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Abstract—This paper presents a fast algorithm for restoring
video sequences. The proposed algorithm, as opposed to existing
methods, does not consider video restoration as a sequence of
image restoration problems. Rather, it treats a video sequence
as a space-time volume and poses a space-time total variation
regularization to enhance the smoothness of the solution. The
optimization problem is solved by transforming the original un-
constrained minimization problem to an equivalent constrained
minimization problem. An augmented Lagrangian method is used
to handle the constraints, and an alternating direction method
(ADM) is used to iteratively find solutions of the subproblems.
The proposed algorithm has a wide range of applications, includ-
ing video deblurring and denoising, video disparity refinement,
and hot-air turbulence effect reduction.

Index Terms—Augmented Lagrangian, total variation, alter-
nating direction method, video restoration, video deblurring,
video disparity, hot-air turbulence

I. INTRODUCTION

A. Video Restoration Problems

Image restoration is an inverse problem where the objective

is to recover a sharp image from a blurry and noisy observa-

tion. Mathematically, a linear shift invariant imaging system

is modeled as [1]

g = Hf + η, (1)

where f ∈ R
MN×1 is a vector denoting the unknown (po-

tentially sharp) image of size M × N , g ∈ R
MN×1 is a

vector denoting the observed image, η ∈ R
MN×1 is a vector

denoting the noise, and the matrix H ∈ R
MN×MN is a linear

transformation representing convolution operation. The goal

of image restoration is to recover f from the observed image

g.

Standard single image restoration has been studied for

more than half century. Popular methods such as Wiener

deconvolution [1], Lucy Richardson deconvolution [2], [3] and

regularized least squares minimization [4], [5] have already

been implemented in MATLAB and FIJI [6]. Advanced meth-

ods such as total variational image restoration methods are

also becoming mature [7]–[11].

While single image restorations still have room for im-

provement, we consider in this paper the video restoration
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problem. The key difference between image and video is the

additional time dimension. Consequently, video restoration has

some unique features that do not exist in image restoration:

1) Motion information

Motion deblurring requires motion vector field, which

can be estimated from a video sequence using conven-

tional methods such as block-matching [12] and optical

flow [13]. While it is also possible to remove motion

blur based on a single image, for example, [14]–[18], the

performance is limited to global motion or at most one to

two objects by using sophisticated object segmentation

algorithms.

2) Spatial variance versus spatial invariance

For a class of spatially variant image restoration prob-

lems (in particular motion blur), the convolution matrix

H is not a block-circulant matrix. Therefore, Fourier

Transforms cannot be utilized to efficiently find a so-

lution. Videos, in contrast, allow us to transform a

sequence of spatially variant problems to a spatially

invariant problem (See the next section for more discus-

sions). As a result, huge gain in speed can be realized.

3) Temporal consistency

Temporal consistency concerns about the smoothness

of the restored video along the time axis. Although

smoothing can be performed spatially (as in the case of

single image restoration), temporal consistency cannot

be guaranteed if these methods are applied to a video in

a frame-by-frame basis.

Because of these unique features in video, we seek a video

restoration algorithm that utilizes motion information, exploits

the spatially invariant properties and enforces spatial and

temporal consistency.

B. Related Work

Majority of existing video restoration methods recover a

video by solving a sequence of individual image restorations.

To improve the temporal consistency among the frames, vari-

ous approaches can be adopted: [19] modified Equation (1) to

incorporate the geometric warp caused by motion; [20] utilized

the motion vector field as a prior to the restoration; [21]

considered a regularization function of the residue between

the current solution and the motion compensated version of

the previous solution.

Another class of methods are based on the concept of

“space-time volume”, which is first introduced in the early

90’s by Jähne [22], and rediscovered by Wexler, Shechtman,
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Caspi and Irani [23], [24]. The idea of space-time volume is

to stack the frames of a video to form a three-dimensional

data structure known as the space-time volume. This allows

one to transform the spatially variant motion blur problem

to a spatially invariant problem. By imposing regularization

functions along the spatial and temporal directions respec-

tively, both spatial and temporal smoothness can be enforced.

However, size of a space-time volume is much larger than

a single image. Therefore, the authors of [24] only consider

a Tikhonov regularized least-squares minimization (Equation

(3) of [24]) as there is a closed formed solution. More so-

phisticated regularization functions such as total variation [19]

and its l1-approximation [25] do not seem possible under this

framework, for these non-differentiable functions are difficult

to solve efficiently.

This paper investigates the total variation regularization

functions in space-time minimization. In particular, we con-

sider the following two problems:

minimize
f

µ
2 ‖Hf − g‖

2
+ ‖f‖TV , (2)

which is known as the TV/L2 minimization, and

minimize
f

µ ‖Hf − g‖1 + ‖f‖TV , (3)

which is known as the TV/L1 minimization. Unless specified,

the norms ‖ · ‖2 and ‖ · ‖1 are the conventional vector 2-norm

squares and the vector 1-norm, respectively. The total variation

(TV)-norm ‖f‖TV can either be the anisotropic total variation

norm

‖f‖TV 1 =
∑

i

(βx|[Dxf ]i|+ βy|[Dyf ]i|+ βt|[Dtf ]i|) , (4)

or the isotropic total variation norm

‖f‖TV 2 =
∑

i

√

β2
x[Dxf ]2i + β2

y [Dyf ]2i + β2
t [Dtf ]2i , (5)

where the operators Dx, Dy and Dt are the forward finite

difference operators along the horizontal, vertical and temporal

directions, respectively. Here, (βx, βy, βt) are constants, and

[f ]i denotes the i-th component of the vector f . More details

on these two equations will be discussed in Section II.D.

The proposed algorithm is based on the augmented La-

grangian method, an old method that recently draws significant

attentions [10], [11], [26]. All of these methods follow from

Eckstein and Bertsekas’s operator splitting method [27], which

can be traced back to the work by Douglas and Rachford [28],

and the proximal point algorithm by Rockafellar [29], [30].

Recently, the operator splitting method has been proven to be

equivalent to the splitting Bregman iteration for some prob-

lems [31], [32]. However, there is no work on extending the

augmented Lagrangian method to space-time minimization.

C. Contributions

The contribution of this paper is summarized as follows:

• We extend the existing augmented Lagrangian method to

solve space-time total variation minimization problems

(2) and (3).

• In terms of restoration quality, our method achieves

TV/L1 and TV/L2 minimization quality. The quality is

significantly better than its counter part [24] which is

a space-time Tikhonov least-squares minimization. The

proposed method also gives better results than a number

of video restoration algorithms that use motion compen-

sation.

• In terms of speed, we achieve significantly higher com-

putational speed compared to existing methods. Typical

run time to deblur and denoise a 300× 400 gray-scaled

video is a few second per frame on a personal computer

(MATLAB). This implies the possibility of real-time

processing on GPU.

• In terms of class of problems, we are able to remove

spatially variant motion blur, whereas existing frame-by-

frame based approaches are either unable to do so, or

computationally slow.

• Applications: (1). Video deblurring - With the assistance

of frame rate up conversion algorithms, the proposed

method can remove spatially variant motion blur for real

video sequences. (2). Video disparity - Occlusion errors

and temporal inconsistent estimates in the video disparity

can be handled by the proposed algorithm without any

modification. (3). Hot-air turbulence - The algorithm can

be directly used to deblur and remove hot-air turbulence

effects.

D. Organization

This paper is an extension of two recently accepted con-

ference papers [33], [34]. The organization of this paper is

as follows. Section II consists of notations and background

materials. The algorithms are discussed in Section III. Section

IV discusses three applications of the proposed algorithm,

namely (1). Video deblurring (2). Video disparity refinement,

(3). Hot-air turbulence effects reduction. A concluding remark

is given in Section V.

II. BACKGROUND AND NOTATION

A. Notation

A video signal is represented by a three-dimensional func-

tion f(x, y, t), where (x, y) denotes the coordinate in space

and t denotes the coordinate in time. Suppose that each frame

of the video has M rows, N columns, and there are K frames,

then the discrete samples of f(x, y, t) for x = 0, . . . ,M − 1,

y = 0, . . . , N − 1, and t = 0, . . . ,K − 1 form a three-

dimensional tensor of size M ×N ×K .

For the purpose of discussing numerical algorithms, we use

matrices and vectors. To this end, we stack the entries of

f(x, y, t) into a column vector of size MNK × 1, according

to the lexicographic order. We use the bold letter f to represent

the vectorized version of the space-time volume f(x, y, t), i.e.,

f = vec(f(x, y, t)),

where vec(·) represents the vectorization operator.
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B. Three-dimensional Convolution

The three-dimensional convolution is a natural extension of

the conventional two-dimensional convolution. Given a space-

time volume f(x, y, t) and the point spread function h(x, y, t),
the convolved signal g(x, y, t) is given by g(x, y, t) =

f(x, y, t)∗h(x, y, t)
def
=

∑

u,v,τ h(u, v, τ)f(x−u, y−v, t−τ).
Convolution is a linear operation, so it can be expressed using

matrices. More precisely, we define the convolution matrix

associated with a blur kernel h(x, y, t) as the linear operator

that maps the signal f(x, y, t) to g(x, y, t) following the rule

Hf = vec(g(x, y, t)) = vec(h(x, y, t) ∗ f(x, y, t)). (6)

Assuming periodic boundaries [35], the convolution matrix H

is a triple block-circulant matrix - it has a block circulant

structure, and within each block there is a block-circulant-

with-circulant block (BCCB) submatrix. Circulant matrices are

diagonalizable using discrete Fourier Transform matrices [36],

[37]:

Fact 1: If H is a triple block-circulant matrix, then it can

be diagonalized by the three-dimensional DFT matrix F:

H = FHΛF,

where (·)H is the Hermitian operator, and Λ is a diagonal

matrix storing the eigenvalues of H.

C. Forward Difference Operators

We define an operator D be a collection of three sub-

operators D =
[

DT
x DT

y DT
t

]T
, where Dx, Dy and Dt

are the first-order forward finite difference operators along the

horizontal, vertical and temporal directions, respectively. The

definitions of each individual sub-operators are

Dxf = vec(f(x+ 1, y, t)− f(x, y, t)),

Dyf = vec(f(x, y + 1, t)− f(x, y, t)),

Dtf = vec(f(x, y, t+ 1)− f(x, y, t)),

with periodic boundary conditions.

In order to have greater flexibility in controlling the forward

difference along each direction, we introduce three scaling

factors as follows. We define the scalars βx, βy and βt and

multiply them with Dx, Dy and Dt, respectively so that

D =
[

βxD
T
x βyD

T
y βtD

T
t

]T
.

With (βx, βy, βt), the anisotropic total variation norm

‖f‖TV 1 and the isotropic total variation ‖f‖TV 2 are defined

according to Equations (4) and (5), respectively. When β x =
βy = 1 and βt = 0, ‖f‖TV 2 is the two-dimensional total

variation of f (in space). When βx = βy = 0 and βt = 1,

‖f‖TV 2 is the one-dimensional total variation of f (in time).

By adjusting βx, βy and βt, we can control the relative

emphasis put on individual terms Dxf , Dyf and Dtf .

Note that ‖f‖TV 1 is equivalent to the vector 1-norm on Df ,

i.e., ‖f‖TV 1 = ‖Df‖1. Therefore, for notation simplicity we

use ‖Df‖1 instead. For ‖f‖TV 2, although ‖f‖TV 2 �= ‖Df‖2

using the vector 2-norm definition, we still define ‖Df‖2
def
=

‖f‖TV 2 to align with the definition of ‖Df‖1. However, this

will be made clear if confusion arises.

III. PROPOSED ALGORITHM

The proposed algorithm belongs to the family of operator

splitting methods [10], [11], [27]. Therefore, instead of re-

peating the details, we focus on the modifications made to the

three-dimensional data structure. Additionally, our discussion

is focused on the anisotropic TV, i.e., ‖Df‖1. The isotropic

TV, ‖Df‖2 can be derived similarly.

A. TV/L2 Problem

The core optimization problem that we solve is the follow-

ing TV/L2 minimization:

minimize
f

µ
2 ‖Hf − g‖

2
+ ‖Df‖1 , (7)

where µ is a regularization parameter. To solve Problem (7),

we first introduce intermediate variables u and transform

Problem (7) into an equivalent problem

minimize
f ,u

µ
2 ‖Hf − g‖

2
+ ‖u‖1

subject to u = Df .
(8)

The augmented Lagrangian of Problem (8) is

L(f ,u,y) =
µ

2
‖Hf − g‖

2
+‖u‖1−yT (u−Df)+

ρr
2

‖u−Df‖
2
,

(9)

where ρr is a regularization parameter associated with the

quadratic penalty term ‖u−Df‖
2
, and y is the Lagrange

multiplier associated with the constraint u = Df . In Equation

(9), the intermediate variable u and the Lagrange multiplier y

can be partitioned as

u =
[

uT
x uT

y uT
t

]T
, and y =

[

yT
x yT

y yT
t

]T
,

(10)

respectively.

The idea of the augmented Lagrangian method is to find

a saddle point of L(f ,u,y), which is also the solution of

the original problem (7). To this end, we use the alternating

direction method (ADM) to solve the following sub-problems

iteratively:

fk+1 = argmin
f

µ

2
‖Hf − g‖

2
− yT

k (uk −Df) +
ρr
2

‖uk −Df‖
2
,

(11)

uk+1 = argmin
u

‖u‖1 − yT
k (u−Dfk+1) +

ρr
2

‖u−Dfk+1‖
2
,

(12)

yk+1 = yk − ρr(uk+1 −Dfk+1). (13)

We now investigate these sub-problems one by one.

1) f -subproblem: By dropping the indices k, solution of

Problem (11) is found by considering the normal equation

(µHTH+ ρrD
TD)f = µHTg+ ρrD

Tu−DTy. (14)

The convolution matrix H in Equation (14) is a triple

block-circulant matrix, and therefore by Fact 1, H can be

diagonalized using the 3D-DFT matrix. Hence, (14) has a

solution:

f = F−1

[

F [µHTg+ ρrD
Tu−DTy]

µ|F [H]|2 + ρr(|F [Dx]|2 + |F [Dy]|2 + |F [Dt]|2)

]

,

(15)
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Algorithm 1 Algorithm for TV/L2 minimization problem

Input data g and H.

Input parameters µ, βx, βy , βt.

Set parameters ρr (default = 2), α0 (default = 0.7).

Initialize f0 = g, u0 = Df0, y = 0, k = 0.

Compute the matrices F [Dx], F [Dy], F [Dt], F [H].
while not converge do

1. Solve the f -subproblem (11) using Equation (15).

2. Solve the u-subproblem (12) using Equation (16).

3. Update the Lagrange multiplier y using Equation (13).

4. Update ρr according to Equation (24).

5. Check convergence:

if ‖fk+1 − fk‖2/‖fk‖2 ≤ tol then

break

end if

end while

where F denotes the three-dimensional Fourier Transform

operator. The matrices F [Dx], F [Dy], F [Dt], F [H] can be

pre-calculated outside the main loop. Therefore, the complex-

ity of solving Equation (14) is in the order of O(n log n)
operations, which is the complexity of the three-dimensional

Fourier Transforms and n is the number of elements of the

space-time volume f(x, y, t).
2) u-subproblem: Problem (12) is known as the u-

subproblem, which can be solved using the shrinkage formula

[38]. Letting vx = βxDxf +
1
ρr
yx, (analogous definitions for

vy and vt), ux is given by

ux = max

{

|vx| −
1

ρr
, 0

}

· sign (vx) . (16)

Analogous solutions for uy and ut can also be derived.

In case of isotropic TV, the solution is given by [38]

ux = max

{

v −
1

ρr
, 0

}

·
vx

v
, (17)

where v =
√

|vx|2 + |vy |2 + |vt|2, and the multiplication and

divisions are component-wise operations.

3) Algorithm: Algorithm 1 shows the pseudo-code of the

TV/L2 algorithm.

B. TV/L1 Problem

TV/L1 problem can be solved by introducing two interme-

diate variables r and u, and modify Problem (3) as

minimize
f ,r,u

µ ‖r‖1 + ‖u‖1

subject to r = Hf − g

u = Df .

(18)

The augmented Lagrangian of (18) is given by

L(f , r,u,y, z) = µ ‖r‖1 + ‖u‖1 − zT (r − Hf + g) +
ρo

2 ‖r−Hf + g‖
2
− yT (u − Df) + ρr

2 ‖u−Df‖
2
. Here,

the variable y is the Lagrange multiplier associated with

constraint u = Df and the variable z is the Lagrange

multiplier associated with the constraint r = Hf − g.

Moreover, u and y can be partitioned as in Equation (10).

The parameters ρo and ρr are two regularization parameters.

The subscripts “o” and “r” stand for “objective”, and

“regularization”, respectively.

1) f -subproblem: The f -subproblem of TV/L1 is

minimize
f

ρo
2

‖r−Hf + g‖
2
+
ρr
2

‖u−Df‖
2
+zTHf+yTDf ,

(19)

which can be solved by considering the normal equation

(ρoH
TH+ρrD

TD)f = ρoH
Tg+HT (ρor−z)+DT (ρru−y),

yielding

f = F−1

[

F [ρoH
Tg +HT (ρor− z) +DT (ρru− y)]

ρo|F [H]|2 + ρr(|F [Dx]|2 + |F [Dy]|2 + |F [Dt]|2)

]

.

(20)

Algorithm 2 Algorithm for TV/L1 minimization problem

Input g, H and parameters µ, βx, βy , βt. Let k = 0.

Set parameters ρr (default = 2), ρo (default = 100), α0

(default = 0.7).

Initialize f0 = g, u0 = Df0, y0 = 0, r0 = Hf0−g, z0 = 0.

Compute the matrices F [Dx], F [Dy], F [Dt], F [H].
while not converge do

1. Solve the f -subproblem (19) using Equation (20).

2. Solve the u-subproblem (12) using Equation (16).

3. Solve the r-subproblem (21) using Equation (22).

4. Update y and z using Equation (23).

5. Update ρr and ρo according to Equation (24).

6. Check convergence:

if ‖fk+1 − fk‖2/‖fk‖2 ≤ tol then

break

end if

end while

2) u-subproblem: The u-subproblem of TV/L1 is the same

as that of TV/L2. Therefore, the solution is given by Equation

(16).

3) r-subproblem: The r-subproblem is

minimize
r

µ ‖r‖1 − zT r+
ρo
2

‖r−Hf + g‖
2
. (21)

Thus using the shrinkage formula, the solution is

r = max

{∣

∣

∣

∣

Hf − g +
1

ρo
z

∣

∣

∣

∣

−
µ

ρo
, 0

}

·sign

(

Hf − g+
1

ρo
z

)

.

(22)

4) Multiplier update: y and z are updated as

yk+1 = yk − ρr(uk+1 −Dfk+1),

zk+1 = zk − ρo(rk+1 −Hfk+1 + g). (23)

5) Algorithm: Algorithm 2 shows the pseudo-code of the

TV/L1 algorithm.

C. Parameters

In this subsection we discuss the choice of parameters.

1) Choosing µ: The regularization parameter µ trades off

the least-squares error and the total variation penalty. Large

values of µ tend to give sharper results, but noise will be

amplified. Small values of µ give less noisy results, but the

image may be smoothed. The choice of µ is not known
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Input µ = 102 µ = 103 µ∗ = 10352 µ = 105

Fig. 1. TV/L2 Image recovery using different choices µ. The optimal (in terms of PSNR compared to the reference) is µ = 10352. The image is blurred
by a Gaussian blur kernel of size 9× 9, σ = 5. Addition Gaussian noise is added to the image so that the blurred signal to noise ratio (BSNR) is 40dB.

Input µ = 0.01 µ = 1 µ∗ = 7 µ = 50

Fig. 2. TV/L1 Image recovery using different choices µ. The optimal (in terms of PSNR compared to the reference) is µ = 7. The image is blurred by a
Gaussian blur kernel of size 9× 9, σ = 1. 10% of the pixels are corrupted by salt and pepper noise. Image source: [39].

prior to solving the minimization. Recent advances in the

operator splitting methods consider constrained minimization

problems [11] so that µ can be replaced by an estimate of

the noise level (the noise estimation is performed using a

third party algorithm). However, from our experience, it is

often easier to choose µ than estimating the noise level, for

the noise characteristic of a video is never known exactly.

Empirically, a reasonable µ for a natural image (and video

sequence) typically lies in the range [103, 105]. Fig. 2 shows

the recovery results by using different values of µ. In case of

TV/L1 minimization, µ is typically lying in the range [0.1, 10].
2) Choosing ρr: One of the major differences between the

proposed algorithm and FTVd 4.0 [31] 1 is the update of ρr. In

[31], ρr is a fixed constant. However, as mentioned in [40], the

method of multipliers can exhibit a faster rate of convergence

by adapting the following parameter update scheme:

ρr =

{

γρr, if ‖uk+1 −Dfk+1‖2 ≥ α‖uk −Dfk‖2,

ρr, otherwise.

(24)

Here, the condition ‖uk+1 − Dfk+1‖2 ≥ αr‖uk − Dfk‖2
specifies the constraint violation with respect to a constant

αr. The intuition is that the quadratic penalty ρ
2‖u − Df‖2

is a convex surface added to the original objective function

µ‖Hf − g‖2 + ‖u‖1 so that the problem is guaranteed to

be strongly convex [29]. Ideally, the residue ρr

2 ‖uk −Dfk‖
2

should decrease as k increases. However, if
ρr

2 ‖uk−Dfk‖
2 is

not decreasing for some reasons, one can increase the weight

of the penalty ρr

2 ‖u −Df‖2 relative to the objective so that
ρr

2 ‖u−Df‖2 is forced to be reduced. Therefore, given α and

γ where 0 < α < 1 and γ > 1, Equation (24) makes sure

that the constraint violation is decreasing asymptotically. In

the steady state as k → ∞, ρr becomes a constant [41]. The

update for ρo in TV/L1 follows a similar approach.

1The most significant difference is that FTVd 4.0 supports only images
whereas the proposed algorithm supports videos.
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Fig. 3. Convergence profile of the proposed algorithm for deblurring the
image “cameraman.tif”. The four colored curves show the rate of convergence
using different values of γ, where γ is the multiplication factor for updating
ρr .

The initial value of ρr is chosen to be within the range

of [2, 10]. This value cannot be large (in the order of 100),

because the role of the quadratic surface ‖u − Df‖2 is to

perturb the original objective function so that it becomes

strongly convex. If the initial value of ρr is too large, the

solution of the original problem may not be found. However,

ρr cannot be too small either, for otherwise the effect of the

quadratic surface ‖u−Df‖2 becomes negligible. Empirically,

we find that ρr = 2 is robust to most restoration problems.

D. Convergence

Fig. 3 illustrates the convergence profile of the TV/L2

algorithm in a typical image recovery problem. In this test,

the image “cameraman.tif” (size 256 × 256, gray-scaled) is

blurred by a Gaussian blur kernel of size 9 × 9 and σ = 1.

Gaussian noise is added so that the blurred signal to noise
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TABLE I
SENSITIVITY ANALYSIS OF PARAMETERS. MAXIMUM AND MINIMUM PSNR (dB) FOR A RANGE OF ρr , γ AND α. IF A PARAMETER IS NOT THE

VARIABLE, IT IS FIXED AT THE DEFAULT VALUES: ρr = 2, γ = 2, α = 0.7.

Image no.
1.5 ≤ ρr ≤ 10 1 ≤ γ ≤ 5 0.5 ≤ α ≤ 0.9

Max Min Difference Max Min Difference Max Min Difference

1 28.6468 28.8188 0.1719 28.6271 28.7931 0.1661 28.5860 28.8461 0.2601

2 31.3301 31.4858 0.1556 31.7720 32.0908 0.3188 31.0785 31.5004 0.4219

3 31.7009 31.9253 0.2244 31.9872 32.0847 0.0976 31.7238 31.9833 0.2596

4 33.6080 33.8427 0.2346 33.9994 34.0444 0.0450 34.1944 34.6197 0.4252

5 36.2843 36.5184 0.2341 36.1729 36.3173 0.1444 35.9405 36.7737 0.8332

6 32.0193 32.3859 0.3666 32.2805 32.4795 0.1990 31.9998 32.4207 0.4208

7 29.2861 29.7968 0.5107 29.5890 29.7408 0.1518 29.8872 30.1685 0.2813

8 30.0598 30.4347 0.3749 29.6344 29.9748 0.3404 29.4519 29.7627 0.3108

9 34.4951 34.7675 0.2724 34.5234 34.7378 0.2144 34.3567 34.9726 0.6159

10 29.5555 30.1231 0.5676 29.3502 29.5715 0.2213 29.4009 29.6558 0.2549

11 28.6291 29.1908 0.5617 28.6711 28.9846 0.3135 28.7760 29.0099 0.2340

12 31.6657 31.7473 0.0815 31.2254 31.3172 0.0918 31.3596 31.5423 0.1827

13 35.5306 35.9015 0.3710 35.4584 35.7442 0.2858 36.0163 36.2163 0.2000

14 36.8008 36.9204 0.1196 37.1039 37.1956 0.0917 36.6822 37.1470 0.4648

15 32.0469 32.0969 0.0501 32.4076 32.5918 0.1843 32.0101 32.5421 0.5320

16 31.5836 31.6572 0.0736 31.5975 31.9582 0.3607 31.3778 31.6027 0.2249

17 32.2500 32.6248 0.3748 32.8744 33.0967 0.2223 32.5141 32.8665 0.3524

18 32.6311 33.0377 0.4066 32.2999 32.5472 0.2473 32.9494 33.1908 0.2414

19 28.4927 29.1870 0.6943 28.6654 28.8488 0.1834 28.7902 29.0220 0.2318

20 30.2615 30.6387 0.3771 30.3235 30.6007 0.2772 30.3351 30.7206 0.3855

TABLE II
COMPARISONS BETWEEN OPERATOR SPLITTING METHODS FOR TV/L2 MINIMIZATION

FTVd 4.0 (2009) [31]

Fast-TV (2008) [26] FTVd 3.0 (2008) [10] Split Bregman (2008) [42] Proposed

Constrained TV (2010) [11]

Principle Half quadratic penalty Half quadratic penalty Operator Splitting Operator Splitting

Domain Gray-scale image Gray-scale image Gray-scale image Gray-scale image

Color image Color image Color image

Video

Regularization Spatial TV Spatial TV Spatial TV Spatial-Temporal TV

Penalty Parameter ρr → ∞ ρr → ∞ constant ρr Update ρr based on

constraint violation

Speed 3 83.39 sec 7.86 sec 2.94 sec 1.79 sec

ratio (BSNR) is 40dB. To visualize the effects of the parameter

update scheme, we set the initial value of ρr to be ρr = 2, and

let α = 0.7. Referring to Equation (24), ρr is increased by a

factor of γ if the condition is satisfied. Note that [31](FTVd

4.0) is a special case when γ = 1, whereas the proposed

algorithm allows the user to vary γ.

In Fig. 3, the y-axis is the objective value µ
2 ‖Hfk − g‖2 +

‖fk‖TV 2 for the k-th iteration, and the x-axis is the iteration

number k. As shown in the figure, an appropriate choice of γ
improves the rate of convergence significantly. However, if γ
is too large, the algorithm is not converging to the solution.

Empirically, we find that γ = 2 is robust to most of the image

and video problems.

E. Sensitivity Analysis

Table I illustrates the sensitivity of the algorithm to the

parameters ρr, γ and α. In this test, twenty images are blurred

by a Gaussian blur kernel of size 9× 9 with variance σ = 1.

The blurred signal to noise ratio (BSNR) is 30dB. For each

image, two of the three parameters (ρr, γ and α) are fixed

at their default values ρr = 2, γ = 2, α = 0.7, whereas one

of them are varying within the range specified in Table I. The

stopping criteria of the algorithm is ‖fk+1−fk‖2/‖fk‖ ≤ 10−3,

µ = 10000 and (βx, βy, βt) = (1, 1, 0) for all images.

The maximum PSNR, minimum PSNR and the difference are

reported in Table I. Referring to the values, it can be calculated

that the average maximum-to-minimum PSNR differences

among all twenty images for ρr, γ and α are 0.311dB,

0.208dB and 0.357dB respectively. For an average PSNR

difference in the order of 0.3dB, the perceivable difference

is small 2.

F. Comparison with Existing Operator Splitting Methods

The proposed algorithm belongs to the class of operator

splitting methods. Table II summarizes the differences between

the proposed method and some existing methods 3.

IV. APPLICATIONS

In this section we demonstrate three applications of

the proposed algorithm, namely (1) video deblurring, (2)

video disparity refinement, and (3) restore videos distorted

2It should be noted that the optimization problem is identical for all
parameter settings. Therefore, the correlation between the PSNR and visual
quality is high.

3The speed comparison is based on deblurring “lena.bmp” (512×512, gray
scaled), which is blurred by a Gaussian blur kernel of size 9×9, σ = 5, BSNR
= 40dB. The machine used is Intel Qual Core 2.8GHz, 4GB RAM, Windows
7/ MATLAB 2010. Comparisons between FTVd 4.0 and the proposed method
are based on ρr = 2. If ρr = 10 (default setting of FTVd 4.0), then the
run time are 1.56 sec and 1.28 sec for FTVd 4.0 and the proposed method,
respectively.
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by hot-air turbulence. Due to limited space, more re-

sults are available at http://videoprocessing.ucsd.

edu/˜stanleychan/deconvtv.

A. Video Deblurring

1) Spatially Invariant Blur: We first consider the class of

spatially invariant blur. In this problem, the t-th observed

image g(x, y, t) is related to the true image f(x, y, t) as

g(x, y, t) = h(x, y) ∗ f(x, y, t) + η(x, y, t).

Note that the spatially invariant blur kernel h(x, y) is assumed

to be identical for all time t.
The typical method to solve a spatially invariant blur is to

consider the model

gk = Hfk + η,

and apply a frame-by-frame approach to recover f k individu-

ally. In [21], the authors considered the following minimization

minimize
fk

‖Hfk−gk‖
2+λS

∑

i

‖Difk‖1+λT ‖fk−Mk f̂k−1‖
2,

where f̂k−1 is the solution of the k − 1-th frame and Mk is

the motion compensation operator that maps the coordinates

of fk−1 to the coordinates of fk. The operators Di are the

spatial forward finite difference operators oriented at angles 0 ◦,

45◦, 90◦ and 135◦. The regularization parameters λS and λT

control the relative emphasis put on the spatial and temporal

smoothness.

Another method to solve the spatially invariant blur problem

is to apply the multichannel approach by modeling the imaging

process as [19], [20]

gi = HMi,kfk + η,

for i = k −m, . . . , k, . . . , k +m, where m is the size of the

temporal window (typically ranged from 1 to 3). M i,k is the

motion compensation operator that maps the coordinates of f k
to the coordinates of gi. The k-th frame can be recovered by

solving the following minimization [19]

minimize
fk

k+m
∑

i=k−m

ai‖HMi,kfk − gi‖
2 + λ‖fk‖TV 2, (25)

where ai is a constant and ‖fk‖TV 2 is the isotropic total

variation on the k-th frame. The method presented in [20]

replaces the objective function by a weighted least-squares

and the isotropic total variation regularization function by a

weighted total variation. The weights are adaptively updated

in each iteration.

A drawback of these methods is that the image recovery

result depends heavily on the accuracy of motion estimation

and compensation. Especially in occlusion areas, the assump-

tion that Mi,k is a one-to-one mapping [43] fails to hold.

Thus, Mi,k is not a full rank matrix and MT
i,kMi,k �= I. As

a result, minimizing ‖HMi,kfk − gi‖
2 can lead to serious

error. There are methods to reduce the error caused by rank

deficiency of Mi,k, for example the concept of unobservable

pixel introduced in [19], but the restoration result depends on

the effectiveness of how the unobservable pixels are selected.

Another drawback of these methods is the computation

time. For spatially invariant blur, the blur operator H is a

block circulant matrix. However, in the multichannel model,

the operator HMi,k is not a block circulant matrix. The

block-circulant property is a critical factor to speed as it

allows Fourier Transform methods. For methods in [19], [20],

conjugate gradient (CG)is used to solve the minimization task.

While the total number of CG iterations may be few, the per

iteration run time can be long.

Table III illustrates the differences between various video

restoration methods.

TABLE IV
PSNR, ES AND ET VALUES FOR FOUR VIDEO SEQUENCES BLURRED BY

GAUSSIAN BLUR KERNEL 9× 9, σ = 1, BSNR = 30dB.

“Foreman” “Salesman” “Mother” “News”

Blurred 28.6197 29.9176 32.5705 28.1106
[24] 31.6675 33.0171 36.1493 34.0113

PSNR [19] 32.5500 33.8408 38.2164 34.1207
(dB) [21] 33.2154 33.8618 39.6991 34.7133

Proposed 33.7864 34.7368 40.0745 35.8813

[24] 1.2067 1.1706 0.82665 1.3764
ES [19] 1.1018 1.0743 0.71751 1.2146

(×104) [21] 1.0076 0.9934 0.61544 1.123
Proposed 1.0930 1.0105 0.61412 1.1001

[24] 10.954 3.3195 3.7494 4.6484
ET [19] 10.827 2.4168 2.9397 3.7503

(×103) [21] 10.202 2.5471 2.7793 3.3623
Proposed 9.3400 1.9948 2.0511 2.6165

Our approach to solve spatially invariant blur problem

shares the same insight as [24] which does not con-

sider motion compensation. The temporal error is han-

dled by the spatio-temporal total variation ‖Df‖2 =
∑

i

√

|[Dxf ]i|2 + |[Dyf ]i|2 + |[Dtf ]i|2. An intuition to this

approach is that the temporal difference fk − fk−1 can be

classified as temporal edge and temporal noise. The temporal

edge is the intensity change caused by object movements,

whereas the temporal noise is the artifact generated in the

minimization process. Similar to the spatial total variation,

the temporal total variation preserves the temporal edges while

reducing the temporal noise. Moreover, the space-time volume

preserves the block circulant structure of the operator, thus

leading to significantly faster computation.

Table IV and Fig. 4 show the comparisons between [24],

[19], [21] and the proposed method on spatially invariant blur.

The four testing video sequences are blurred by a Gaussian

blur kernel of size 9× 9 with σ = 1. Additive Gaussian noise

are added so that the blurred signal to noise ratio (BSNR) is

30dB.

The specific settings of the methods are as follows. For [24],

we consider the minimization

minimize
f

µ‖Hf−g‖2+β2
x‖Dxf‖

2+β2
y‖Dyf‖

2+β2
t ‖Dtf‖

2

and set the parameters empirically for the best recovery

quality: µ = 200, (βx, βy, βt) = (1, 1, 1.25). For [19], instead

of using the CG presented in the paper, we use a modification

of the proposed augmented Lagrangian method to speed up

the computation. Specifically, in solving the f -subproblem we

used conjugate gradient (LSQR [44]) to accommodate the

non-block-circulant operator HM i,k. The motion estimation is



8

TABLE III
COMPARISONS BETWEEN VIDEO RESTORATION METHODS

Belekos 2010 [20] Ng 2007 [19] Chan 2011 [21] Shechtman 2005 [24] Proposed

Class of problem super-resolution super-resolution deblurring super-resolution deblurring

Approach frame-by-frame frame-by-frame frame-by-frame space-time volume space-time volume

Spatial Consistency
∑

i
wi

√

[Dxf ]2i + [Dyf ]2i
∑

i

√

[Dxf ]2i + [Dyf ]2i
∑

i
‖Dif‖1 ‖Dxf‖

2 + ‖Dyf‖
2 ‖f‖TV 2 , Equation (5)

Temporal Consistency weighted ‖HMi,kfk − gi‖
2 ‖HMi,kfk − gi‖

2 ‖fk − Mk f̂k−1‖
2 ‖Dtf‖

2 ‖f‖TV 2 , Equation (5)

Motion Compensation Required Required Required Not Required Not Required

Handle of Motion Blur spatially variant operator spatially variant operator spatially variant operator 3D-FFT 3D-FFT

Objective Function weighted least-squares TV/L2 TV/L2 + quadratic penalty Tikhonov TV/L2 or TV/L1

Solver Conjugate gradient Conjugate gradient Sub-gradient Projection Closed-form Closed-form + Shrinkage

Original Blurred 28.06 dB

[24] 33.85 dB [19] 33.81 dB

[21] 34.39 dB Proposed, 35.68 dB

Fig. 4. “News” sequence, frame no. 100. (a) Original image (cropped for
better visualization). (b) Blurred by a Gaussian blur kernel of size 9 × 9,
σ = 1, BSNR = 30dB. (c)-(f) Results by various methods. (Table IV).

performed using the benchmark full search (exhaustive search)

with 0.5 pixel accuracy. The block size is 8 × 8 and the

search range is 16×16. Motion compensation is performed by

coordinate transform according to the motion vectors (bilinear

interpolation for half pixels). The threshold for unobservable

pixels [19] is set as 6 (out of 255), and the regularization

parameter is λ = 0.001 (See Equation (25)). We use the

previous and the next frame for the model, i.e. m = 1 and let

(ak−1, ak, ak+1) = (0.5, 1, 0.5) (Using (1, 1, 1) tends to give

Original Blurred 29.91 dB

[24] 34.02 dB [19] 33.87 dB

[21] 33.88 dB Proposed, 34.74 dB

Fig. 5. “Salesman” sequence, frame no. 10. (a) Original image (cropped
for better visualization). (b) Blurred by a Gaussian blur kernel of size 9× 9,
σ = 1, BSNR = 30dB. (c)-(f) Results by various methods. (Table IV).

worse results). For [21], the regularization parameters are also

chosen empirically for the best recovery quality: λS = 0.001
and λT = 0.05.

To compare to these methods, we apply TV/L2 (Algorithm

1) with the following parameters (same for all four videos):

µ = 2000, (βx, βy, βt) = (1, 1, 1). All other parameters take

the default setting: α = 0.7, γ = 2, ρr = 2. The algorithm

terminates if ‖fk − fk−1‖/‖fk−1‖ ≤ 10−3.

In Table IV, three quantities are used to evaluate the
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Fig. 6. “Market Place” sequence, frame no. 146. Top: The original observed
video sequences. Middle: Result of [24]. Bottom: Result of the proposed
method.

performance of the algorithms. Peak signal to noise ratio

(PSNR) measures the image fidelity. The spatial total variation

ES is defined as ES =
∑

i

√

|[Dxf ]i|2 + |[Dyf ]i|2 for each

frame and the temporal total variation ET is defined as

ET =
∑

i |[Dtf ]i| for each frame [21]. The average (over

all frames) PSNR, ES and ET are listed in Table IV.

Referring to the results, it can be seen that the proposed

algorithm produces the highest PSNR values while keeping

ES and ET at a low level. It is worth noting that [24]

is equivalent to the three-dimensional Wiener deconvolution

(regularized). Therefore, there exists a closed form solution but

the result looks more blurry than the other methods. Among

the four methods, both [19] and [21] use motion estimation

and compensation. However, [19] is more sensitive to the

motion estimation error - motion estimation error in some

fast moving areas are amplified in the deblurring step. [21] is

more robust to motion estimation error, but the computation

time is significantly longer than the proposed method. The

run time of [19] and [21] are approximately 100 seconds per

frame (per color channel) whereas the proposed algorithm

only requires approximately 2 seconds per frame (per color

channel). These statistics are based on recovering videos of

size 288 × 352, using a PC with Intel Qual Core 2.8 GHz,

4GB RAM, Windows 7/ MATLAB 2010.

2) Spatially Variant Motion Blur: The proposed algorithm

can be used to remove spatially-variant motion blur. How-

ever, since motion blurred videos often have low temporal

resolution, frame rate up conversion algorithms are needed

to first increase the temporal resolution before applying the

proposed method (See [24] for detailed explanations). To this

end, we apply [45] to upsample the video by a factor of 8.

Fig. 7. “Super Loop” sequence, frame no. 28. Top: The original observed
video sequences. Middle: Result of [24]. Bottom: Result of the proposed
method.

Consequently, the motion blur kernel can be modeled as

h(x, y, t) =

{

1/T, if x = y = 0, and 0 ≤ t ≤ T,

0, otherwise,

where T = 8 in this case.

Fig. 6 shows frame no. 146 of the video sequence “Market

Place”, and Fig. 7 shows frame no. 28 of the video sequence

“Super Loop”. The videos are captured by a Panasonic TM-

700 video recorder with resolution 1920×1080p at 60 fps. For

computational speed we down sampled the spatial resolution

by a factor of 4 (so the resolution is 480×270). The parameters

of the proposed algorithm are chosen empirically as µ = 1000,

(βx, βy, βt) = [1, 1, 5]. There are not many relevant video

motion deblurring algorithms for comparison (or unavailable

to be tested). Therefore, we are only able to show the results

of [24], using parameters µ = 1000, (βx, βy, βt) = [1, 1, 2.5].

As shown in Fig. 6 and Fig. 7, the proposed algorithm

produces a significantly higher quality result than [24]. We

also tested a range of parameters µ and β’s for [24]. However,

we observe that the results are either over-sharpened (serious

ringing artifacts), or under-sharpened (not enough deblurring).

3) Limitation: The proposed algorithm requires consid-

erably less memory than other total variation minimization

algorithms such as interior point methods. However, for high

definition (HD) videos, the proposed algorithm still has mem-

ory issue as the size of the space-time volume is large. While

one can use fewer frames to lower the memory demand, trade

off in the recovery quality should be expected.

Another bottleneck of the proposed algorithm is the sensi-

tivity to the frame-rate conversion algorithm. At object bound-
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aries where the motion estimation algorithm fails to provide

accurate estimates, the estimation error in the deblurring step

will be amplified. This happens typically to areas with non-

uniform and rapid motion.

B. Video Disparity Refinement

1) Problem Description: Our second example is disparity

map refinement. Disparity is proportional to the reciprocal of

the distance between the camera and the object (i.e., depth).

Disparity maps are useful for many stereo video processing

applications, including object detection in three-dimensional

space, saliency for stereo videos, stereo coding and view

synthesis etc.

There are numerous papers on generating one disparity map

based on a pair of stereo images [46]. However, all of these

methods cannot be extended to videos because the energy

functions are considered in a frame-by-frame basis. Although

there are works in enforcing temporal consistency for adjacent

frames, such as [47] and [48], the computational complexity

is high.

We propose to estimate the video disparity in two steps.

In the first step, we combine the locally adaptive support

weight [49] and the dual cross bilateral grid [50] to generate

an initial disparity estimate. Since this method is a frame-by-

frame method, spatial and temporal consistency is poor. In the

second step, we consider the initial video disparity as a space-

time volume and solve the TV/L1 minimization problem

minimize
f

µ‖f − g‖1 + ‖Df‖2.
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Fig. 8. Top: Before applying the proposed TV/L1 algorithm; Middle: After
applying the proposed TV/L1 algorithm. Bottom: Trace of a pixel along the
time axis.

There are two reasons for choosing TV/L1 instead of TV/L2

in refining video disparity. First, disparity is a piece-wise

constant function with quantized levels, and across the flat

regions there are sharp edges. As shown in Fig. 8 (bottom),

the estimation error behaves like outliers in a smooth function.

Therefore, to reduce the estimation error, one can consider a

robust curve fitting as it preserves the shape of the data while

suppressing the outliers.

The second reason for using TV/L1 is that the one-norm

‖f − g‖1 is related to the notion of percentage of bad pixels,

a quantity commonly used to evaluate disparity estimation

algorithms [46]. Given a ground truth disparity f ∗, the number

of bad pixels of an estimated disparity f is the cardinality of

the set {i| |[f − f∗]i| > τ} for some threshold τ . In the

absence of ground truth, the same idea can be used with a

reference disparity (e.g., g). In this case, the cardinality of the

set Ωτ = {i| |[f−g]i| > τ}, denoted by |Ωτ |, is the number of

bad pixels of f with respect to (w.r.t) g. Therefore, minimizing

|Ωτ | is equivalent to minimizing the number of bad pixels of f

w.r.t. g. However, this problem is non-convex and is NP-hard.

In order to alleviate the computational difficulty, we set τ = 0
so that |Ωτ | = ‖f −g‖0, and convexify ‖f −g‖0 by ‖f −g‖1.

Therefore, ‖f − g‖1 can be regarded as the convexification of

the notion of percentage bad pixels.

(a) “Old Timers” Sequence.

(b) “Horse” Sequence.

Fig. 9. Video disparity estimation. First row: Left view of the stereo
video. Second row: Initial disparity estimate. Third row: Refinement using
the proposed method with parameters µ = 0.75, (βx, βy, βt) = (1, 1, 2.5),
α = 0.7, ρr = 2, ρo = 100, γ = 2. Last row: Zoom-in comparisons.

2) Video Results: Two real videos (“Horse” and “Old

Timers”) are tested for the proposed algorithm. These stereo
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Fig. 10. Percentage error reduction (in terms of number of bad pixels) by applying the proposed algorithm to all 99 methods on the Middlebury stereo
database.

videos are downloaded from http://sp.cs.tut.fi/mobile3dtv/

stereo-video/. Fig. 9 illustrates the results. The first row of

Fig. 9 shows the left view of the stereo video. The second row

shows the results of applying [49], [50] to the stereo video.

Note that we are implementing a spatio-temporal version of

[50], which uses adjacent frames to enhance the temporal

consistency. However, the estimated disparity is still noisy,

especially around the object boundaries. The third row shows

the result of applying the proposed TV/L1 minimization to the

initial disparity estimated in the second row. It should be noted

that the proposed TV/L1 minimization improves not only the

flat interior region, but also the object boundary (e.g. the arm

of the man in “Old Timers” sequence), an area that [49], [50]

are unable to handle.

3) Image Results: The effectiveness of the proposed algo-

rithm can further be elaborated by comparing to the 99 bench-

mark methods on Middlebury stereo evaluation website [46].

For all 99 methods on Middlebury stereo evaluation website,

we download their results and apply the proposed algorithm

to improve the spatial smoothness. Note that the proposed

algorithm is readily for this test because an image is a single

frame video. In this case, we set (βx, βy, βt) = (1, 1, 0). Fig.

11 shows two of the 99 results (randomly chosen) for the

dataset “Tsukuba”, and Fig. 10 shows the percentage of error

reduction (in terms of number of bad pixels, with threshold

1) by applying the proposed algorithm to all methods on the

Middlebury database. The higher bars in the plots indicate that

the proposed algorithm reduces the error by a greater amount.

It can be observed that the errors are typically reduced by a

large margin of over 10%. While there is less error reduction

for some datasets, it is important to note that error reduction is

always non-negative. In other words, the proposed algorithm

always improves the initial disparity estimate. Furthermore, for

every single algorithm, we provide improvement in at least one

of the image sets.

Algorithm no. 8 Algorithm no. 78

Fig. 11. Image disparity refinement on algorithms no. 8 and 78 (randomly
chosen) from Middlebury for “Tsukuba”. Red box: Before applying the pro-
posed method; Blue box: After applying the proposed method. µ ∈ [0.1, 1]
is found exhaustively with increment 0.1, (βx, βy, βt) = (1, 1, 0), α = 0.7,
ρr = 2, ρo = 100, γ = 2.

4) Limitations: A limitation of the proposed algorithm is

that it is unable to handle large and consistent error results

from poor initial disparity estimation algorithm. This happens

especially in large occlusion areas, repeating texture regions,
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or frames consisting of rapid motions. We are currently

seeking methods to feedback the TV/L1 result to the initial

disparity estimation so that the algorithm are more robust to

these errors.

C. Videos Distorted by Hot-Air Turbulence

1) Problem Description: Our third example is the stabiliza-

tion of videos distorted by hot-air turbulence effects. In the

presence of hot-air turbulence, the refractive index along the

transmission path of the light ray is spatially and temporally

varying [51]. Consequently, the path differences and hence

the phases of the light rays are also spatially and temporally

varying. As a result, the observed image is distorted by

geometric warping, motion blur and sometimes out-of-focus

blur. This type of distortion is generally known as the hot-air

turbulence effect.

There are various methods to overcome imaging through

hot-air turbulence. For example, the speckle imaging technique

[51] assumes that the refractive index is changing randomly

but is also statistically stationary [52], [53]. Consequently, by

averaging enough number of frames, the geometric distortion

will be smoothed out. Then a deconvolution algorithm can be

used to remove the blur.

The drawback of the speckle imaging technique is that

the average operation makes the deblurring process challeng-

ing. Therefore, Zhu and Milanfar [54], Shimizu et. al. [55]

proposed to first compensate the geometric distortion using

non-rigid registration [56], and then deblur the images using

deconvolution algorithms. The limitation is that non-rigid

registration works well only when the geometric distortion can

be adjusted by all the control points in the grid [56]. How-

ever, imaging through hot-air turbulence contains both large

area distortion (perceived as waving) and small disturbance

(perceived as jittering). If non-rigid registration has to be used

to compensate small disturbance, then the number of control

points will be huge, making the computation not possible.

There are other methods such as lucky frame/ region fusion

approach [57], [58]. However, these methods cannot handle

small disturbance effectively either.

Using the same methodology as we used for video de-

blurring, we consider the video as a space-time volume and

minimize the TV/L2 problem. Our intuition is that the small

hot-air turbulence can be regarded as temporal noise whereas

the object movement is regarded as temporal edge. Under this

framework, spatially invariant blur can also be incorporated. If

the input video originally has a low contrast, a preprocessing

step using gray level grouping (GLG) [59], [60] can be used

(See Fig. 12).

2) Experiments: Fig. 13 shows the snapshots (zoom-in) of

a video sequence “Acoustic Explorer”. In this example, gray

level grouping is applied to the input videos so that contrast is

enhanced. Then the proposed algorithm is used to reduce the

hot-air turbulence effect. A Gaussian blur kernel is assumed in

both examples, where the variance is determined empirically.

Comparing the video quality before and after applying the

proposed method, fewer jittering like artifacts are observed

in the processed videos. While this may not be apparent by

(a) input (b) step 1 [59], [60] (c) step 2: our method.

Fig. 12. Hot-air turbulence removal for the sequence “Acoustic Explorer” -
using the proposed method to reduce the effect of hot-air turbulence. (a) A
frame of the original video sequence. (b) Step 1: Apply gray level grouping
[59], [60] to the input. (c) Step 2: Apply the proposed method to the results
of Step 1.

viewing the still images, the improvement is significant in the

24fps videos 4.

Fig. 14 shows the comparisons without the contrast en-

hancement by GLG. Referring to the figures, the proposed

algorithm does not only reduce the unstable hot-air turbulence

effects, it also improves the blur. The word “Empire State”

could not be seen clearly in the input sequence, but becomes

sharper in the processed sequence.

Fig. 13. Zoom-in of “Acoustic Explorer” sequence frame no. 25-28 (object
is 2 miles from camera). Top: input video sequence with contrast enhanced by
gray level grouping (GLG). Bottom: Processed video by applying the proposed
method to the output of GLG.

Fig. 14. Snapshot of “Empire State” sequence. Left: input video sequence
without GLG. Right: Processed video by applying GLG and the proposed
method.

3) Limitation: The experiments above indicates that the

proposed algorithm is effective for reducing small hot-air tur-

bulence effects. However, for large area geometric distortions,

non-rigid registration is needed. In addition, the general turbu-

lence distortion is spatially and temporally varying, meaning

that the point spread function cannot be modeled as one

Gaussian function. This issue is an open problem.

4Videos are available at http://videoprocessing.ucsd.edu/∼stanleychan/
deconvtv
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V. CONCLUSION

In this paper, we propose a video deblurring/ denoising

algorithm which minimizes a total variation optimization prob-

lem for spatial-temporal data. The algorithm transforms the

original unconstrained problem to an equivalent constrained

problem, and uses an augmented Lagrangian method to solve

the constrained problem. With the introduction of spatial

and temporal regularization to the spatial-temporal data, the

solution of the algorithm is both spatially and temporally

consistent.

Applications of the algorithm include video deblurring,

disparity refinement and turbulence removal. For video de-

blurring, the proposed algorithm restores motion-blurred video

sequences. The average PSNR is improved, and the spatial

and temporal total variation are maintained at an appropriate

level, meaning that the restored videos are spatially and tem-

porally consistent. For disparity map refinement, the algorithm

removes flickering in the disparity map, and preserves the

sharp edges in the disparity map. For turbulence removal, the

proposed algorithm stabilizes and deblurs videos taken under

the influence of hot air turbulence.
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