two important drawbacks: (1) the sparsity of the
right-hand sides is not exploited, sparse right-hand sides being a rare feature of linear
solvers; and (2) the calculations limit the efficient use of multicore shared-memory
environments because it is well known that the triangular solves do not scale well
with the number of cores [13].

Here, we develop a fast and parallel reformulation of the sparse linear algebra
calculations that circumvents the issues in the Schur complement presented in the
previous paragraph. The idea is to leverage the good scalability of parallel factor-
izations as an alternative method of building the Schur complement. We employ an
incomplete augmented factorization technique that solves the sparse linear systems
with multiple right-hand sides at once using an incomplete sparse factorization of an
auxiliary matrix. This auxiliary matrix is based on the original matrix augmented
with the right-hand sides. In this paper, we also concentrate both on the node and
internode level parallelism. Previous Schur/hybrid solvers all solve the global problem
iteratively, while our approach instead complements existing direct Schur complement
methods and implementations. In our application, the interior-point systems are in-
definite and require advanced pivoting and sophisticated solution refinement based
on preconditioned BiCGStab in order to maintain numerical stability. In addition,
BiCGStab method is needed to cheaply absorb the pivot perturbations that occur
from the factorization.

These new algorithmic developments and their implementation details in
PARDISO and PIPS-IPM are presented in section 3. In section 4 we study the large-
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C142 C. G. PETRA, O. SCHENK, M. LUBIN, AND K. GÄERTNER

scale computational performance and parallel efficiency on different high-performance
computing platforms when solving stochastic optimization problems of up to two bil-
lion variables and up to almost two billion constraints. Such problems arise in the
optimization of the electrical power grid and are described in section 2. We also dis-
cuss in this section the impact of this work on the operational side of the power grid
management.

Notation and terminology. Lower-case Latin characters are used for vectors,
and upper-case Latin characters are used for matrices. Lower-case Greek characters
denote scalars. Borrowing the terminology from stochastic optimization, we refer to
the zero-indexed variables or matrices of problem (1.1) as “first stage,” the rest as
“second stage.” By a scenario i (i = 1, . . . , N) we mean the first-stage data (Q0, c0
and T0) and second-stage data Qi, ci, Ti, and Wi. Unless stated otherwise, lower
indexing of a vector indicates the first-stage or second-stage part of the vector (not its
components). Matrices Q and A are a compact representation of the quadratic term
of the objective and of the constraints:

Q =

⎡
⎢⎢⎢⎣

Q0

Q1

. . .

QN

⎤
⎥⎥⎥⎦ and A =

⎡
⎢⎢⎢⎢⎣

T0

T1 W1

...
. . .

TN WN

⎤
⎥⎥⎥⎥⎦ .

2. Motivating application: Stochastic unit commitment for power grid
systems. Today’s power grid will require significant changes in order to handle in-
creased levels of renewable sources of energy; these sources, such as wind and solar,
are fundamentally different from traditional generation methods because they cannot
be switched on at will. Instead, their output depends on the weather and may be
highly variable within short time periods. Figure 1 illustrates the magnitude and
frequency of wind supply fluctuations under hypothetical adoption levels compared
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Fig. 1. Snapshot of total load and wind supply variability at different adoption levels.
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AUGMENTED FACTORIZATION IN STOCHASTIC OPTIMIZATION C143

Fig. 2. Snapshot of the price distribution across the state of Illinois under deterministic (left)
and stochastic (right) formulations. We note more uniform prices in the interior of the state under
stochastic optimization, as this approach enables the anticipation of uncertainties. Transmission
grid is also shown. Figures credit: Victor Zavala.

with a typical total load profile in Illinois. Uncertainty in weather forecasts and other
risks such as generator and transmission line failure are currently mitigated by using
conservative reserve levels, which typically require extra physical generators operating
so that their generation levels may be increased on short notice. Such reserves can
be both economically and environmentally costly. Additionally, inevitable deviations
from output levels estimated by weather forecasts can lead to inefficiencies in electric-
ity markets manifested as wide spatiotemporal variations of prices (see Figure 2).

Stochastic optimization has been identified in a number of studies as a promis-
ing mathematical approach for treating such uncertainties in order to reduce re-
serve requirements and stabilize electricity markets in the next-generation power
grid [3, 5, 25]. Constantinescu et al. [5] made the important empirical observation
that while reality may deviate significantly from any single weather forecast, a suitably
generated family of forecasts using numerical weather prediction and statistical mod-
els can capture spatiotemporal variations of weather over wide geographical regions.
Such a family of forecasts naturally fits within the paradigm of stochastic optimization
when considered as samples (scenarios) from a distribution on weather outcomes.

Computational challenges, however, remain a significant bottleneck and barrier to
real-world implementation of stochastic optimization of energy systems. This paper
is the latest in a line of work [19, 20, 24] intended to address these challenges by
judicious use of linear algebra and parallel computing within interior-point methods.

Power-grid operators (ISOs) solve two important classes of optimization problems
as part of everyday operations; these are unit commitment (UC) and economic dis-
patch (ED) [33]. UC decides the optimal on/off schedule of thermal (coal, nuclear)
generators over a horizon of 24 hours or longer. (California currently uses 72-hour
horizons.) This is a nonconvex problem that is typically formulated as a mixed-integer
linear optimization problem and solved by using commercial software [35]. In practice,
a near-optimal solution to the UC problem must be computed within an hour.
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In our analysis, we consider a two-stage stochastic optimization formulation for
UC. The problem has the following structure (c.f. [19]; see [2, 3, 33] for more details):

min

⎛
⎝ T∑

k=0

∑
j∈G

fj · xk,j

⎞
⎠+

1

N

∑
s∈N

⎛
⎝ T∑

k=0

∑
j∈G

cj ·Gs,k,j

⎞
⎠(2.1a)

s.t. Gs,k+1,j = Gs,k,j +ΔGs,k,j , s ∈ N , k ∈ T , j ∈ G,(2.1b) ∑
(i,j)∈Lj

Ps,k,i,j +
∑
i∈Gj

Gs,k,i =
∑
i∈Dj

Ds,k,i

−
∑
i∈Wj

Ws,k,i, s ∈ N , k ∈ T , j ∈ B (ps,k,j),(2.1c)

Ps,k,i,j = bi,j(θs,k,i − θs,k,j), s ∈ N , k ∈ T , (i, j) ∈ L,(2.1d)

0 ≤ Gs,k,j ≤ xk,jG
max
j , s ∈ N , k ∈ T , j ∈ G,(2.1e)

|ΔGs,k,j | ≤ ΔGmax
j , s ∈ N , k ∈ T , j ∈ G,(2.1f)

|Ps,k,i,j | ≤ Pmax
i,j , s ∈ N , k ∈ T , (i, j) ∈ L,(2.1g)

|θs,k,j | ≤ θmax
j , s ∈ N , k ∈ T , j ∈ B,(2.1h)

xk,j ∈ {0, 1}, k ∈ T , j ∈ G.(2.1i)

Here, G,L, and B are the sets of generators, lines, and transmission nodes (inter-
sections of lines, known as buses) in the network in the geographical region, respec-
tively. Dj and Wj are the sets of demand and wind-supply nodes connected to bus j,
respectively. The symbol N denotes the set of scenarios for wind level and demand
over the time horizon T := {0, . . . , T }. The first stage decision variables are the gen-
erator on/off states xk,j over the complete time horizon. The decision variables in
each second-stage scenario s are the generator supply levels Gs,k,j for time instant k
and bus j, the transmission line power flows Ps,k,j , and the bus angles θs,k,j (which
are related to the phase of the current). The random data in each scenario are the
wind supply flows Ws,k,i and the demand levels Ds,k,i across the network. The values
of Gs,0,j and x0,j are fixed by initial conditions.

Constraints (2.1c) and (2.1d) balance the power flow across the network accord-
ing to Kirchoff’s current law and the grid’s physical network and are known as direct
current (DC) power flow equations. DC power flow equations are linear approxima-
tions of the highly nonlinear power flow equations for alternative currents and are
used to keep the simulation and optimization of large power systems computationally
tractable [4, 23]. Constraints (2.1f) are the so-called ramp constraints that restrict
how quickly generation levels can change. The objective function contains the fixed
costs fj for operating a generator and the generation costs cj . Generation costs are
convex and are more accurately modeled as quadratic, although in practice they are
treated as linear and piecewise linear functions for simplicity. Our solver is equally
capable of handling both cases, but in our test problems we used the linear form.

Note that the scenarios are coupled only by the constraint (2.1e), which enforces
that the generation level in each scenario be zero if the generator is off at a particular
time. Under this model, the on/off states are chosen such that (1) under each scenario,
there is a feasible generation schedule, and (2) the (approximate) expected value of
the generation costs is minimized.

In this work, we consider solving a convex relaxation of (2.1) obtained by replacing
the binary restrictions (2.1i) with the constraints 0 ≤ xk,j ≤ 1. This relaxation is a

D
ow

nl
oa

de
d 

06
/1

6/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AUGMENTED FACTORIZATION IN STOCHASTIC OPTIMIZATION C145

linear optimization problem that would be solved at the “root node” of branch-and-
bound approaches for solving (2.1). Empirically, deterministic UC problems have been
observed to have a small gap between the optimal value of the convex relaxation and
the true optimal solution when combined with cutting-plane techniques and feasibility
heuristics, which are standard practice in mixed-integer optimization. This often
implies that a sufficiently small gap is obtainable with little or no enumeration of the
branch-and-bound tree [35]. Our future work will be devoted to implementing and
developing such techniques and heuristics for stochastic UC formulations.

Even without any additional work, one can estimate an upper bound on the op-
timality gap between the relaxation and the nonconvex mixed-integer solution. Note
that in the given formulation, the generator states xk,j in a feasible solution to the
convex relaxation may be “rounded up” to 1 to obtain a feasible solution to the non-
convex problem. By rounding, we increase the objective value by at most T

∑
j∈G fj ,

which, because of the technological characteristics of the thermal units, is empirically
smaller than the contribution to the objective from the generation costs cj . We there-
fore conservatively expect an increase in the objective by at most 50%, providing us
with a optimality gap. Intuitively, the convex part of the problem (generation costs)
contributes a more significant proportion of the objective value than the nonconvex
part (fixed costs).

We believe it is reasonable, therefore, to first focus our efforts on the compu-
tational tractability of the convex relaxation. Our developments apply directly to
stochastic ED formations as well.

The convex relaxation of (2.1) itself is an extremely large-scale linear optimization
problem. Our model incorporates the transmission network of the state of Illinois,
which contains approximately 2,000 transmission nodes, 2,500 transmission lines, 900
demand nodes, and 300 generation nodes (illustrated in Figure 2). A deterministic
formulation over this geographical region can have as many as 100,000 variables and
constraints since the network constraints are imposed separately for each time period.
In our stochastic formulation, this number of variables and constraints is effectively
multiplied by the number of scenarios. As scenarios effectively correspond to samples
in a high-dimensional Monte Carlo integration, it is reasonable to desire the capability
to use thousands if not tens of thousands; hence total problem sizes of tens to hundreds
of millions of variables, which are presently far beyond the capabilities of commercial
solvers, are easily obtainable. The number of variables in the first-stage block x0 is
the number of generators times the number of time steps, leading to sizes of 10,000
or more, which makes parallel decomposition nontrivial.

3. Computational approach and implementation. In this section we first
provide a compact presentation of the Mehrotra’s primal-dual path-following algo-
rithm and the Schur complement-based decomposition of the linear algebra from
PIPS-IPM. After that we present the novel approach for computing the Schur com-
plement.

3.1. Interior-point method. Let us consider a general form of a quadratic
programming (QP) problem:

(3.1) min
1

2
xTQx+ cTx subject to Ax = b, x ≥ 0.

We consider only convex QPs (Q needs to be positive semidefinite) and linear pro-
gramming problems (Q = 0). Additionally, the matrix A is assumed to have full row
rank. Observe that stochastic programming problem (1.1) is a convex QP.
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Path-following interior-point methods for the solution of problem (3.1) make use
of the “central path,” which is a continuous curve (x(μ), y(μ), z(μ)), μ > 0, satisfying

(3.2)

Qx−AT y − z = −c,
Ax = b,
xz = μe,
x, z > 0.

Here y ∈ R
m and z ∈ R

n correspond to the Lagrangemultipliers, e = [ 1 1 . . . 1 ]T

∈ R
n, and xz denotes the componentwise product.
In the case of a feasible problem (3.1), the above system has a unique solution

(x(μ), y(μ), z(μ)) for any μ > 0, and, as μ approaches zero, (x(μ), y(μ), z(μ)) ap-
proaches a solution of (3.1); see Chapter 2 in [40]. A path-following method is an
iterative numerical process that follows the central path in the direction of decreas-
ing μ toward the solution set of the problem. The iterates generated by the method
generally do not stay on the central path. Rather, they are located in a controlled
neighborhood of the central path that is a subset of the positive orthant.

In the past two decades, predictor-corrector methods have emerged as practical
path-following IPMs in solving linear and quadratic programming problems. Among
the predictor-corrector methods, the most successful is Mehrotra’s predictor-corrector
algorithm. Although Mehrotra [22] presented his algorithm in the context of linear
programming, it has been successfully applied also to convex quadratic programming
[9] and standard monotone linear complementarity problems [42]. It also has been
widely used in the implementation of several IPM-based optimization packages, in-
cluding OB1 [21], HOPDM [11], PCx [6], LIPSOL [43], and OOQP [9].

Two linear systems of the form (3.4) are solved at each IPM iteration, one to
compute predictor search direction and one to compute corrector search directions.
For a detailed description of Mehrotra’s method used in this paper, we refer the reader
to [9] and [22, 40]. Let us denote the kth IPM iteration by (xk, yk, zk). Also let Xk

and Zk denote the diagonal matrices with the (positive) entries given by xk and zk.
The linear system solved during both the predictor and corrector phase to obtain the
search direction (Δxk,Δyk,Δzk) is

QΔxk −ATΔyk − Δzk = r1k,(3.3)

AΔxk = r2k,(3.4)

ZkΔxk + XkΔzk = r3k.(3.5)

While the right-hand sides r1k, r2k, and r3k are different for the predictor and the
corrector, the matrix remains the same. (This feature of the Mehrotra’s algorithm
gives important computational savings, since only one factorization, not two, per IPM
iteration is required.)

By performing block elimination for Δzk, the linear systems (3.4) can be reduced
to the following symmetric indefinite linear system:

(3.6)

[
Q+D2

k AT

A 0

] [
Δxk

−Δyk

]
=

[
r1k +X−1

k r3k
r2k

]
,

where Dk = X
− 1

2

k Z
1
2

k .
Factorizing the matrix of system (3.6) and then solving twice with the factors ac-

counts for most of the computational effort of each interior-point iteration. Section 3.2
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presents the algorithmic and implementation details of performing these operations
in parallel for stochastic optimization problems.

The rest of the calculations consists of computing the residuals of (3.6) (mat-vec
operations Qx, Ax, and AT y), linesearch and iteration updates (vec-vec operations
x = x + αΔx), as well as stopping criteria (vector norms). In PIPS we exploit the
special structure of the problem data to distribute both the data and all computations
across computational nodes. Data distribution is done by partitioning the scenarios
and assigning a partition to each computational node. (Partitions have an equal or
close to equal number of scenarios in order to avoid load imbalance.) The first-stage
data (Q0, T0) and variables (x0, y0) are replicated across nodes in order to avoid
extra communication. Mat-vecs Qx, Ax, and AT y can be efficiently parallelized for
stochastic optimization. For example, r = Qx can be done without communication
since Q is block diagonal, each node computing r0 = Q0r0 and ri = Qixi (i ≥
1) for scenarios i that were assigned to it. The mat-vec r = Ax also requires no
communication; each node computes r0 = T0x0 and ri = Tix0 + Wixi. For the
mat-vec

r = AT y =

⎡
⎢⎢⎣

T T
0 y0 +

∑N
i=1 T

T
i yi

WT
1 y1
· · ·

WT
NyN

⎤
⎥⎥⎦ ,

each node n computes ri = WT
i yi and r̃n0 =

∑
i T

T
i yi for each of its scenarios i

and performs an “all-reduce” communication to sum r̃n0 across nodes and calculate

r0 = T T
0 y0+

∑N
i=1 T

T
i yi. The vec-vec operations are parallelized in a similar way. The

same approach is used in OOPS; we refer the reader to [10] for a detailed description.

3.2. Linear algebra overview. In PIPS-IPM we exploit the arrow-shaped
structure of the optimization problem (1.1) to produce highly parallelizable linear
algebra. The linear system that is solved at each IPM iteration can be reordered in
the primal-dual angular form

(3.7) K :=

⎡
⎢⎢⎢⎣

K1 B1

. . .
...

KN BN

BT
1 . . . BT

N K0

⎤
⎥⎥⎥⎦ ,

where K0 =
[
Q0+D0 TT

0

T0 0

]
, Ki =

[
Qi+Di WT

i

Wi 0

]
, and Bi =

[
0 0
Ti 0

]
, i = 1, . . . , N . D0, D1,

. . . , DN are diagonal matrices with positive entries arising from the use of interior-
point methods and change at each IPM iteration.

It is well known in the linear algebra community that primal-dual angular linear
systems of the form (3.7) can be parallelized by using a Schur complement technique.
We follow the same approach in PIPS-IPM and present it here for completeness. By
performing a block Gaussian elimination of the bordering blocks, one can solve the
linear system (3.7) by

1. computing the Schur complement

(3.8) C = K0 −
N∑
i=1

BT
i K

−1
i Bi;

D
ow

nl
oa

de
d 

06
/1

6/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C148 C. G. PETRA, O. SCHENK, M. LUBIN, AND K. GÄERTNER

2. solving Schur linear system

(3.9) CΔz0 = r0 −
N∑
i=1

BT
i K

−1
i ri;

3. solving second-stage linear systems (i = 1, . . . , N)

(3.10) KiΔzi = BiΔz0 − ri.

Most of the computations—in particular, obtaining the scenarios contributions
BT

i K
−1
i Bi to the Schur complement, computing the residual in step II, and solving

for Δzi—can be performed independently, yielding an efficient parallelization scheme.
However, solving with the dense Schur complement C in step II may be a paral-
lelization bottleneck for problems having a large number of first-stage variables. The
bottleneck can be overcome by distributing C and solving the Schur complement lin-
ear systems in parallel [20]. By default, PIPS-IPM uses LAPACK and multithreaded
BLAS to factorize and solve with C on each node.

Algorithm 1 lists the parallel procedure we use in PIPS-IPM to solve KΔz = r
using the Schur complement-based decomposition scheme (3.8)–(3.10). The verb “re-
duce” refers to the communication operation that combines data held by different
processes through an associative operator, in our case summation, and accumulates
the result on a single process (reduce) or on all processes (all-reduce). Message passing
interface (MPI) routines MPI Reduce and MPI Allreduce correspond to these opera-
tions. A different communication strategy is also available in PIPS-IPM. Instead of
all-reducing C in step 3 and replicating the factorization in step 4 on all nodes, one
could only reduce C to process 1 and perform the factorization on process 1 only.
Consequently, in step 6, v0 is reduced only to process 1, which then performs step 7
and broadcasts (MPI Bcast) v0 to the rest of the processes. In theory this commu-
nication pattern should be faster than the one of Algorithm 1, especially since the
most expensive communication, all-reducing C, is avoided. However, it is slower on
“Intrepid” BG/P because all-reduce is about two times faster than reduce. (This
anomaly is likely to be caused by an implementation problem of BG/P’s MPI Reduce
or lack of optimization.)

The computation of the Schur complement (step 2 of Algorithm 1) was by far
the most expensive operation, and it was traditionally done in PIPS-IPM [19] by
solving with the factors of Ki for each nonzero column of Bi and multiplying the
result from the left with BT

i . A slightly different approach is to apply a primal-dual
regularization [1] to the optimization problem to obtain quasidefinite matrices Ki

that are strongly factorizable to a form of Cholesky-like factorization Ki = LiL
T
i

and to compute BT
i K

−1
i Bi as sparse outer products of L−1

i BT
i . This approach is

implemented in OOPS [10]. In both cases, the computational burden is on solving
with sparse factors (i.e., triangular solves) of Ki against multiple sparse right-hand
sides.

This triangular solve approach is very popular; see [8, 14, 16, 26, 41] as the most
recent papers on this parallelization based on incomplete Schur complements. Some
of the papers recognize that the triangular solve approach is the limitation in the
computation of the Schur complement and focus on overcoming it; for example, in [41]
the authors try to exploit sparsity during the triangular solves (with no reference to
multithreading), while the authors of [26] are concerned in [39] with the multithreaded
performance of the sparse triangular solves.
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Algorithm 1. Solving KΔz = r in parallel based on the Schur comple-

ment decomposition (3.8)–(3.10).

Given the set P = {1, 2, . . . , P} processes, distribute N scenarios evenly
across P and let Np be the set of scenarios assigned to process p ∈ P .
Each process p ∈ P executes the following procedures:

(factorization phase)
Function (L1, D1, . . . , LN , DN , LC , DC)=Factorize(K)

1. Factorize LiDiL
T
i = Ki for each i ∈ Np.

2. Compute SC contribution Si = BT
i K

−1
i Bi for each i ∈ Np and accumulate

Cp = −
∑
i∈Np

Si. On process 1, let C1 = C1 +K0.

3. All-reduce SC matrix C =
∑
r∈P

Cr .

4. Factorize SC matrix LcDcL
T
c = C;

(solve phase)
Function Δz=Solve(L1, D1, . . . , LN , DN , LC , DC , r)

5. Solve wi = K−1
i ri = L−T

i D−1
i L−1

i ri for each i ∈ Np and compute

vp =
∑
i∈Np

BT
i wi.

On process 1, let v1 = v1 + r0.

6. All-reduce v0 =
∑
i∈Np

vi.

7. Solve Δz0 = C−1v0 = L−T
c D−1

c L−1
c v0.

8. Solve Δzi = K−1
i (BiΔz0 − ri) = L−T

i D−1
i L−1

i (BiΔz0 − ri) for each i ∈ Np.

3.3. Computing BT
i K−1

i Bi using the augmented approach. In many
computational science applications, the numerical factorization phase Ki = LiDiLi

of forming the partial Schur-complement contributions Si = BT
i K

−1
i Bi has generally

received the most attention, because it is typically the largest component of execution
time; most of the algorithmic improvements [7, 30, 32] in the factorization are related
to the exploitation of the sparsity structure in Ki. In PIPS-IPM, however, the solve
step K−1

i Bi dominates and is responsible for a much higher proportion of the memory
traffic. This makes it a bottleneck in PIPS-IPM on multicore architectures that have
a higher ratio of computational power to memory bandwidth.

The multicore architectures that emerged in recent years brought substantial in-
creases in the number of processor cores and their clock rates but only limited increases
in the speed and bandwidth of the main memory. For this reason, in many application
codes, processor cores spend considerable time in accessing memory, causing a per-
formance bottleneck known as the “memory bandwidth wall.” This adverse behavior
noindent is likely to be aggravated by the advent of many-core architectures (having
hundreds of cores per chip), because it is expected that the speed and bandwidth of
the memory will virtually remain unchanged.

In our computational approach, the memory bandwidth wall occurs when solving
with the factors of Ki. This is because triangular solves are known to parallelize
poorly on multicore machines [13]. In PIPS-IPM, the number of the right-hand sides
can be considerably large (for some problems Bi has more than 10,000 columns),
and most of the execution time is spent in solving with the factors of Ki, causing
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an inefficient utilization of the cores for most of the time. Even more important,
the right-hand sides Bi are very sparse, a feature that can considerably reduce the
number of arithmetic operations. However, exploiting the sparsity of the right-hand
sides during the triangular solve increases the memory traffic and exacerbates the
memory bandwidth wall.

On the other hand, indefinite sparse factorizations can achieve good speed-ups on
multicores machines [31, 13]. We propose an augmented factorization-based technique
for computing BT

i K
−1
i Bi. Our approach consists of performing a partial factorization

of the augmented matrix

(3.11) Mi =

[
Ki BT

i

Bi 0

]
.

More specifically, the factorization of the augmented matrix is stopped after the first
ki pivots (ki being the dimension of Ki). At this point in the factorization process,
the lower right block of the factorization contains the exact Schur complement matrix
−BT

i K
−1
i Bi.

The Schur complement matrix is defined with the help of a block LU factorization

(3.12) A =

(
Ki BT

i

Bi A22

)
:=

(
L11 0
L21 L22

)(
U11 U12

0 U22

)
,

L11 lower triangular, U11 upper triangular, and

(3.13) L22U22 = A22 −BT
i U

−1
11 L−1

11 Bi = A22 −BT
i K

−1
i Bi = S(Ki) := S.

Hence, halting the factorization before factorizing the bottom-right block L22U22

produces the Schur complement matrix S. Equation (3.13) is well known but is
hardly exploited in state-of-the art direct solvers packages, whereas it has been used
in [17] to construct an incomplete LU approximation of S. Most modern sparse direct
linear solvers introduce the solution of blocked sparse right-hand sides to compute
explicit Schur complements for applications of interest or replace it by approximations
(see, e.g., [26, 27, 28, 41]). The use of these alternative, less efficient approaches,
may be explained by the focus on solving linear systems Ax = b in a black-box
fashion, whereas computing the Schur complement by (3.13) requires modifying the
factorization procedure.

The implicit assumptions used in (3.13) are as follows: A and Ki are nonsingular
matrices, and it is sufficient to restrict pivoting to Ki. Furthermore, one can assume
that Ki is irreducible, and hence S is dense, because K−1

i is a dense matrix and
A is nonsingular; otherwise one should solve each irreducible block of Ki. Within
these assumptions a sparse direct factorization can perform the Schur complement
computation easily by skipping the pivoting and elimination involving elements of S.

To find an accurate solution during the Gaussian block elimination process we
need to find a permutation matrix P that minimizes fill-in and avoids small pivots
during the factorization [32]. Two options are available. The first possible permuta-
tion Pa can be constructed from A with the constraint that no element of A22 = 0
is permuted out of the (2, 2) block. (But Bi and BT

i can influence the ordering of
Ki.) The alternative option is to find a permutation Pb based on Ki and to extend
the permutation with an identity in the second block. Hence, computing a predefined
Schur complement introduces a constraint on P anyway. Because we are not aware
of good algorithms for computing Pa, we use the second option P (Ki) = Pb as a
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straightforward solution. The fill-in disadvantage with respect to P (A) can be veri-
fied by executing a symbolic factorization phase of A and comparing the size of L and
U with that of the Schur complement computation. For the given permutation the
sparse factorization does exactly what it should do: it is taking care of the necessary
operations with the nonzero elements in an efficient, dense matrix blocked approach.

In our application, the diagonal blocks Ki have saddle-point structure, and hence
small perturbed pivots cannot be excluded with the pivoting extensions available in
PARDISO. These pivoting strategies are mainly based on graph-matching Bunch–
Kaufman pivoting that trades fill-in versus stability to make efficient parallelization
possible [32]. While the solution refinement is discussed in the next section in detail,
the new Schur complement option can be used to restrict the permutation gradually
(permuting selected equations from the zero block to the end) up to preserving the
saddle-point structure by specifying A22 to be the complete zero-bock.

3.4. Solution refinement. The factorization of Mi is based on a static Bunch–
Kaufman pivoting developed in [31] and implemented in the solver PARDISO [32]. A
similar approach is available as an option in WSMP [12]. In this case, the coefficient
matrix is perturbed whenever numerically acceptable 1 × 1 and 2 × 2 pivots cannot
be found within a diagonal supernode block. (Checks on potential pivots are made
only within the supernode block.) The perturbations are not large in magnitude,
having order of the machine precision; however, the number of perturbed pivots can
range from O(1) at the beginning of the optimization to O(104) when the solution
is reached. This method has been shown to perform well in many applications. A
downside of the pivot perturbation that is not negligible is that solving with Ki might
require an increased number of refinement steps to achieve the requested accuracy in
the interior-point optimization algorithm [32].

In our case, the pivot perturbations during the factorization of Ki also propagate
in Si = BT

i K
−1
i Bi. Absorbing these perturbations through iterative refinement [38]

requires solving with Ki for each column of Bi, an operation that we wanted to
avoid in the first place. Instead, we let the perturbations propagate through the
factorization phase in the Schur complement C. At the end of the factorization phase
of Algorithm 1, we have an implicit factorization of a perturbed matrix

(3.14) K̃ :=

⎡
⎢⎢⎢⎣

K̃1 B1

. . .
...

K̃N BN

BT
1 . . . BT

N K0

⎤
⎥⎥⎥⎦ ,

where K̃i, i = 1, . . . , N , denote the perturbed matrices that were factorized during
the (incomplete) factorization of Mi.

It is essential that the solve phase accounts for and absorbs the perturbations;
otherwise, the interior-point directions are inaccurate, and the optimization stalls.
Our first approach was to perform iterative refinement for KΔz = r; however, this
technique showed a large variability in the number of steps. In comparison, the bicon-
jugate gradient stabilized (BiCGStab) method [36] proved to be more robust, seem-
ingly able to handle a larger number of perturbations more efficiently than iterative
refinement. BiCGStab is a Krylov subspace method that solves unsymmetric systems
of equations and was designed as a numerically stable variant of the biconjugate gra-
dient method. For symmetric indefinite linear systems such as ours, BiCGStab also
outperforms classical conjugate gradient method in terms of numerical stability.
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As any other Krylov subspace method, the performance of BiCGStab strongly
depends on the use of a preconditioner and on the quality of the preconditioner.
Since K̃ is a perturbation of K, the obvious choice for the preconditioner in our case
is K̃−1.

Alternatively, one could absorb the errors by performing iterative refinement in-
dependently when solving the Schur linear system CΔz0 = v0 (step 7 in Algorithm 1)
and the second-stage linear systems (steps 5 and 8 in Algorithm 1). Additionally,
the multiplication with the error-free matrix C needed at each refinement iteration
when the residual is computed needs to be done based on (3.8) and requires additional
second-stage linear solves. We have tested this technique and discarded it because
of considerable load imbalance caused by different numbers of iterative refinement
iterations in the second-stage solves.

Algorithm 2 lists the preconditioned BiCGStab algorithm. All vector operations
(dot-products, addition, and scalar multiplications) are performed in parallel. (No
communication occurs since the first-stage part of the vectors is replicated across all
processes.) The multiplication v = Kz is also performed in parallel; the only com-

munication required is in forming the vector v0 =
∑N

i=1 B
T
i zi +K0z0. The applica-

Algorithm 2. Solving a linear system Kz = b using preconditioned

BiCGStab, with the preconditioner K̃ being applied from the right.

Implicit factorization of K̃ is provided as input. Here zi denotes the

ith iterate of the algorithm.

Function z = BiCGStabSolve(K, L̃1, D̃1, . . . , L̃N , D̃N , L̃C , D̃C , b)

Compute initial guess z0 =Solve(L̃1, D̃1, . . . , L̃N , D̃N , L̃C , D̃C , b).
Compute initial residual r0 = b−Kz0.
Let r̃0 be an arbitrary vector such that r̃T0 r0 �= 0 (for example r̃0 = r0).
ρ0 = α = ω0 = 1; v0 = p0 = 0.

For i = 1, 2, . . .

ρi = r̃T0 ri−1; β = (ρi/ρi−1)(α/ωi−1).
pi = ri−1 + β(pi−1 − ωi−1vi−1).

(preconditioner application y = K̃−1pi)

y =Solve(L̃1, D̃1, . . . , L̃N , D̃N , L̃C , D̃C , pi).

(matrix application)
v = Ky.

α = ρi/(r̃0, vi).
s = ri−1 − αvi.
zi = zi−1 + αy.

If ‖s‖ is small enough then return zi if ‖Kzi − b‖ is small enough.

(preconditioner application w = K̃−1s)

w =Solve(L̃1, D̃1, . . . , L̃N , D̃N , L̃C , D̃C , s).
(matrix application)
t = Kw.

ωi = (tT s)/(tT t).
zi = zi + ωiw.

If ‖w‖ is small enough then return zi if ‖Kzi − b‖ is small enough.

ri = s− ωit.
end
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tion of the preconditioner, that is, computing y = K̃−1v, is the most computationally
expensive part and is done by calling the Solve function listed in Algorithm 1. Fac-
tors L̃1,D̃1, . . . , L̃N ,D̃N ,L̃C ,D̃C of K̃ are obtained by calling the Factorize function
of Algorithm 1 before the BiCGStab iteration starts. The complete computational
procedure of solving the linear system with BiCGStab is summarized in Algorithm 3.

Algorithm 3. Solving KΔz = r in parallel with BiCGStab using K̃ as

preconditioner.

Given the set P = {1, 2, . . . , P} processes, distribute N scenarios evenly
across P and let Np be the set of scenarios assigned to process p ∈ P .

Each process p ∈ P executes:

(preconditioner computation)

(L̃1, D̃1, . . . , L̃N , D̃N , L̃C , D̃C)=Factorize(K̃)

(BiCGStab solve phase)

Δz = BiCGStabSolve(K, L̃1, D̃1, . . . , L̃N , D̃N , L̃C , D̃C , r).

4. Numerical experiments. In this section we report the parallel performance
and efficiency of PIPS-IPM equipped with the PARDISO implementation of the aug-
mented approach.

4.1. Experimental testbed. Before moving on to the parallel scalability bench-
marks of the stochastic optimization application, we briefly describe the target hard-
ware, namely, an IBM BG/P at the Argonne Leadership Computing Facility (ALCF)
and a Cray XE6 system installed at the Swiss National Supercomputing Center CSCS.

Large-scale runs were performed on the Intrepid BG/P supercomputer that has
40 racks with a total 40,960 nodes and a high-performance interconnect. Small-scale
experiments were performed on Challenger BG/P which consists of only one rack
(1024 nodes) and is intended for small test runs. Each BG/P node has a 850 MHz
quad-core PowerPC processor and 2 GB of RAM.

The Cray XE6 has 1,496 compute nodes, each of the compute nodes consisting
of two 16-core AMD Opteron 6,272 2.1 GHz Interlagos processors, giving 32 cores in
total per node with 32 GBytes of memory. In total there are 47,872 compute cores
and over 46 Terabytes of memory available on the compute nodes. The Interlagos
CPUs implement AMD’s recent “Bulldozer” microarchitecture; each Interlagos socket
contains two dies, each of which contains four so-called modules.

4.2. Intranode performance. The first set of experiments investigates the
speed-up of the incomplete augmented factorization over the triangular solves ap-
proach described in section 3.2 and previously used in PIPS-IPM when computing
the scenario contribution BT

i K
−1
i B to the Schur complement. The augmented Schur

complement technique described in the previous section was implemented in the PAR-
DISO solver package;1 it will be refereed as PARDISO-SC, whereas we will use the
acronym PARDISO for the approach based on triangular solves.

4.2.1. Artificial test scenarios. In this section we extend a PDE-constrained
quadratic program that has been used in [32] to compare the triangular solves ap-
proach with the augmented approach. The artificial scenarios provide a test frame-
work for the solution of stochastic elliptic partial differential equation constrained

1See http://www.pardiso-project.org.
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Table 1

Average times in seconds (and Gflop/s in brackets) for different numbers of Cray XE6 and
BG/P cores inside PARDISO and PARDISO-SC when computing the Schur complement contribu-
tion BT

i K−1
i B with n = 97,336 columns in Ki and 2,921 sparse columns in Bi. The artificial test

scenarios in Ki are similar to the discretization of a Laplacian operator on a 3D cube. The ratio
column shows the performance acceleration of the triangular solves with multiple right-hand sides
in PARDISO versus the incomplete augmented factorization method in PARDISO-SC.

Number AMD Interlagos BG/P
of cores PARDISO PARDISO-SC Ratio PARDISO PARDISO-SC Ratio

1 454.64 14.43 ( 5.28) 31.50 3,011.78 101.09 (0.72) 29.79
2 301.03 11.53 ( 7.19) 26.23 1,506.97 51.23 (1.42) 29.52
4 202.54 6.35 (13.62) 31.89 905.83 26.30 (2.72) 9.66
8 153.14 4.35 (20.38) 35.20 – – –

16 92.06 2.84 (31.68) 32.41 – – –
32 83.96 1.79 (41.01) 46.90 – – –

Table 2

Average times in seconds inside PARDISO and PARDISO-SC when computing the Schur com-
plement contribution BT

i K−1
i B with nc columns in Ki and 0.03 · nc sparse columns in Bi. The

artificial test scenarios in Ki are similar to the discretization of a Laplacian operator on a 3D cube.
The ratio column shows the performance acceleration of the triangular solves with multiple right-
hand sides in PARDISO versus the incomplete augmented factorization method in PARDISO-SC.

nc AMD Interlagos BG/P
PARDISO PARDISO-SC Ratio PARDISO PARDISO-SC Ratio

9,261 0.61 0.02 30.51 2.95 0.13 22.63
27,000 8.32 0.28 29.71 35.85 1.48 24.22
97,336 202.54 6.25 32.40 905.83 26.30 34.84

341,061 11,009.46 508.14 21.70 19,615.17 2,431.31 8.05

optimization problems. The matrix Ki in all test scenarios are obtained after a seven-
point finite-difference discretization of a three-dimensional (3D) Laplacian operator.

Table 1 compares runtime in seconds for different numbers of Cray XE6 and BG/P
cores inside PARDISO and PARDISO-SC when computing the Schur complement
contribution BT

i K
−1
i B. The matrix Ki used in this experiment has n = 97,336

columns and rows and is augmented with a matrix Bi with 2,921 columns. The
nonzeros in the matrix Bi are randomly generated, with one nonzero element in each
column. Table 1 shows strong scaling results for 1 to 32 threads. In fact, the table also
shows that the exploitation of sparsity in the augmented approach is highly beneficial
and can already accelerate the overall construction of the Schur complement matrix
C up to a ratio of 31.5 on one core. It is also demonstrated that the augmented
approach results in better scalability on multicores on both the AMD Interlagos and
the BG/P cores.

Table 2 demonstrates the impact of the augmented approach for various matrices
Ki. The size of the matrices increases from nc = 9,261 columns up to nc = 341,061
columns. The matrix Bi always has 0.03 · nc nonzero columns. We always used four
Interlagos and BG/P cores for these experiments. The timing numbers in the table
show that the execution speed always is between a factor of 21.70 and 30.51 depending
on the size of Ki on AMD Interlagos.

Table 3 compares the influence of the number of columns in Bi on the performance
of both the augmented approach and triangular solves approach. In this case, the
number of columns and rows in the matrix Ki is always constant with n = 97,336,
and, again, we always used four Interlagos and BG/P cores. We varied the number of
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Table 3

Average times in seconds for k · n numbers of sparse columns in Bi inside PARDISO and
PARDISO-SC when computing the Schur complement contribution BT

i K−1
i B. The artificial test

problem in Ki is similar to the discretization of a Laplacian operator on a 3D cube and always has
n = 97,336 columns. The ratio column shows the performance acceleration of the triangular solves
with multiple right-hand sides in PARDISO versus the incomplete augmented factorization method
in PARDISO-SC.

k AMD Interlagos BG/P
PARDISO PARDISO-SC Ratio PARDISO PARDISO-SC Ratio

0.03 202.54 6.25 32.40 905.83 26.30 34.80
0.06 392.32 21.85 17.95 1,869.01 100.96 18.51
0.10 667.42 70.22 9.50 2,987.81 280.31 10.66
0.13 952.40 159.90 5.95 3,351.10 556.98 6.02
0.16 1,108.20 233.65 4.75 4,886.56 1,046.43 4.67
0.20 1,334.68 359.32 3.71 5,977.95 1,608.01 3.71

Table 4

Computation times of the Schur complement contribution BT
i K−1

i Bi on BG/P nodes for
stochastic problems with 6-, 12-, and 24-hour horizon. The dimensions of Ki and Bi are shown in
Table 5. The ratio column shows the performance acceleration of the triangular solves with multiple
right-hand sides in PARDISO versus the incomplete augmented factorization method in PARDISO-
SC.

Test BT
i K−1

i B time (sec)
problem Cores PARDISO PARDISO-SC Ratio

UC6 1 109.21 9.31 11.73
2 58.85 5.58 10.54
4 32.01 4.09 7.82

UC12 1 481.89 58.41 8.25
2 250.77 34.36 7.29
4 136.97 22.50 6.08

UC24 1 1,986.35 273.28 7.26
2 1,090.01 167.47 6.52
4 568.78 94.72 5.99

columns in Bi from 2,920 columns (k = 0.03) to 19, 467 columns (k = 0.20). Although
both approaches are mathematically equivalent, the efficiency of the PARDISO-SC
implementation is considerable and compelling for problems with large scenarios and
smaller Schur complement matrices with up to 20% of columns in Bi.

4.2.2. Stochastic optimization problems. We solved 4-hour, 12-hour, and
24-hour horizon instances (denoted by UC4, UC12, and UC24) of the stochastic UC
with 32 scenarios on 32 nodes of Challenger (1 MPI process per node). For PARDISO-
SC we ran with 1, 2, and 4 threads and report the intranode scaling efficiency. When
using PARDISO, PIPS uses the multiple right-hand side feature of the solver in com-
puting K−1

i B. The execution times represent the average (computed over the scenar-
ios and first 10 IPM iterations) time needed for one scenario. We do not list the stan-
dard deviation since it is very small (less than 1%). Table 4 summarizes the results.

The shared-memory parallel efficiency of the PARDISO-SC implementation is
considerable and compelling for problems with large scenarios (such as UC12 and
UC24) that requires one dedicated node per scenario. In addition, the speed-ups over
the triangular solves approach show great potential in achieving our goal of consider-
ably reducing the time to solution for problems with a large number of scenarios.
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Table 5

Sizes of Ki and Bi for UC instances with 6-, 12-, and 24-hour horizon.

UC instance Size Ki # Nonzero cols. of Bi

UC6 59,478 1,566
UC12 118,956 3,132
UC24 237,912 6,264

Table 6

Solve times in seconds, number of iterations, and average time per iteration needed by PIPS
to solve UC12 instances with increasingly large numbers of scenarios. One scenario per node was
used in all runs.

No. of nodes and Solve time IPM iterations Average time per Size of K
scenarios in minutes iteration in seconds in billions

4,096 59.14 103 33.57 0.487
8,192 64.72 112 34.67 0.974
16,384 70.14 123 34.80 1.949
32,768 79.69 133 35.95 3.898

4.3. Large-scale runs. Following the great intranode speed-up showed by the
PARDISO-SC approach, in this section we investigate and report on the large-scale
performance of PIPS equipped with PARDISO-SC in solving the UC instances. We
look at several performance metrics that are relevant both to the application (such as
time-to-solution) and to the parallel efficiency of the implementation (such as scaling
efficiencies and sustained FLOPS performance of PIPS).

The BG/P Intrepid experiments solve the UC12 instances with up to 32,768
scenarios on up to 32,768 nodes (131,072 cores). UC24 problems are too big to fit
even 1 scenario per node for a large number of scenarios/nodes. All runs of this section
were run in “SMP” mode, which means one MPI process per node using four cores.
All problems solved terminated with μ < 10−8 and ‖r‖ < 10−8, standard termination
criteria for interior-point methods [40].

4.3.1. Time to solution. As we mentioned in section 2, industry practice is
to solve UC procedures under strict “real-time” requirements, which in the case of
the UC models mean solving the problems under 1 hour (size of the time horizon
step). To test the real-time capabilities of PIPS with PARDISO-SC, we solved UC12
instances with an increasingly larger number of scenarios and nodes (one scenario
per node). The total execution times shown in Table 6 are within the requirements.
Moreover, the speed-up over the triangular solves approach is substantial. With the
triangular solves approach and using the MA57 as linear solver, PIPS needed 4 hours
3 minutes to solve a UC4 instance with 8,192 scenarios and 8,192 nodes on the same
architecture. With the augmented factorization implementation from PARDISO-SC,
a UC12 instance with the same number of scenarios can be solved in a little more
than 1 hour using the same number of nodes.

Additional reduction in the total execution time can be obtained by reusing solu-
tion information from the UC instance solved previously, a process known as warm-
starting. Reduction of 30–40% in the iteration count has been reported for interior-
point methods applied to stochastic programming [10]. On the other hand, finding
a binary integer solution requires additional effort, as described in section 2. While
this is future research, we expect the cost of this phase to be low and not to offset the
gains obtained by warm-starting.
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Fig. 3. Breakdown of the execution time per interior-point iteration for UC12 with 32K sce-
narios on 32K nodes. The total execution time and its three most expensive components are shown.
“Compute SC” represents average times of computing BT

i K−1
i Bi, “Error absorbtion” shows the cost

of BiCGStab procedure, and “Communication” indicates the communication time.

The solve time increases with the number of scenarios because the optimization
problems are larger and require a larger iteration count. However, we observe that
even though the size of the problem increases by 8 times from 4K to 32K scenarios,
the iteration count shown in Table 6 increases by less than 30% and shows very good
performance of the Mehrotra’s predictor-corrector despite the extreme size of the
problems.

The average cost of an interior-point iteration increases by only 7% from 4K sce-
narios to 32K scenarios, mainly because of a small increase in the number of BiCGStab
iterations (more pivot perturbation errors are present and need to be absorbed as the
scenario count increases), and not to communication or load imbalance overhead.

4.3.2. Breakdown of the execution time. In Figure 3 we show the execu-
tion time and the three most expensive components of the execution time for each
interior-point iteration for our largest simulation (UC12 with 32,768 scenarios on
32,768 nodes).

The Compute SC displays the time needed by PARDISO-SC to compute the Schur
complement contribution BT

i K
−1
i Bi, averaged across all scenarios. Error absorbtion

indicates the time spent in the BiCGStab procedure that absorbs the errors in K that
occurred because of the pivot perturbations in PARDISO-SC. Factor SC represents
the time spent in the dense factorization of C̃. Communication depicts the total time
spent in internode communication in both the Compute-SC and Error absorbtion
computational steps.

As can be seen in Figure 3, the overhead of the error absorbtion steps is fairly
low (ranges from 10% to 40% of the Compute SC step) and plays a crucial role in the
speed-ups in the time to solution of the PARDISO-SC approach over the triangular
solves approach previously implemented in PIPS [19].

The cost increase of the error absorbtion phase with the interior-point iterations
is due to an increase in the number of BiCGStab iterations. This behavior is most
likely caused by an increasing ill-conditioning of the linear systems Ki (a well-known
behavior of interior-point methods) that amplifies the pivot perturbation errors and,
consequently, decreases the quality of the preconditioner C̃. The average number of
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Fig. 4. “Weak scaling” efficiency plot showing the parallel efficiency of PIPS in solving UC12
instances on Intrepid. The closer to the Perfect scaling horizonal line, the better, meaning that there
is less parallel efficiency loss.

BiCGStab iterations ranges from 0 in the incipient phases of the optimization to 1.5
near the solution.

The very low cost of the communication (< 0.4 seconds) is the effect of the very
fast BG/P communication collectives routines. Other parallel computing systems
may show different behaviors, depending on the speed on the network. However, the
next-generation supercomputers (such as BG/Q) will operate even faster networks,
and so it is very unlikely that the communication will become a bottleneck on this
architecture.

4.3.3. Parallel efficiency. Scalability studies of this section are aimed at pro-
viding a lightweight measurement of the efficiency of PIPS-IPM and an extrapolation
basis for the performance of PIPS-IPM for larger problems.

We first present the so-called weak-scaling efficiency study. It consists of solving
increasingly large problems with additional computational resources. In our study
we used UC12 instances, and we increased the number of scenarios and nodes at the
same rate (their ratio is 1). Linear scaling or perfect efficiency is achieved if the run
time stays constant. The efficiency of PIPS-IPM is shown in Figure 4. We have
used the same UC12 instances and run times of Table 6. The efficiency of the entire
optimization process (excluding problem loading) is about 74%, and the efficiency of
the parallel linear algebra is more than 94% percent. In our opinion these are very
good parallel efficiencies, in part due to the fast BG/P collectives (relative to the
speed of the cores) and in part to a judicious use of MPI and numerical linear algebra
libraries in our implementation. The reduced efficiency of the overall optimization
process is caused mostly by the increase in the number of optimization iterations, as
we pointed out in section 4.3.1.

The second efficiency study fixes the size of the problem and increases the number
of computational nodes. This is known as a strong-scaling study. An application
scales linearly if the run time decreases at the same rate that the number of nodes
increases. In our experiments we solved the UC12 instance with 32K scenarios on
8K, 16K, and 32K nodes. (The run on 4K nodes ran out of memory.) The strong
scaling efficiency displayed in Figure 5 is over 75% from 8K to 32K nodes. The slight
deterioration in the efficiency is caused mainly by the dense factorization of the Schur
complement and solves with its factors, which is replicated across all computational
nodes. Reducing the cost of these dense linear algebra calculations (for example, by
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Fig. 5. “Strong scaling” efficiency plot showing the parallel efficiency of PIPS in solving UC12
instance with 32k scenarios on 8k, 16k, and 32k nodes of Intrepid BG/P.

using GPU acceleration) would greatly improve the strong-scaling efficiency of our
code.

We also report the performance of PIPS-IPM in terms of sustained floating-point
operations per second (Flops). For this experiment we solved UC12 with 4K scenarios
on 4K nodes (1 BG/P rack) and used the Hardware Performance Monitor (HPM)
library to count the number of floating-point operations. The sustained Flops rate
of PIPS-IPM on 1 rack was 3.37 TFlops, which accounts for 6.05% of theoretical
FLOPS peak rate. Inside our code, the two largest Flops rates were attained by
the PARDISO augmented factorization, 4.21 TFlops (7.55% of peak), and LAPACK
symmetric indefinite factorization routine DSYTRF, 14.75 TFlops (26.48% of peak).
With LAPACK we used ESSL Blue Gene SMP BLAS provided by the computer
manufacturer (IBM). We caution that sustained Flops performance may not be the
best measure of efficiency in our case because a large proportion of computations is
dedicated to sparse linear algebra, which by definition is difficult to vectorize and
requires additional integer arithmetic (fixed-point operations) that are not counted
by HPM. However, this work improved the Flops rate of PIPS-IPM by a factor of
6 over the previously used triangular solves technique; the improvement comes from
the use of the incomplete augmented factorization, which is considerably less memory
bound than triangular solves on multicores chips.

5. Conclusions. This paper presents a novel technique for the computation of
Schur complement matrices that occur in decomposition schemes for the solution of
optimization problems with dual-block angular structure. This class of structured
optimization problems includes stochastic optimizations problems with recourse, an
important class of problems for addressing the difficult issue of integrating renewable
sources of energy into the power grid. We present and discuss a stochastic model for
the real-time UC problem.

Based on an incomplete sparse factorization of an augmented system that is im-
plemented in PARDISO, the proposed approach is capable of using multicore nodes
efficiently, as well as fully exploiting sparsity. The pivot perturbation errors are not
managed for each scenario independently; instead, we use preconditioned BiCGStab
to absorb the errors at once for all scenarios. This approach maintains good load
balancing even when tens of thousands of nodes are simultaneously involved in com-
putations. The implementation of the augmented approach in the PIPS optimization
solver showed substantial speed-up over the previous approach. PIPS solved realisti-
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cally sized instances (12-hour horizon and state of Illinois power grid) of the stochastic
UC with thousands of scenarios in about 1 hour on the Intrepid BG/P supercomputer.

Our future work will attempt to solve larger horizon problems on modern archi-
tectures such as IBM BG/Q, Cray XK7, and Cray XC30. For example, preliminary
runs on a Cray XC30 architecture indicate that 24-hour stochastic UC relaxations
can be solved in less than 40 minutes. This time can be further reduced by 30–40%
by warm-starting the relaxation with the solution of stochastic UC instance solved
previously. Finding integer solutions to this class of problems—better than those
obtained by rounding—requires additional algorithmic and implementation develop-
ments as outlined in section 2. While this remains future research, by the tightness of
the relaxation, we expect to be able to find high-quality integer solutions by solving
a small number of warm-started relaxations; hence, the linear-algebra improvements
in this work have reduced solution times for the 24-hour stochastic UC problem to
near-practical levels.
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