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An Augmented Lagrangian Approach to
the Constrained Optimization Formulation

of Imaging Inverse Problems
Manya V. Afonso, José M. Bioucas-Dias, and Mário A. T. Figueiredo

Abstract—We propose a new fast algorithm for solving one of the
standard approaches to ill-posed linear inverse problems (IPLIP),
where a (possibly nonsmooth) regularizer is minimized under the
constraint that the solution explains the observations sufficiently
well. Although the regularizer and constraint are usually convex,
several particular features of these problems (huge dimensionality,
nonsmoothness) preclude the use of off-the-shelf optimization tools
and have stimulated a considerable amount of research. In this
paper, we propose a new efficient algorithm to handle one class
of constrained problems (often known as basis pursuit denoising)
tailored to image recovery applications. The proposed algorithm,
which belongs to the family of augmented Lagrangian methods,
can be used to deal with a variety of imaging IPLIP, including
deconvolution and reconstruction from compressive observations
(such as MRI), using either total-variation or wavelet-based (or,
more generally, frame-based) regularization. The proposed algo-
rithm is an instance of the so-called alternating direction method of
multipliers, for which convergence sufficient conditions are known;
we show that these conditions are satisfied by the proposed algo-
rithm. Experiments on a set of image restoration and reconstruc-
tion benchmark problems show that the proposed algorithm is a
strong contender for the state-of-the-art.

Index Terms—Convex optimization, frames, image reconstruc-
tion, image restoration, inpainting, total-variation.

I. INTRODUCTION

A. Problem Formulation

I
MAGE restoration/reconstruction is one of the earliest and

most classical linear inverse problems in imaging, dating

back to the 1960s [3]. In this class of problems, a noisy indirect

observation , of an original image , is modeled as
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where is the matrix representation of the direct operator and

is noise. As is common, we adopt the vector notation for images,

where the pixels on an image are stacked into an

-vector in, e.g., lexicographic order. In the sequel, we

denote by the number of elements of , thus, ,

while ( and may be different).

In the particular case of image deconvolution, is the matrix

representation of a convolution operator. This type of model de-

scribes well several physical mechanisms, such as relative mo-

tion between the camera and the subject (motion blur), bad fo-

cusing (defocusing blur), or a number of other mechanisms [7].

In more general image reconstruction problems, represents

some linear direct operator, such as tomographic projections

(Radon transform), a partially observed (e.g., Fourier) trans-

form, or the loss of part of the image pixels.

The problem of estimating from is called a linear in-

verse problem (LIP); for most scenarios of practical interest,

this is an ill-posed LIP (IPLIP), i.e., matrix is singular and/or

very ill-conditioned. Consequently, this IPLIP requires some

sort of regularization (or prior information, in Bayesian infer-

ence terms). One way to regularize the problem of estimating

, given , consists in a constrained optimization problem of

the form

subject to (1)

where is the regularizer or

regularization function, and a parameter which depends

upon the noise variance. In the case where , the

previous problem is usually known as basis pursuit denoising

(BPD) [16]. The so-called basis pursuit (BP) problem is the par-

ticular case of (1) for .

In recent years, an explosion of interest in problems of the

form (1) was sparked by the emergence of compressive sensing

(CS) [13], [23]. The theory of CS provides conditions (on matrix

and the degree of sparseness of the original ) under which a

solution of (1), for , is an optimal (in some sense)

approximation to the “true” .

In most signal/image recovery and CS problems, nonsmooth

regularizers such as the total variation (TV) [13], [48] and

norms are popular and powerful choices.

B. Analysis and Synthesis Formulations

In a frame-based representation, the unknown image can

be represented as a linear combination of the elements of some

frame, i.e., , where , and the columns of
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the matrix are the elements of a wavelet1 frame (an

orthogonal basis or an overcomplete dictionary). The coeffi-

cients of this representation are then estimated from the noisy

image, under one of the well-known sparsity inducing regular-

izers, such as the norm (see [8], [21], [25], [27], [30], and

further references therein). Formally, this leads to the following

constrained optimization problem:

subject to (2)

This formulation is referred to as the synthesis approach[26],

[50], since it is based on a synthesis equation: is synthesized

from its representation coefficients which are the

object of the estimation criterion. Naturally, the estimate of is

. Of course, (2) has the form (1) with replacing

.

An alternative formulation applies a regularizer directly to

the unknown image, leading to criteria of the form (1), usually

called analysis approaches, since they are based on a regularizer

that analyzes the image itself, rather than the coefficients of a

representation thereof. Arguably, the best known and most often

used regularizer in analysis approaches to image restoration is

the TV norm [15], [48].

Wavelet-based analysis approaches are also possible and have

the form

subject to (3)

where is a linear operator (a matrix) corresponding to a

wavelet transform [26]. In this paper, we always assume that

is the analysis operator associated with 1-tight (Parseval)

frame, thus, [42].

If the regularizers are convex, problems (1)–(3) are convex,

but the very high dimensions (at least , often ) of

and possibly precludes the direct application of off-the-shelf

optimization algorithms. This difficulty is further amplified by

the following fact: for any problem of nontrivial dimension, ma-

trices , , or cannot be stored explicitly, and it is costly,

even impractical, to access portions (lines, columns, blocks) of

them. On the other hand, matrix-vector products involving these

matrices (or their conjugate transposes, denote by ) can be

computed quite efficiently. For example, if the columns of

contain a wavelet basis or a tight wavelet frame, any multipli-

cation of the form or can be performed by a fast

transform algorithm [42]. Similarly, if represents a convolu-

tion, products by or can be performed with the help of

the fast Fourier transform (FFT). These facts have stimulated

the development of special purpose methods, in which the only

operations involving matrices are matrix-vector products.

C. Previous Algorithms: Unconstrained Formulations

Most state-of-the-art methods for dealing with linear inverse

problems, under convex, nonsmooth regularizers (namely, TV

and ), consider, rather than (1), the unconstrained problem

(4)

1We will use the generic term “wavelet” to mean any wavelet-like multiscale
representation, such as “curvelets,” “beamlets,” “ridgelets.”

where is the so-called regularization parameter. Of

course, problems (1) and (4) are equivalent, in the following

sense: for any such that problem (1) is feasible, a solu-

tion of (1) is either the null vector, or else is a solution of (4),

for some [31], [47]. For solving problems of the form

(4), some of the state-of-the-art algorithms belong to the iter-

ative shrinkage/thresholding (IST) family [18], [21], [30], [36],

and its two-step (TwIST [9] and FISTA [5]) and accelerated

(SpaRSA [54]) variants. These methods were shown to be con-

siderably faster than earlier methods, including [38] and

the codes in the -magic 2 and the SparseLab 3 toolboxes.

A key ingredient of most of these algorithms is the so-called

shrinkage/thresholding/denoising function, which is the Moreau

proximal mapping of the regularizer [18]. Formally, this func-

tion is defined as

(5)

Notice that if is proper and convex, the function being mini-

mized is proper and strictly convex, thus, the minimizer exists

and is unique making the function well defined [18]. For some

choices of , the corresponding have well known closed

forms. For example, if , then soft ,

where denotes the component-wise application of the

soft-threshold function .

In [2] and [28], we proposed a new algorithm called split

augmented Lagrangian shrinkage algorithm (SALSA), to solve

unconstrained optimization problems of the form (4) based on

variable splitting [19], [53]. The idea is to transform the uncon-

strained problem (4) into a constrained one via a variable split-

ting “trick,” and then attack this constrained problem using an

augmented Lagrangian (AL) method [45], specifically the al-

ternating direction method of multipliers (ADMM) [24], [32],

[33]. Although AL is known to be equivalent to the Bregman it-

erations recently proposed to handle imaging inverse problems

(see [57] and references therein), we prefer the AL perspec-

tive, rather than the Bregman iterative view, as it is a more stan-

dard/elementary tool (covered in most optimization textbooks).

On several benchmark experiments (namely image deconvolu-

tion, recovery of missing pixels, and reconstruction from par-

tial Fourier observations) using either frame-based or TV-based

regularization, SALSA was found to be faster than the previous

state-of-the-art methods FISTA [5], TwIST [9], and SpaRSA

[54].

Variable splitting and ADMM were also recently used in

[53] to obtain a fast algorithm for TV-based image deblur-

ring; that work addresses a TV- unconstrained formulation

(i.e., problem (4) with a TV norm) and is termed fast total

variation deconvolution (FTVd). Notice that the splitting un-

derlying FTVd is radically different from the one used in [2],

[28]. Finally, the reconstruction from partial Fourier (RecPF)

algorithm was designed for signal reconstruction from partial

Fourier observations and also uses ADMM; the optimization

problem addressed by RecPF also has the form (4), but with a

regularizer that is the sum of two terms: a TV norm and an

2Available at http://www.l1-magic.org.

3Available at http://sparselab.stanford.edu.
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norm [56]. Notice that neither FTVd nor RecPF can be used to

address the constrained form (1).

D. Previous Algorithms: Constrained Formulations

Although it is usually simpler to solve an unconstrained

problem than a constrained one, formulations (1)–(3) have

an important advantage: parameter has a clear meaning (it

is proportional to the noise standard deviation) and is much

easier to set than parameter in (4). Of course, one may solve

(1) by solving (4) and searching for the “correct” value of

that makes (4) equivalent to (1). Clearly, this is not efficient,

as it involves solving many instances of (4). Consequently,

obtaining fast algorithms for directly solving (1) (or (2) or (3))

is, thus, an important research front.

There are few efficient algorithms to solve problems of the

form (1) in an image recovery context: and of high dimen-

sionality ( , often ), representing an operator, and

a convex, nonsmooth function. A notable exception is the recent

SPGL1 [52], which (as its name implies) is specifically designed

for regularization. As shown in [52], the methods for solving

(1) available in the -magic package are quite inefficient for

large problems. General purpose methods, such as the SeDuMi

package4, are simply not applicable when is not an explicitly

stored matrix, but an operator.

Another efficient algorithm for solving problems of the form

(1) is the very recently proposed NESTA [6], which is based

on Nesterov’s first-order methods wherein an optimal gradient

method is applied on a smooth approximation of the nonsmooth

objective function [43], [44]. NESTA allows for minimizing

either the or TV norm, and also allows using synthesis or

analysis formulations. Nesterov’s first-order method was also

recently adopted in [20] to perform TV-regularized image de-

noising, deblurring, and inpainting.

Your augmented Lagrangian for (YALL1) is another re-

cently proposed algorithm which addressed both unconstrained

and constrained -regularized formulations using variable

splitting and ADMM. In the splitting adopted in [55], one of

the steps of ADMM turns out to be of the form (4), which is

as difficult as the original problem. To sidestep that difficulty,

the authors replace the exact ADMM by an inexact version, in

which the nonseparable quadratic term is replaced by a sepa-

rable approximation (much as in an IST scheme). As shown

in the following, we exploit, in this paper, a different splitting

which will not lead to a problem of the form (4). Instead, the

(exact) ADMM resulting from our splitting involves a quadratic

problem (which can be solved exactly in closed form for a large

class of problems of interest), a shrinkage operation, and an

orthogonal projection on a ball.

Finally, we should mention the Bregman iterative algorithm

(BIA), recently proposed to solve (1) with , that is, to

minimize under the equality constraint (see [11],

[57] and references therein). To address problems of the form

(1) with (inequality constraint), the following approach has

been proposed (citing verbatim from [11], changing the equa-

tion numbers and the notation to match the corresponding equa-

tions in this paper): “To solve(1), one can use the Bregman iter-

4Available at http://sedumi.ie.lehigh.edu.

ation for the equality constrained minimization problem5 with

an early stopping criterion

to find a good approximate solution of (1)” In other words, the

BIA may only be expected to approximately solve (1), not ex-

actly. Naturally, using an early stopping criterion (based upon

the feasible set of (1) with ) in an algorithm designed for

(and which converges to) the solution of the equality constrained

problem ((1) with ) is not guaranteed to yield an optimal

solution of the inequality constrained problem.

E. Proposed Approach

In this paper, we introduce an algorithm for solving opti-

mization problems of the form (1). The original constrained

problem (1) is transformed into an unconstrained one by adding

the indicator function of the feasible set, the ellipsoid

, to the objective in (1). The resulting uncon-

strained problem is then transformed into a different constrained

problem, by the application of a variable splitting operation; fi-

nally, the obtained constrained problem is dealt with using the

ADMM [24], [32], [33], which belongs to the family of AL tech-

niques [45]. Since (as SALSA), the proposed method uses vari-

able splitting and AL optimization, we call it C-SALSA (for

constrained-SALSA).

The resulting algorithm is more general than SPGL1, in the

sense that it can be used with any convex regularizer for which

the corresponding Moreau proximity operator (see [18]), has

closed form or can be efficiently computed. In this paper, we will

show examples of C-SALSA where is an image, is the TV

norm [48], and is computed using Chambolle’s algorithm

[14]. Another classical choice which we will demonstrate is the

norm, which leads to .

C-SALSA is experimentally shown to efficiently solve image

recovery problems, such as MRI reconstruction from CS-type

partial Fourier observations using TV regularization, and image

deblurring using wavelet-based or TV regularization, faster than

SPGL1 and NESTA.

F. Organization of the Paper

The paper is organized as follows. Section II describes

the basic ingredients of C-SALSA: variable splitting, ALs,

and the ADMM. Section III contains the derivation leading

to C-SALSA. Section IV reports experimental results, and

Section V ends the paper with a few remarks and pointers to

future work.

II. BASIC INGREDIENTS

A. Variable Splitting

Consider an unconstrained optimization problem

(6)

where , , and . Variable

splitting (VS) is a simple procedure that consists in creating a

5That is, problem (1) with � � �.
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new variable, say , to serve as the argument of , under the

constraints that , i.e.,

subject to (7)

The rationale behind VS is that it may be easier to solve the

constrained problem (7) than it is to solve its equivalent uncon-

strained counterpart (6).

VS has been recently used in several image processing appli-

cations. A VS method was used in [53] to obtain a fast algorithm

for TV-based restoration. Variable splitting was also used in [10]

to handle problems involving compound regularizers. In [10],

[53], the constrained problem (7) is attacked using a quadratic

penalty approach, i.e., by solving

(8)

by alternating minimization with respect to and , while

slowly taking to very large values (a continuation process),

to force the solution of (8) to approach that of (7), which in turn

is equivalent to (6). The rationale of these methods is that each

step of this alternating minimization may be much easier than

the original unconstrained problem (6).

A similar VS approach underlies the recently proposed split-

Bregman methods [34]. Instead of using a quadratic penalty

technique, those methods attack the constrained problem di-

rectly using a Bregman iterative algorithm [57]. Moreover, the

split-Bregman method with a single inner iteration is known to

be equivalent to the AL method [35], [51], [57].

B. AL

Consider the constrained optimization problem with linear

equality constraints

subject to (9)

where and , i.e., there are linear equality

constraints. The so-called AL for this problem is defined as

(10)

where is a vector of Lagrange multipliers and is

called the AL penalty parameter [45]. The so-called augmented

Lagrangian method (ALM) [45], also known as the method

of multipliers (MM) [37], [46], iterates between minimizing

with respect to , keeping fixed, and updating ,

until some convergence criterion is satisfied.

Algorithm ALM/MM

1. Set , choose and .

2. repeat

3.

4.

5.

6. until some stopping criterion is satisfied.

It is also possible (and even recommended) to update the

value of in each iteration [4], [45]. However, unlike in the

quadratic penalty approach, the ALM/MM does not require

to be taken to infinity to guarantee convergence to the solution

of the constrained problem (9).

After a straightforward complete-the-squares procedure, the

terms added to in the AL can be written as

a single quadratic term (plus a constant independent of , thus,

irrelevant to the ALM/MM), leading to the following alternative

form of the algorithm (which makes clear its equivalence with

the Bregman iterative method [57]):

Algorithm ALM/MM (version II)

1. Set , choose and

2. repeat

3.

4.

5.

6. until some stopping criterion is satisfied.

C. ALM/MM for Variable Splitting and ADMM

The constrained problem (7) can be written as (9) by defining

and setting

(11)

With these definitions in place, Steps 3 and 4 of the ALM/MM

(version II) become

(12)

The minimization problem yielding is not trivial

since, in general, it involves a nonseparable quadratic term and

possibly nonsmooth terms. A natural approach is to use a non-

linear block-Gauss-Seidel (NLBGS) technique which alternates

between minimizing with respect to and while keeping

the other fixed. Of course this raises several questions: for a

given , how much computational effort should be spent in this

problem? Does the NLBGS procedure converge? The simplest

answer to these questions is given in the form of the so-called

ADMM [24], [32], [33], which is simply an ALM/MM in which

only one NLBGS step is performed in each outer iteration.
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TABLE I
DETAILS OF THE IMAGE DECONVOLUTION EXPERIMENTS

Algorithm ADMM

1. Set , choose , , .

2. repeat

3.

4.

5.

6.

7. until some stopping criterion is satisfied.

For later reference, we now recall the theorem by Eckstein

and Bertsekas [24, Theorem 8] in which convergence of (a gen-

eralized version of) ADMM is shown.

Theorem 1 (Eckstein-Bertsekas, [24]): Consider problem (6),

where has full column rank, and and are closed, proper,

convex functions. Consider arbitrary and , ,

. Let and be

two sequences such that

and

Consider three sequences ,

, and that satisfy

Then, if (6) has a solution, say , then the sequence con-

verges to . If (6) does not have a solution, then at least one of

the sequences or diverges.

Notice that the ADMM as defined previously (if each step

is implemented exactly) generates sequences , , and

that satisfy the conditions in Theorem 1 in a strict sense

(i.e., with ). The remaining key condition for con-

vergence is then that has full column rank. One of the im-

portant corollaries of this theorem is that it is not necessary to

exactly solve the minimizations in lines 3 and 4 of ADMM; as

long as the sequence of errors are absolutely summable, conver-

gence is not compromised.

The proof of Theorem 1 is based upon the equivalence be-

tween ADMM and the Douglas–Rachford splitting (DRS) ap-

plied to the dual of problem (6). The DRS was recently used

for image recovery problems in [17]. For recent and compre-

hensive reviews of ALM, ADMM, DRS, and their relationship

with Bregman and split-Bregman methods, see [35] and [51].

D. Variant of ADMM

Consider a generalization of problem (6), where instead of

two functions, there are functions, that is

(13)

where are closed, proper, convex functions,

and are arbitrary matrices. The minimization

problem (13) can be written as (6) using the following corre-

spondences:

... (14)

where , and given by

(15)

where and . We

now simply apply ADMM (as given in the previous subsection),

with

...
...

Moreover, the fact that turns Step 3 of the algorithm into

a simple quadratic minimization problem, which has a unique

solution if has full column rank

(16)

where (and, naturally, ) and

the second equality results from the particular structure of in

(14).

Furthermore, our particular way of mapping problem (13)

into problem (6) allows decoupling the minimization in Step 4

of ADMM into a set of independent ones. In fact

(17)
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TABLE II
IMAGE DEBLURRING USING WAVELETS (REDUNDANT)—COMPUTATIONAL LOAD

TABLE III
IMAGE DECONVOLUTION USING WAVELETS (REDUNDANT, ANALYSIS PRIOR)—COMPUTATIONAL LOAD

can be written as

...

...
...

...

Clearly, the minimizations with respect to are de-

coupled, thus, can be solved separately, leading to

(18)

for , where

Since this algorithm is exactly an ADMM, and since all the

functions , for , are closed, proper, and convex,

convergence is guaranteed if has full column rank. Actually,

this full column rank condition is also required for the inverse

in (16) to exist. Finally, notice that the update equations in (18)

can be written as

(19)

where the are, by definition, the Moreau proximal map-

pings of .

In summary, the variant of ADMM (herein referred to as

ADMM-2) that results from the formulation just presented is

described in the following algorithmic framework.

Algorithm ADMM-2

1. Set , choose , , .

2. repeat

3. for

4. do

5.

6. for

7. do

8.

9.

10. until some stopping criterion is satisfied.

III. PROPOSED METHOD

We now apply the algorithmic framework described in the

previous section to the basic problem (1) [which includes (2) as

a special case], as well as the analysis formulation (3).

A. Problem (1)

For the constrained optimization problem (1), the feasible set

is the ellipsoid

(20)
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Fig. 1. Image deblurring with wavelets (synthesis prior, redundant Haar wavelets), 9� 9 uniform blur, � � ����. (a) Evolution of the objective function ���
over time. (b) Quadratic constraint ���� � �� over time.

TABLE IV
IMAGE DEBLURRING USING WAVELETS (ORTHOGONAL)—COMPUTATIONAL LOAD

TABLE V
IMAGE DEBLURRING USING WAVELETS (ORTHOGONAL, ANALYSIS PRIOR)—COMPUTATIONAL LOAD

which is possibly infinite in some directions (since may

be singular). Problem (1) can be written as an unconstrained

problem, with a discontinuous objective

(21)

where denotes the indicator function of set

if

if
(22)

Notice that is simply a closed -radius Euclidean ball

centered at .

Problem (21) has the form (13) with and

(23)

(24)

(25)

(26)

Instantiating ADMM-2 to this particular case requires the

definition of the Moreau proximal maps associated with

and . Concerning , the regularizer, we assume

that (see (5)) can be computed efficiently. This is of

course the case of , for which is simply a soft

threshold. If is the TV norm, we may use one the fast algo-

rithms available to compute the corresponding denoising func-

tion [14], [20]. The Moreau proximal map of is

defined as

(27)
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Fig. 2. Image deblurring (uniform blur) with TV regularization. (a) Evolution of the objective function over time. (b) Evolution of the constraint ������ over
time.

TABLE VI
IMAGE DEBLURRING USING TV–COMPUTATIONAL LOAD

which is obviously independent of and is simply the orthog-

onal projection of on the closed -radius ball centered at

if

if
(28)

We are now in a position to instantiate ADMM-2 for solving

(21) [equivalently (1)]. The resulting algorithm, which we call

C-SALSA-1, is as follows.

Algorithm C-SALSA-1

1. Set , choose , , , , .

2. repeat

3.

4.

5.

6.

7.

8.

9.

10. until some stopping criterion is satisfied.

The issue of how to efficiently solve the linear system of equa-

tions in line 4 of C-SALSA-1 will be addressed in Section III-C.

Convergence of C-SALSA-1 is guaranteed by Theorem 1

since it is an instance of ADMM with

(29)

which is a full column rank matrix, and both and are

closed, proper, convex functions.

Finally, notice that to apply C-SALSA-1 to problem (2) we

simply have to replace with .

B. Problem (3)

Problem (3) can also be written as an unconstrained problem

(30)

which has the form (13) with and

(31)

(32)

(33)

(34)

The resulting ADMM algorithm, called C-SALSA-2, is sim-

ilar to C-SALSA-1, with only a few minor differences.
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Algorithm C-SALSA-2

1. Set , choose , , , , .

2. repeat

3.

4.

5.

6.

7.

8.

9.

10. until some stopping criterion is satisfied.

In this paper, we assume that is the analysis operator

of a 1-tight (Parseval) frame, thus, and line 4 of

C-SALSA-2 is similar to line 4 of C-SALSA-1

(35)

The issue of how to efficiently solve this linear system will be

addressed in Section III-C.

Since both and are closed, proper, convex func-

tions, convergence of C-SALSA-2 holds (by Theorem 1) if

(36)

is a full column rank matrix. This is of course true if is itself

a full column rank matrix, which is the case if is the analysis

operator of a tight frame [42].

C. Solving (35)

As mentioned in Section I-C, in most imaging problems of

interest, it may not be feasible to explicitly form matrix . This

might suggest that it is not easy, or even feasible, to compute the

inverse of . However, as shown next, in a number

of problems of interest, this inverse can be computed very effi-

ciently with cost, or even cost in some formu-

lations of inpainting.

1) Deconvolution With Analysis Formulation: Let us first

consider analysis formulations of the form (1) or (3) to image

deconvolution problems. If matrix represents a 2-D cyclic

convolution (periodic boundary conditions), it is a block cir-

culant matrix with circulant blocks that can be factorized as

, where is the unitary matrix

representing the discrete Fourier transform (DFT) and is di-

agonal. Thus

(37)

where is the matrix with squared absolute values of the

entries of . Since is diagonal, its inversion cost is

Fig. 3. MRI reconstruction. (a) 128� 128 Shepp–Logan phantom. (b) Mask
with 22 radial lines. (c) Image estimated using C-SALSA.

. Products by and have cost, using the

FFT algorithm.

If the convolution represented by is not cyclic, then is a

(non-circulant) Toeplitz matrix and it cannot be factorized as

. In this case, solving the linear system in (35)

is not as simple as applying (37). However, there are very fast

preconditioned conjugate gradient (PCG) methods for Topelitz

matrices, which use the FFT to perform the required matrix-

vector products, thus, having cost (see [22] for very

recent work on this topic and pointers to a vast literature).

2) Deconvolution With Synthesis Formulation: In this case,

as seen in Section I-B, we have instead of , and even if

is a cyclic convolution, is not diagonalizable by the DFT.

To sidestep this difficulty, we assume that contains a 1-tight

(Parseval) frame (i.e., ). Using the Sherman–Mor-

rison–Woodbury (SMW) matrix inversion lemma

(38)
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Fig. 4. MRI reconstruction with TV regularization. (a) Evolution of the objective function over time. (b) Evolution of the constraint ���� �� over time.

thus, line 4 of C-SALSA-1 and C-SALSA-2 can be written as

(39)

If represents a cyclic convolution, then, as shown previously,

it can be factorized as , thus, multiplication by

corresponds to applying an image filter in the Fourier domain

which has cost, since all the matrices in

are diagonal and the products by

and are carried out via the FFT. The cost of (38) will, thus,

be either or the cost of the products by and

. In the case of a noncyclic convolution, is Toeplitz and

cannot be inverted directly as in (37); in this case, we would

have to resort, as mentioned previously, to a PCG algorithm.

For most tight frames used in image processing, there are

fast algorithms to compute the products by

and [42]. For example, in the case of translation-invariant

wavelet transforms, these products can be computed using

the undecimated wavelet transform with total cost

[40]. Curvelets also constitute a Parseval frame for which

fast implementations of the forward and inverse

transform exist [12]. Yet another example of a redundant Par-

seval frame is the complex wavelet transform, which has

computational cost [39], [49]. In conclusion, for a large class

of choices of , each iteration of the C-SALSA algorithm has

cost.

3) Missing Pixels: Image Inpainting: In the analysis prior

formulation of this problem, the observation matrix models

the loss of some image pixels. It is, thus, an binary matrix,

with , which can be obtained by taking a subset of rows

of an identity matrix. Due to its particular structure, this matrix

satisfies . Using this fact together with the SMW

formula leads to

(40)

(41)

Since is equal to an identity matrix with some zeros in

the diagonal (corresponding to the positions of the missing ob-

servations), the matrix in (41) is diagonal with elements ei-

ther equal to 1 or 1/2. Consequently, line 4 of C-SALSA-1 and

Fig. 5. TV based image reconstruction. (a) Original image with dynamic range
� �� dB. (b) Estimate using C-SALSA.

C-SALSA-2 corresponds to multiplying this diagonal matrix by

, obviously with cost.

In the frame-based synthesis formulation, we have in-

stead of . Using the SMW formula yet again, and the facts that

and , we have

(42)

As noted in the previous paragraph, is equal to an identity

matrix with zeros in the diagonal, i.e., a binary mask. Thus, the

multiplication by corresponds to synthesizing the

image, multiplying it by this mask, and computing the represen-

tation coefficients of the result. In conclusion, the cost of line 4

of C-SALSA-1 and C-SALSA-2 is again that of the products by

and , usually .

4) Partial Fourier Observations (MRI Reconstruction):

Finally, we consider the case of partial Fourier observations,

which is used to model MRI acquisition and has been the focus

of recent interest due to its connection to compressed sensing

[13], [41]. In the analysis formulation, , where

is an binary matrix again, formed by a subset

of rows of the identity, and is the DFT matrix. Due to its

particular structure, matrix satisfies ; this fact

together with the matrix inversion lemma leads to

(43)

where is equal to an identity with some zeros in the

diagonal. Consequently, the cost of line 4 of C-SALSA-1 and

C-SALSA-2 is again that of the products by and , i.e.,

using the FFT.
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Fig. 6. TV based image reconstruction �dynamic range � �� dB�. (a) Evolution of the objective function over time. (b) Evolution of the constraint ��� � ��
over time.

Fig. 7. Image inpainting with TV regularization. (a) Original cameraman image. (b) Image with 40% pixels missing. (c) Estimated using C-SALSA.

TABLE VII
MRI RECONSTRUCTION—COMPARISON

In the synthesis case, the observation matrix has the form

. Clearly, the case is again similar to (42), but with

and instead of and , respectively. Again, the

cost of line 4 of C-SALSA-1 and C-SALSA-2 is , if

the FFT is used to compute the products by and and fast

frame transforms are used for the products by and .

D. Computational Complexity

As shown in the previous section, the cost of line 4 of

C-SALSA-1 and C-SALSA-2 is . The other lines

of the algorithms simply involve: 1) matrix-vector products

involving , , , or their conjugate transposes, which have

cost; 2) vector additions, which have cost; and

3) the computation of the Moreau proximal maps (lines 5 and 6

of C-SALSA-1 and C-SALSA-2). In the case of the projections

on a ball (line 6), it is clear from (28) that the cost is .

Finally, we consider the computational cost of the Moreau

proximal map of the regularizer (line 5 of C-SALSA-1 and

C-SALSA-2). In some cases, this map can be computed ex-

actly in closed form; for example, if , then

is simply a soft threshold and the cost is . In other cases,

the Moreau proximal map does not have a closed form solu-

tion; for example, if , the corresponding

has to be computed using one of several available iterative al-

gorithms [14], [20]. Most of these iterative algorithms can be

implemented with cost, although with a factor that de-

pends upon the number of iterations. In our implementation of

C-SALSA we use Chambolle’s algorithm [14].

In summary, for a wide choice of regularizers and frame rep-

resentations, the C-SALSA algorithms have compu-

tational complexity.

IV. EXPERIMENTS

In this section, we report results of experiments aimed at com-

paring the speed of C-SALSA6 with that of the current state of

the art methods (that are freely available online): SPGL17[52],

and NESTA8 [6].

We consider three standard and often studied imaging in-

verse problems: image deconvolution (using both wavelet and

6C-SALSA is available at http://cascais.lx.it.pt/~mafonso/salsa.html.

7Available at http://www.cs.ubc.ca/labs/scl/spgl1.

8Available at http://www.acm.caltech.edu/~nesta.
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TABLE VIII
IMAGE RECONSTRUCTION (HIGH DYNAMIC RANGE) USING TV—COMPUTATIONAL LOAD

Fig. 8. Image inpainting with TV regularization. (a) Evolution of the objective function over time. (b) Evolution of the constraint ���� �� over time.

TV-based regularization); image restoration from missing sam-

ples (inpainting); image reconstruction from partial Fourier ob-

servations, which (as mentioned previously) has been the focus

of much recent interest due to its connection with compressed

sensing and the fact that it models MRI acquisition [41].

All experiments were performed using MATLAB, on a Win-

dows XP desktop computer with an Intel Pentium-IV 3.0 GHz

processor and 1.5 GB of RAM. The number of calls to the oper-

ators and , the number of iterations, CPU times, and MSE

values presented are the averages values over 10 runs of each ex-

periment. The number of calls reported for each experiment is

the average over the 10 instances, with the minimum and max-

imum indicated in the parentheses. Since the stopping criteria of

the implementations of the available algorithms differ, to com-

pare the speed of the algorithms in a way that is as independent

as possible from these criteria, the experimental protocol that we

followed was the following: we first run one of the algorithms

with its stopping criterion, and then run C-SALSA until the con-

straint in (1) is satisfied and the MSE of the estimate is below

that obtained by the other algorithms.

The value of in (1) used in all cases was ,

where is the number of observations, and is the noise

standard deviation. The parameter was hand-tuned for fastest

convergence.

A. Image Deconvolution With Wavelets

We consider five benchmark cyclic deblurring problems

[30], summarized in Table I, all on the well-known Cameraman

image. The regularizer is , thus, is an

element-wise soft threshold. We compare C-SALSA against

SPGL1 and NESTA in the synthesis case, and against only

NESTA in the analysis case, since SPGL1 is hardwired with

as the regularizer, and not . Since the restored

images are visually indistinguishable from those obtained in

[30], and the SNR improvements are also very similar, we

simply compare the speed of the algorithms, that is, the number

of calls to the operators and , the number of iterations,

and the computation time.

In the first set of experiments, is a redundant Haar

wavelet frame with four levels. For the synthesis case, the CPU

times taken by each of the algorithms are presented in Table II.

Table III presents the corresponding results for the case with

the analysis prior. In the second set of experiments, is an or-

thogonal Haar wavelet basis; the results are reported in Table IV

for the synthesis case, and in Table V for the analysis case. To

visually illustrate the relative speed of the algorithms, Fig. 1

plots the evolution of the constraint , versus time,

in experiments 1, for the synthesis prior case, with redundant

wavelets.

B. Image Deblurring With TV

The same five image deconvolution problems listed in Table I

were also addressed using TV regularization (more specifically,

the isotropic discrete total variation, as defined in [14]). The cor-

responding Moreau proximal mapping is computed using five

iterations of Chambolle’s algorithm [14].

Table VI compares the performance of C-SALSA and

NESTA, in terms of speed. The evolutions of the objective

function and the constraint for experiment 1 are plotted in

Fig. 2.

We can conclude from Tables II–VI that, in image deconvolu-

tion problems, both with wavelet-based and TV-based regular-
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TABLE IX
IMAGE INPAINTING: COMPARISON

ization, C-SALSA is almost always clearly faster than the fastest

of the other competing algorithms.

C. MRI Image Reconstruction

We now consider the problem of reconstructing the 128 128

Shepp–Logan phantom [shown in Fig. 3(a)] from a limited

number of radial lines [22, in our experiments, as shown in

Fig. 3(b)] of its 2-D discrete Fourier transform. The projections

are also corrupted with circular complex Gaussian noise, with

variance . We use TV regularization (as

described in Section IV-B), with the corresponding Moreau

proximal mapping implemented by 10 iterations of Cham-

bolle’s algorithm [14].

Table VII shows the number of calls, number of iterations,

and CPU times, while Fig. 4 plots the evolution of the objec-

tive function and constraint over time. Fig. 3(c) shows the esti-

mate obtained using C-SALSA (the estimate NESTA is, natu-

rally, visually indistinguishable). Again, we may conclude that

C-SALSA is faster than NESTA, while achieving comparable

values of mean squared error of the reconstructed image.

1) High Dynamic Range TV Reconstruction: A related ex-

ample that we will consider here is the reconstruction of images

composed of random squares, from their partial Fourier mea-

surements, with TV regularization (see [6, Sec. 6:4]). The dy-

namic range of the signals (the amplitude of the squares) varies

from 20 dB to 80 dB. The size of each image is 128 128,

the number of radial lines in the DFT measurement mask is 27

(corresponding to ), and the Gaussian noise standard

deviation is .

Fig. 4(c) shows the original image with a dynamic range

of 40 dB and the estimate obtained using C-SALSA. Fig. 6

shows the evolution over time of the objective and the error

constraint for C-SALSA and NESTA, while Table VIII com-

pares the two algorithms with respect to the number of calls to

and , number of iterations, CPU time, and MSE obtained,

over 10 random trials. It is clear from Table VIII that C-SALSA

uses considerably fewer calls to the operators and than

NESTA.

D. Image Inpainting

Finally, we consider an image inpainting problem, as ex-

plained in Section III-C. The original image is again the

Cameraman, and the observation consists in losing 40% of its

pixels, as shown in Fig. 7. The observations are also corrupted

with Gaussian noise (with an SNR of 40 dB). The regularizer

is again TV, implemented by 10 iterations of Chambolle’s

algorithm.

The image estimate obtained by C-SALSA is shown in Fig. 7,

with the original also shown for comparison. The estimate ob-

tained using NESTA was visually very similar. Table IX com-

pares the performance of the two algorithms, and Fig. 8 shows

the evolution of the objective function for each of them.

V. CONCLUSION

We have presented a new algorithm for solving the con-

strained optimization formulation of regularized image recon-

struction/restoration. The approach, which can be used with

any type of convex regularizers (wavelet-based, TV), is based

upon a VS technique which yields an equivalent constrained

problem. This constrained problem is then addressed using an

ALM, more specifically, the ADMM. Our algorithm works for

any convex regularizer for which the Moreau proximal map-

ping can be efficiently computed, and is therefore more general

purpose than some of the available state-of-the-art methods

which are available only for either - and/or TV regularization.

Experiments on a set of standard image recovery problems (de-

convolution, MRI reconstruction, inpainting) have shown that

the proposed algorithm (termed C-SALSA, for constrained split

augmented Lagrangian shrinkage algorithm) is usually faster

than previous state-of-the-art methods. Automating the choice

of the value of the parameter remains an open question.
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