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AN AUGMENTED MIXED-PRIMAL FINITE ELEMENT METHOD

FOR A COUPLED FLOW-TRANSPORT PROBLEM ∗

Mario Alvarez1,2, Gabriel N. Gatica2 and Ricardo Ruiz–Baier3

Abstract. In this paper we analyze the coupling of a scalar nonlinear convection-diffusion problem
with the Stokes equations where the viscosity depends on the distribution of the solution to the trans-
port problem. An augmented variational approach for the fluid flow coupled with a primal formulation
for the transport model is proposed. The resulting Galerkin scheme yields an augmented mixed-primal
finite element method employing Raviart−Thomas spaces of order k for the Cauchy stress, and contin-
uous piecewise polynomials of degree ≤ k +1 for the velocity and also for the scalar field. The classical
Schauder and Brouwer fixed point theorems are utilized to establish existence of solution of the con-
tinuous and discrete formulations, respectively. In turn, suitable estimates arising from the connection
between a regularity assumption and the Sobolev embedding and Rellich−Kondrachov compactness
theorems, are also employed in the continuous analysis. Then, sufficiently small data allow us to prove
uniqueness and to derive optimal a priori error estimates. Finally, we report a few numerical tests
confirming the predicted rates of convergence, and illustrating the performance of a linearized method
based on Newton−Raphson iterations; and we apply the proposed framework in the simulation of
thermal convection and sedimentation-consolidation processes.
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1. Introduction

We are interested in studying mixed finite element approximations to simulate the transport of a species den-
sity in an immiscible fluid. Depending on the nature of the species, this problem can be relevant to a number
of practical engineering applications including natural and thermal convection, aluminum production, chemical
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National Science Foundation through the research grant SNSF PP00P2-144922.
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distillation processes, formation of fog, impedance tomography, motion of bio-membranes, semiconductors, gran-
ular flows, and so on. In this paper we pay particular attention to the steady state regime in the phenomenon
of sedimentation-consolidation of particles (see e.g. [6,7,30]), where the sought physical quantities in the model
include the velocity of the flow and the local solids concentration. On the other hand, it is well known that
other variables, such as the principal components of the fluid or solids stress tensors, are of great interest in
this context (see e.g. [8], Chap. 3). In a more general sense, the need of obtaining accurate approximations
of additional fields has motivated the successful derivation of a wide range of formulations in the framework
of Stokes and Navier−Stokes equations, including for instance, stress-velocity formulations (see [9, 16, 20, 25]
and the references therein). They feature the clear advantage (with respect to classical velocity-pressure for-
mulations) that these auxiliary quantities of interest are computed directly, without resorting to any kind of
post-process of the velocity field by numerical differentiation, which usually yields an important loss in accuracy.
The attached difficulties are that the finite dimensional spaces involved in the resulting discrete formulation
must be properly selected in order to satisfy the corresponding inf-sup condition [5], and that approximation of
stresses may become quite expensive if adequate finite elements are not used.

Now, concerning the problem we are interested in here, we realize that, in order to be able to analyze the
solvability of a mixed formulation for the fluid flow coupled with a primal method for the transport model,
we require H1(Ω) smoothness for the components of both the fluid velocity and its discrete approximation.
However, since the usual mixed approach is only able to guarantee that they live in L2(Ω), in this paper we
follow [18] (see also [17,20]) and propose an augmented mixed scheme in which the stress stays in its original space
H(div; Ω), but the velocity components lie now in the smaller space H1(Ω). In other words, the original problem
is reformulated as an augmented variational approach for the fluid flow coupled with a primal formulation for
the transport model, which constitutes one of the key ideas of this work. According to the above, we will
approximate each row of the fluid Cauchy stress tensor with Raviart−Thomas elements of order k, whereas the
velocity and scalar field (which will represent a solids concentration, or temperature, depending on the specific
application) will be approximated with continuous piecewise polynomials of degree ≤ k + 1. The existence
of solution of the continuous and associated Galerkin schemes is established by a combination of a suitable
regularity assumption, fixed point arguments, the well-know Lax−Milgram theorem, and a classical result
on bijective monotone operators. In addition, the Sobolev embedding and Rellich−Kondrachov compactness
theorems are also essential in the continuous analysis. Furthermore, the assumption of sufficiently small data
allows us to conclude uniqueness of solution and to derive optimal a priori error estimates. The extension of the
above described general approach to the more realistic case of steady sedimentation-consolidation systems is
under development in [2]. In addition, the incorporation of a similar augmented formulation, and the consequent
application of basically the same fixed point theorems employed here, will appear in the forthcoming work [12]
where a mixed-primal formulation for the stationary Boussinesq problem is introduced and analyzed.

Outline

We have organized the contents of this paper as follows. The remainder of this section introduces some standard
notation and functional spaces. In Section 2 we first describe the boundary value problem of interest and then
slightly simplify it by eliminating the pressure unknown in the fluid. Next, in Section 3, we introduce and analyze
the continuous formulation, which is defined by an augmented mixed approach for the fluid flow coupled with a
primal method for the transport equation. The necessity of augmentation is clearly justified, and the solvability
analysis is based on a fixed point strategy that makes use of the Lax−Milgram and Schauder theorems together
with a well-known result on monotone operators. We prove existence of solution and for sufficiently small data
we derive uniqueness. The associated Galerkin scheme is introduced in Section 4 by employing Raviart−Thomas
elements for the stress, and continuous piecewise polynomial approximations for the velocity and concentration.
Here the solvability is established by applying now the Brouwer fixed point theorem and analogous arguments
to those employed in Section 3. In Section 5 we assume again sufficiently small data and, applying a suitable
Strang-type estimate for nonlinear problems, provide optimal a priori error estimates. Finally, in Section 6 we
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present numerical examples illustrating the good performance of the mixed-primal method and confirming the
theoretical rates of convergence.

Preliminaries

Let us denote by Ω ⊆ Rn, n = 2, 3 a given bounded domain with polyhedral boundary Γ = Γ̄D ∪ Γ̄N, with
ΓD ∩ ΓN = ∅ and |ΓD|, |ΓN| > 0, and denote by ν the outward unit normal vector on Γ . Standard notation will
be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖·‖s,Ω and seminorm | · |s,Ω. In

particular, H1/2(Γ ) is the space of traces of functions of H1(Ω) and H−1/2(Γ ) denotes its dual. By M, M we
will denote the corresponding vectorial and tensorial counterparts of the generic scalar functional space M. We
recall that the space

H(div; Ω) := {τ ∈ L
2(Ω) : div τ ∈ L2(Ω)},

equipped with the usual norm
‖τ‖2

div;Ω := ‖τ‖2
0,Ω + ‖div τ‖2

0,Ω

is a Hilbert space. As usual, I stands for the identity tensor in Rn×n, and | · | denotes both the Euclidean norm
in Rn and the Frobenius norm in Rn×n. Also, for any vector field v = (vi)i=1,n we set

∇v :=

(
∂vi

∂xj

)

i,j=1,n

and div v :=

n∑

j=1

∂vj

∂xj
·

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence operator
div acting along the rows of τ , and define the transpose, the trace, the tensor product, and the deviatoric tensor,
respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑

i=1

τii, τ : ζ :=

n∑

i,j=1

τijζij , and τ d := τ −
1

n
tr(τ ) I.

2. The model problem

The following system of partial differential equations describes the stationary state of the transport of species φ
in an immiscible fluid occupying the domain Ω:

σ = μ(φ)∇u − p I, −divσ = fφ, div u = 0,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k, − div σ̃ = g,
(2.1)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of the fluid u,
the pressure p, and the local concentration of species φ. For sake of clarity in the presentation, we will restrict
ourselves to a specific physical scenario corresponding to the process of sedimentation-consolidation of a mixture
(see e.g. [7]). There, it is assumed that a suspension of solid particles within a viscous fluid, undergoes settling due
to gravity. The hypotheses of slow sedimentation velocity, short relaxation time, constant density, and negligible
expansion viscosities, allow to derive (2.1) from the classical principles of mass and momentum conservation
in mixture theory. In this model, the kinematic effective viscosity, μ; the diffusion coefficient, ϑ; and the one-
dimensional flux function describing hindered settling, γ; depend nonlinearly on φ, and k is a vector pointing
in the direction of gravity. In addition, ϑ is assumed of class C1 and we suppose that there exist positive
constants μ1, μ2, γ1, γ2, ϑ1, and ϑ2, such that

μ1 ≤ μ(s) ≤ μ2 and γ1 ≤ γ(s) ≤ γ2 ∀ s ∈ R, (2.2)

ϑ1 ≤ ϑ(s) ≤ ϑ2 and ϑ1 ≤ ϑ(s) + s ϑ′(s) ≤ ϑ2 ∀ s ≥ 0. (2.3)
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Note that (2.2) and the first assumption in (2.3) guarantee, in particular, that the corresponding Nemytsky
operators, say U for μ, defined by U(φ)(x) := μ(φ(x)) ∀φ ∈ L2(Ω), ∀x ∈ Ω a.e., and analogously for ϑ, γ,
μ−1, ϑ−1, and γ−1, are all well defined and continuous from L2(Ω) into L2(Ω). Furthermore, it is easy to show
(see, e.g. [23], Thm. 3.8) that the assumptions in (2.3) imply Lipschitz-continuity and strong monotonicity of
the nonlinear operator induced by ϑ. We will go back to this fact later on in Section 3.

Some examples of concentration-dependent coefficients typically found in the literature are (see [6, 8, 30, 31])

μ(φ) = μ∞

(
1 −

φ

φm

)−nµ

, γ(φ) = g∞φ(1 − φ)nγ , ϑ(φ) = ϑ∞

(
1 −

φ

φm

)−nϑ

,

where μ∞, φm, γ∞, nµ, nγ , nϑ, ϑ∞ are positive model parameters. These functions violate assumptions (2.2)
and (2.3) required in the subsequent analysis. We will therefore consider regularized concentration-dependent
coefficients. In turn, some examples of nonlinear functions ϑ that indeed satisfy (2.3) are the following:

ϑ(s) := 2 +
1

1 + s
and ϑ(s) := α0 + α1(1 + s2)(β−2)/2,

where α0, α1 > 0 and β ∈ [1, 2]. The first example is basically academic but the second one corresponds to a
particular case of the well-known Carreau law in fluid mechanics. We also stress that the structure of (2.1) may
also serve as prototype model for generalized Boussinesq models and natural convection equations describing
the interaction of a fluid driven by gravity and thermal changes. In such a context, φ can be viewed as the
adimensional temperature of the fluid, and typical examples for the variable coefficients (now interpreted as
temperature-dependent viscosity and thermal diffusivity) are

μ(φ) = μ∞ exp(−φ), ϑ(φ) = ϑ∞ exp(φ), γ = 0,

(see e.g. [13, 15, 28]).

The driving force of the mixture also depends on the local fluctuations of the concentration, so the right
hand side of the second equation in (2.1) is linear with respect to φ, and f ∈ L∞(Ω) and g ∈ L2(Ω) are given
functions. Finally, given uD ∈ H1/2(ΓD), the following mixed boundary conditions complement (2.1):

u = uD on ΓD, σν = 0 on ΓN, φ = 0 on ΓD, and σ̃ · ν = 0 on ΓN. (2.4)

On the other hand, it is easy to see that the first and third equations in (2.1) are equivalent to

σ = μ(φ)∇u − p I and p +
1

n
tr(σ) = 0 in Ω,

which permits us to eliminate the pressure p from the first equation. Consequently, we arrive at the following
coupled system:

1

μ(φ)
σd = ∇u in Ω, −divσ = fφ in Ω,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k in Ω, − div σ̃ = g in Ω,

u = uD on ΓD, σν = 0 on ΓN,

φ = 0 on ΓD, and σ̃ · ν = 0 on ΓN.

(2.5)

We remark here that the incompressibility constraint is implicitly present in the first equation of (2.5), that is
in the constitutive equation relating σ and u.
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3. The continuous formulation

3.1. The augmented mixed-primal formulation

We first observe that the homogeneous Neumann boundary condition for σ on ΓN (cf. second relation of (2.4))
suggests to introduce the space

HN (div; Ω) := {τ ∈ H(div; Ω) : τν = 0 on ΓN} .

Hence, multiplying the first equation of (2.5) by τ ∈ HN (div; Ω), integrating by parts, and using the Dirichlet
boundary condition for u (cf. third row of (2.5)), we obtain

∫

Ω

1

μ(φ)
σd : τ d +

∫

Ω

u · divτ = 〈τν, uD〉ΓD ∀ τ ∈ HN(div; Ω),

where 〈·, ·〉ΓD is the duality pairing between H−1/2(ΓD) and H1/2(ΓD). In addition, the equilibrium equation is
then rewritten as

∫

Ω

v · divσ = −

∫

Ω

fφ · v ∀v ∈ L2(Ω).

On the other hand, the Dirichlet boundary condition for φ (cf. fourth row of (2.5)) motivates the introduction
of the space

H1
ΓD

(Ω) :=
{

ψ ∈ H1(Ω) : ψ = 0 on ΓD

}
,

for which, thanks to the generalized Poincaré inequality, there exists cp > 0, depending only on Ω and ΓD, such
that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω ∀ψ ∈ H1
ΓD

(Ω). (3.1)

Therefore, given φ ∈ H1
ΓD

(Ω), we arrive at the following mixed formulation for the flow: find (σ, u) ∈
HN (div; Ω) × L2(Ω) such that

aφ(σ, τ ) + b(τ , u) = 〈τν, uD〉ΓD ∀ τ ∈ HN (div; Ω),

b(σ, v) = −

∫

Ω

fφ · v ∀v ∈ L2(Ω),
(3.2)

where aφ : HN(div; Ω) × HN(div; Ω) → R and b : HN(div; Ω) × L2(Ω) → R are bounded bilinear forms
defined as

aφ(ζ, τ ) :=

∫

Ω

1

μ(φ)
ζd : τ d, b(τ , v) :=

∫

Ω

v · divτ ,

for ζ, τ ∈ HN(div; Ω) and v ∈ L2(Ω).
In turn, given u ∈ L2(Ω), and using the homogeneous Neumann boundary condition for σ̃ (cf. fourth row

of (2.5)), we deduce that the primal formulation for the concentration equation becomes: find φ ∈ H1
ΓD

(Ω) such
that

Au(φ, ψ) =

∫

Ω

γ(φ)k · ∇ψ +

∫

Ω

gψ ∀ψ ∈ H1
ΓD

(Ω), (3.3)

where

Au(φ, ψ) :=

∫

Ω

ϑ(|∇φ|)∇φ · ∇ψ −

∫

Ω

φu · ∇ψ ∀φ, ψ ∈ H1
ΓD

(Ω). (3.4)

At this point we observe that the assumption on μ given in (2.2) and the well known Babuška–Brezzi’s theory
suffice to show that (3.2) is well-posed (see, e.g. ([24], Thm. 2.1) for details). However, in order to deal with the
analysis of (3.3), and particularly to estimate the second term defining Au, we would require u ∈ H1(Ω). In fact,
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we now recall from ([28], Eq. (2.20)) that Hölder’s inequality and standard Sobolev embeddings estimates (cf. [1],
Thm. 4.12, [29], Thm. 1.3.4) yield the existence of a positive constant c(Ω), depending only on Ω, such that

∣∣∣∣
∫

Ω

ϕv · ∇ψ

∣∣∣∣ ≤ c(Ω) ‖ϕ‖1,Ω ‖v‖1,Ω |ψ|1,Ω ∀ϕ, ψ ∈ H1(Ω), ∀v ∈ H1(Ω). (3.5)

Furthermore, while the exact solution of (3.2) actually satisfies ∇u =
1

μ(φ)
σd in D′(Ω), which implies that u

does belong to H1(Ω), the foregoing distributional identity does not necessarily extend to the discrete setting
of (3.2), and hence the aforementioned difficulty would appear again when trying to analyze the Galerkin scheme
associated to (3.3). Therefore, in order to circumvent this inconvenience, we proceed similarly as in ([18], Sect. 3)
and incorporate into (3.2) the following redundant Galerkin terms

κ1

∫

Ω

(
∇u −

1

μ(φ)
σd

)
: ∇v = 0 ∀v ∈ H1(Ω),

κ2

∫

Ω

divσ · divτ = −κ2

∫

Ω

fφ · divτ ∀ τ ∈ HN(div; Ω),

κ3

∫

ΓD

u · v = κ3

∫

ΓD

uD · v ∀v ∈ H1(Ω),

(3.6)

where (κ1, κ2, κ3) is a vector of positive parameters to be specified later. Notice that the first and third equations
in (3.6) implicitly require the velocity u to live in H1(Ω). In this way, instead of (3.2), we consider from now
on the following augmented mixed formulation: find (σ, u) ∈ HN (div; Ω) × H1(Ω) such that

Bφ((σ, u), (τ , v)) = Fφ(τ , v) ∀ (τ , v) ∈ HN(div; Ω) × H1(Ω), (3.7)

where

Bφ((σ, u), (τ , v)) := aφ(σ, τ ) + b(τ , u) − b(σ, v) + κ1

∫

Ω

(
∇u −

1

μ(φ)
σd

)
: ∇v

+ κ2

∫

Ω

divσ · divτ + κ3

∫

ΓD

u · v,
(3.8)

and

Fφ(τ , v) := 〈τν, uD〉ΓD +

∫

Ω

fφ · v − κ2

∫

Ω

fφ · divτ + κ3

∫

ΓD

uD · v. (3.9)

We remark in advance that the well-posedness of (3.7) is proved below in Section 3.3. In particular, we emphasize
that the positiveness of the parameter κ2 in (3.8) is crucial for the ellipticity of the bilinear form Bφ in the
product space HN(div; Ω) × H1(Ω) (see below (3.18) and (3.19) in the proof of Lem. 3.4), which enables to
choose arbitrary finite element subspaces to define the associated discrete formulation. Otherwise, one would
need inf-sup conditions for the bilinear form b, which, involving the spaces HN(div; Ω) and H1(Ω), and suitable
subspaces of them, do not seem to be easily verifiable. In turn, the term multiplying κ2 in (3.8) just adds a
minor complexity to the Galerkin scheme since the corresponding matrix becomes block-diagonal. On the other
hand, since the unique solution of (3.2) is obviously a solution of (3.7) as well, we will conclude that both
continuous problems share the same unique solution.

In this way, the augmented mixed-primal formulation of our original coupled problem (2.5) reduces to (3.7)
and (3.3), that is: find (σ, u, φ) ∈ HN(div; Ω) × H1(Ω) × H1

ΓD
(Ω) such that

Bφ((σ, u), (τ , v)) = Fφ(τ , v) ∀(τ , v) ∈ HN (div; Ω) × H1(Ω),

Au(φ, ψ) =

∫

Ω

γ(φ)k · ∇ψ +

∫

Ω

gψ ∀ψ ∈ H1
ΓD

(Ω). (3.10)
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3.2. A fixed point strategy

Having proposed the alternative formulation (3.7), whose continuous and discrete solutions have second
components living in H1(Ω), we are able now to take a second look at (3.3). More precisely, given φ ∈ H1

ΓD
(Ω)

and the corresponding solution (σ, u) ∈ HN (div; Ω)×H1(Ω) of (3.7), we can set, instead of (3.3), the modified

primal formulation: find φ̃ ∈ H1
ΓD

(Ω) such that

Au(φ̃, ψ̃) = Gφ(ψ̃) ∀ ψ̃ ∈ H1
ΓD

(Ω), (3.11)

where

Gφ(ψ̃) :=

∫

Ω

γ(φ)k · ∇ψ̃ +

∫

Ω

g ψ̃ ∀ ψ̃ ∈ H1
ΓD

(Ω). (3.12)

The well-posedness of this nonlinear problem will also be addressed in Section 3.3. Alternatively, one could also
deal, instead of (3.11), with the linear problem: find φ̃ ∈ H1

ΓD
(Ω) such that

Aφ,u(φ̃, ψ̃) = Gφ(ψ̃) ∀ ψ̃ ∈ H1
ΓD

(Ω),

where

Aφ,u(φ̃, ψ̃) :=

∫

Ω

ϑ(|∇φ|)∇φ̃ · ∇ψ̃ −

∫

Ω

φ̃u · ∇ψ̃ ∀ φ̃, ψ̃ ∈ H1
ΓD

(Ω).

Nevertheless, and for easiness of the analysis, throughout the rest of the paper we stay with (3.11).
Hence, the description of problems (3.7) and (3.11) suggests a fixed point strategy to analyze (3.10). Indeed,

let S : H1
ΓD

(Ω) −→ HN(div; Ω) × H1(Ω) be the operator defined by:

S(φ) = (S1(φ),S2(φ)) := (σ, u) ∈ HN (div; Ω) × H1(Ω) ∀φ ∈ H1
ΓD

(Ω),

where (σ, u) is the unique solution of (3.7) with the given φ. In turn, let S̃ : H1
ΓD

(Ω) × H1(Ω) −→ H1
ΓD

(Ω) be
the operator defined by

S̃(φ, u) := φ̃ ∀ (φ, u) ∈ H1
ΓD

(Ω) × H1(Ω),

where φ̃ is the unique solution of (3.11) with the given (φ, u). Then, we define the operator T : H1
ΓD

(Ω) −→
H1

ΓD
(Ω) by

T(φ) := S̃(φ,S2(φ)) ∀φ ∈ H1
ΓD

(Ω),

and realize that solving (3.10) is equivalent to seeking a fixed point of T, that is: find φ ∈ H1
ΓD

(Ω) such that

T(φ) = φ. (3.13)

3.3. Well-posedness of the uncoupled problems

In this section we show that the uncoupled problems (3.7) and (3.11) are in fact well-posed. We begin by
recalling (see, e.g. [5]) that H(div; Ω) = H0(div; Ω) ⊕ R I, where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫

Ω

tr(ζ) = 0

}
.

More precisely, for each ζ ∈ H(div; Ω) there exist unique ζ0 := ζ − {
1

n|Ω|

∫

Ω

tr(ζ)}I ∈ H0(div; Ω) and

d :=
1

n|Ω|

∫

Ω

tr(ζ) ∈ R, such that ζ = ζ0 + dI. The following three lemmas from [5,18, 20], which concern the

above decomposition and an equivalence of norm, will be employed to show the well-posedness of (3.7) for a
given φ.
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Lemma 3.1. There exists c1 = c1(Ω) > 0 such that

c1 ‖τ 0‖
2
0,Ω ≤ ‖τd‖2

0,Ω + ‖div τ‖2
0,Ω ∀ τ = τ 0 + cI ∈ H(div; Ω),

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Proof. (see [5], Prop. 3.1). �

Lemma 3.2. There exists c2 = c2(Ω, ΓN) > 0 such that

c2 ‖τ‖
2
div;Ω ≤ ‖τ 0‖

2
div;Ω ∀ τ = τ 0 + cI ∈ HN(div; Ω),

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Proof. (see [20], Lem. 2.2). �

Lemma 3.3. There exists c3 = c3(Ω, ΓD) > 0 such that

|v|21,Ω + ‖v‖2
0,ΓD

≥ c3 ‖v‖
2
1,Ω ∀v ∈ H1(Ω).

Proof. It corresponds to a slight modification of the proof of ([18], Lem. 3.3). �

Furthermore, for sake of the subsequent analysis we will also require Lipschitz continuity assumptions for γ
and μ. More precisely, we assume that there exist positive constants Lγ and Lµ such that

|γ(s) − γ(t)| ≤ Lγ |s − t| ∀ s, t ∈ R, (3.14)

and
|μ(s) − μ(t)| ≤ Lµ |s − t| ∀ s, t ∈ R. (3.15)

We now begin the solvability analysis of the uncoupled problems with the following result.

Lemma 3.4. Assume that κ1 ∈ (0, 2δµ1

µ2
) with δ ∈ (0, 2μ1), and that 0 < κ2, κ3. Then, for each φ ∈ H1

ΓD
(Ω)

the problem (3.7) has a unique solution S(φ) := (σ, u) ∈ H := HN (div; Ω) × H1(Ω). Moreover, there exists
CS > 0, independent of φ, such that

‖S(φ)‖H = ‖(σ, u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω

}
∀φ ∈ H1

ΓD
(Ω). (3.16)

Proof. We first observe from (3.8) that, given φ ∈ H1
ΓD

(Ω), Bφ is clearly a bilinear form. Next, applying the
Cauchy−Schwarz’s inequality, the lower bound for μ (cf. (2.2)), and the trace theorem (with constant c0), we
also obtain from (3.8) that

|Bφ((σ, u), (τ , v))| ≤
1

μ1
‖σd‖0,Ω ‖τ d‖0,Ω + ‖u‖0,Ω ‖divτ‖0,Ω + ‖v‖0,Ω ‖divσ‖0,Ω

+ κ1 |u|1,Ω |v|1,Ω +
κ1

μ1
‖σd‖0,Ω |v|1,Ω + κ2 ‖divσ‖0,Ω ‖divτ‖0,Ω + c2

0 κ3 ‖u‖1,Ω ‖v‖1,Ω.

It follows that there exists a positive constant, denoted ‖B‖ and depending on μ1, κ1, κ2, κ3, and c0, such that

|Bφ((σ, u), (τ , v))| ≤ ‖B‖ ‖(σ, u)‖H ‖(τ , v)‖H ∀ (σ, u), (τ , v) ∈ H, (3.17)

and hence Bφ is bounded independently of φ ∈ H1
ΓD

(Ω).
In turn, we now aim to show that Bφ is H-elliptic. In fact, given (τ , v) ∈ H , we have again from (3.8) that

Bφ((τ , v), (τ , v)) =

∫

Ω

1

μ(φ)
τ d : τ d + κ1 |v|

2
1,Ω − κ1

∫

Ω

1

μ(φ)
τ d : ∇v + κ2‖divτ‖2

0,Ω + κ3 ‖v‖
2
0,ΓD

,
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which, using the bounds for μ (cf. (2.2)), the Young inequality, and Lemmas 3.1, 3.2, and 3.3, and taking δ, κ1,
κ2, and κ3 as stated in the hypotheses, yields

Bφ((τ , v), (τ , v)) ≥

(
1

μ2
−

κ1

2δμ1

)
‖τ d‖2

0,Ω + κ2‖divτ‖2
0,Ω + κ1

(
1 −

δ

2μ1

)
|v|21,Ω + κ3 ‖v‖

2
0,ΓD

≥ c1α1 ‖τ 0‖
2
0,Ω +

κ2

2
‖divτ‖2

0,Ω + κ1

(
1 −

δ

2μ1

)
|v|21,Ω + κ3 ‖v‖

2
0,ΓD

≥ α2 ‖τ 0‖
2
div;Ω + α3

{
|v|21,Ω + ‖v‖2

0,ΓD

}

≥ c2α2 ‖τ‖
2
div;Ω + c3α3 ‖v‖

2
1,Ω,

(3.18)

where α1 := min{( 1
µ2

− κ1

2δµ1
), κ2

2 }, α2 := min
{
c1α1,

κ2

2

}
, and α3 := min{κ1(1−

δ
2µ1

), κ3}. In this way, defining

α := min{c2α2, c3α3}, which depends on μ1, μ2, δ, κ1, κ2, κ3, c1, c2, and c3, we conclude that

Bφ((τ , v), (τ , v)) ≥ α ‖(τ , v)‖2
H ∀ (τ , v) ∈ H, (3.19)

thus confirming the H-ellipticity of Bφ independently of φ ∈ H1
ΓD

(Ω) as well. In particular, choosing the feasible

values δ = μ1 and κ1 =
µ2

1

µ2
, and then taking κ2 = 2( 1

µ2
− κ1

2δµ1
) and κ3 = κ1(1 − δ

2µ1
), we find that κ2 = 1

µ2
,

κ3 =
µ2

1

2µ2
, and α = 1

2µ2
min{c1c2, c2, c3μ

2
1}.

Next, given φ ∈ H1
ΓD

(Ω), we look at the functional Fφ (cf. (3.9)), which is certainly linear. Then, using
the Cauchy−Schwarz’s inequality and the trace estimates in H(div; Ω) and H1(Ω), with constants 1 and c0,
respectively, we deduce that for each (τ , v) ∈ H there holds

|Fφ(τ , v)| ≤ ‖τ‖div;Ω ‖uD‖1/2,ΓD
+ ‖f‖∞,Ω ‖φ‖0,Ω

{
‖v‖0,Ω + κ2 ‖divτ‖0,Ω

}

+ c0 κ3 ‖uD‖1/2,ΓD
‖v‖1,Ω,

which provides the existence of a positive constant, denoted ‖F‖ and depending on κ2, κ3, and c0, such that

|Fφ(τ , v)| ≤ ‖F‖
{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω

}
‖(τ , v)‖ ∀ (τ , v) ∈ H. (3.20)

The foregoing inequality shows the boundedness of Fφ with

‖Fφ‖ ≤ ‖F‖
{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω

}
. (3.21)

Finally, a straightforward application of the Lax−Milgram’s Lemma (see, e.g. [21], Thm. 1.1), proves that,
for each φ ∈ H1

ΓD
(Ω), problem (3.7) has a unique solution S(φ) := (σ, u) ∈ H . Moreover, the corresponding

continuous dependence result together with the estimates (3.19) and (3.20) give

‖S(φ)‖H = ‖(σ, u)‖H ≤
1

α
‖Fφ‖H′ ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω

}
,

with CS := ‖F‖
α , thus completing the proof. �

Throughout the rest of the paper we suppose further regularity for the problem defining the operator S. More
precisely, we assume that uD ∈ H1/2+ε(ΓD) for some ε ∈ (0, 1) (when n = 2) or ε ∈ (1

2 , 1) (when n = 3), and
that for each ψ ∈ H1

ΓD
(Ω) with ‖ψ‖1,Ω ≤ r, r > 0 given, there hold (ζ, w) := S(ψ) ∈ HN(div; Ω) ∩ H

ε(Ω) ×
H1+ε(Ω) and

‖ζ‖ε,Ω + ‖w‖1+ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,ΓD

+ ‖f‖∞,Ω ‖ψ‖0,Ω

}
, (3.22)
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with a positive constant C̃S(r) independent of the given ψ but depending on the upper bound r of its H1-norm.
We remark that the reason of the stipulated ranges for ε will be clarified in the forthcoming analysis (see below
proof of Lem. 3.12). In turn, while the actual verification of (3.22) is beyond the goals of the present work,
we observe that the fact that (3.2) and (3.7) share the same solution implies that this issue reduces finally
to the regularity of the Stokes problem with variable viscosity μ depending on φ (see, e.g. [4] for analogous
regularity results). To this respect, we would like to mention that the equilibrium equation −div ζ = f ψ in Ω,
obviously controls div ζ, whereas the constitutive equation 1

µ(ψ) ζd = ∇w in Ω, may serve to control the curl

of ζ. Certainly, the Lipschitz-continuity of μ (cf. (3.15)) and the upper bound of ‖ψ‖1,Ω are essential here. In
addition, the Dirichlet boundary condition on w should be used under the form of its tangential derivative, and
the eventual presence of corners in Γ should not be a problem.

According to the above, the present assumption is indeed quite reasonable at least for n = 2 since just
ε ∈ (0, 1) is required in this case. However, due to the hypothesis ε ∈ (1

2 , 1) when n = 3, we conjecture that
mixed boundary conditions for u and σ will have to be excluded of the corresponding 3D problem and that
either Dirichlet or Neumann boundary conditions only will be allowed. Finally, and while the estimate (3.22)
will be employed only to bound ‖ζ‖ε,Ω, we have stated it including the term ‖w‖1+ε,Ω since, because of the
constitutive equation, the regularities of ζ and w will most likely be connected.

We now establish the unique solvability of the nonlinear problem (3.11).

Lemma 3.5. Let φ ∈ H1
ΓD

(Ω) and u ∈ H1(Ω) such that ‖u‖1,Ω < ϑ1

cp c(Ω) (cf. (2.3), (3.1), (3.5)). Then, there

exists a unique φ̃ := S̃(φ, u) ∈ H1
ΓD

(Ω) solution of (3.11), and there holds

‖S̃(φ, u)‖1,Ω = ‖φ̃‖1,Ω ≤
c2
p(

ϑ1 − cpc(Ω)‖u‖1,Ω

)
{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}
. (3.23)

Proof. We begin by recalling from ([23], Thm. 3.8) that the nonlinear operator induced by the first term defining

Au (cf. (3.4)) is strongly monotone and Lipschitz-continuous with constants ϑ1 and ϑ̃2 := max
{
ϑ2, 2ϑ2 − ϑ1

}

(cf. (2.3)), respectively. It follows, using also the Cauchy−Schwarz’s inequality, (3.5), and (3.1), that for all

ϕ̃, ψ̃ ∈ H1
ΓD

(Ω) there holds

Au(ϕ̃, ϕ̃ − ψ̃) − Au(ψ̃, ϕ̃ − ψ̃)

=

∫

Ω

{
ϑ(|∇ϕ̃|)∇ϕ̃ − ϑ(|∇ψ̃|)∇ψ̃

}
· ∇(ϕ̃ − ψ̃) −

∫

Ω

(ϕ̃ − ψ̃)u · ∇(ϕ̃ − ψ̃)

≥ ϑ1 |ϕ̃ − ψ̃|21,Ω − c(Ω) ‖ϕ̃ − ψ̃‖1,Ω ‖u‖1,Ω |ϕ̃ − ψ̃|1,Ω

≥
{
ϑ1 − cp c(Ω) ‖u‖1,Ω

}
|ϕ̃ − ψ̃|21,Ω

≥ c−2
p

{
ϑ1 − cp c(Ω) ‖u‖1,Ω

}
‖ϕ̃ − ψ̃‖2

1,Ω,

which shows that Au is strongly monotone with constant α̃u := c−2
p

{
ϑ1 − cp c(Ω) ‖u‖1,Ω

}
. In turn, proceeding

similarly, we find that for all ϕ̃, ψ̃, ρ̃ ∈ H1
ΓD

(Ω) there holds

∣∣Au(ϕ̃, ρ̃) − Au(ψ̃, ρ̃)
∣∣ =

∣∣∣∣
∫

Ω

{
ϑ(|∇ϕ̃|)∇ϕ̃ − ϑ(|∇ψ̃|)∇ψ̃

}
· ∇ρ̃ −

∫

Ω

(ϕ̃ − ψ̃)u · ∇ρ̃

∣∣∣∣

≤ ϑ̃2 |ϕ̃ − ψ̃|1,Ω |ρ̃|1,Ω + c(Ω) ‖ϕ̃ − ψ̃‖1,Ω ‖u‖1,Ω |ρ̃|1,Ω

≤
{

ϑ̃2 + c(Ω) ‖u‖1,Ω

}
‖ϕ̃ − ψ̃‖1,Ω ‖ρ̃‖1,Ω,

which proves that Au is Lipschitz-continuous with constant L̃u := ϑ̃2 + c(Ω) ‖u‖1,Ω. Therefore, a direct
application of a classical result on the bijectivity of monotone operators (see, e.g. [27], Thm. 3.3.23) implies the
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existence of a unique solution φ̃ := S̃(φ, u) ∈ H1
ΓD

(Ω) of (3.11). Moreover, applying the strong monotonicity of

Au to ϕ̃ = φ̃ and ψ̃ = 0, and noting from (3.4) that Au(0, ·) = 0, we deduce that

α̃u ‖φ̃‖2
1,Ω ≤ Au(φ̃, φ̃) = Gφ(φ̃),

which gives α̃u ‖φ̃‖1,Ω ≤ ‖Gφ‖. Finally, using the Cauchy−Schwarz’s inequality and the upper bound of γ
(cf. (2.2)), it follows from (3.12) that ‖Gφ‖ ≤ γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω, which yields (3.23) and finishes the
proof. �

A simple corollary of the above lemma, which removes the dependence on u of the strong monotonicity
constant of Au and of the estimate (3.23), is given as follows.

Lemma 3.6. Let φ ∈ H1
ΓD

(Ω) and u ∈ H1(Ω) such that ‖u‖1,Ω < ϑ1

2 cp c(Ω) (cf. (2.3), (3.1), (3.5)). Then,

there exists a unique φ̃ := S̃(φ, u) ∈ H1
ΓD

(Ω) solution of (3.11), and there holds

‖S̃(φ, u)‖1,Ω = ‖φ̃‖1,Ω ≤
2 c2

p

ϑ1

{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}
. (3.24)

Proof. It follows directly from the proof of Lemma 3.5. Note in particular that the strong monotonicity of Au

holds with the constant α̃ := ϑ1

2 c2
p
. Further details are omitted. �

We end this section by remarking that the restriction on ‖u‖1,Ω in Lemma 3.6 could also have been taken
as ‖u‖1,Ω < δ ϑ1

cp c(Ω) with any δ ∈ (0, 1). However, we have chosen δ = 1
2 for simplicity and because it yields a

joint maximization of the constant α̃ and the upper bound for ‖u‖1,Ω.

3.4. Solvability analysis of the fixed point equation

Having established in the previous section the well-posedness of the uncoupled problems (3.7) and (3.11),

which confirms that the operators S, S̃, and T (cf. Sect. 3.2) are well defined, we now address the solvability
analysis of the fixed point equation (3.13). For this purpose, in what follows we verify the hypotheses of the
Schauder fixed point theorem, which is stated as follows (see, e.g. [11], Thm. 9.12-1(b)).

Theorem 3.7. Let W be a closed and convex subset of a Banach space X and let T : W → W be a continuous
mapping such that T (W ) is compact. Then T has at least one fixed point.

We begin the analysis with the following result.

Lemma 3.8. Given r > 0, we let W be the closed and convex subset of H1
ΓD

(Ω) defined by

W :=
{
φ ∈ H1

ΓD
(Ω) : ‖φ‖1,Ω ≤ r

}
,

and assume that the data satisfy

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2 CS cp c(Ω)
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

· (3.25)

Then T(W ) ⊆ W .

Proof. Given φ ∈ W , we get from (3.16) (cf. Lem. 3.4) that

‖S(φ)‖H = ‖(σ, u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ r ‖f‖∞,Ω

}
,
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and hence, thanks to the first restriction in (3.25), we observe that u = S2(φ) satisfies the hypotheses of
Lemma 3.6. Moreover, the corresponding estimate (3.24) gives

‖T(φ)‖1,Ω = ‖S̃(φ, u)‖1,Ω ≤
2 c2

p

ϑ1

{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}
,

which, due to the second inequality in (3.25), proves that T(φ) ∈ W , thus finishing the proof. �

Next, we aim to prove the continuity and compactness properties of T, which basically will be direct conse-
quences of the following two lemmas providing the continuity of S and S̃, respectively. We remark in advance
that a combination of the Cauchy−Schwarz and Hölder inequalities with the further regularity assumption
specified by (3.22) plays a key role in the proof of the first result.

Lemma 3.9. There exists a positive constant C, depending on μ1, κ1, κ2, Lµ, α, and ε (cf. (2.2), (3.6), (3.15),
(3.19), (3.22)), such that

‖S(φ) − S(ψ)‖H ≤ C
{
‖f‖∞,Ω ‖φ − ψ‖0,Ω + ‖S1(ψ)‖ε,Ω ‖φ − ψ‖Ln/ε(Ω)

}
∀φ, ψ ∈ H1

ΓD
(Ω). (3.26)

Proof. Given φ, ψ ∈ H1
ΓD

(Ω), we let (σ, u) = S(φ) and (ζ, w) = S(ψ), that is

Bφ((σ, u), (τ , v)) = Fφ(τ , v) and Bψ((ζ, w), (τ , v)) = Fψ(τ , v) ∀ (τ , v) ∈ H.

It follows, using the ellipticity of Bφ (cf. (3.19)) and then subtracting and adding the expression Fψ((σ, u) −
(ζ, w)) = Bψ((ζ, w), (σ, u) − (ζ, w)), that

α ‖(σ, u) − (ζ, w)‖2
H ≤ Bφ((σ, u), (σ, u) − (ζ, w)) − Bφ((ζ, w), (σ, u) − (ζ, w))

= (Fφ − Fψ)
(
(σ, u) − (ζ, w)

)
+ (Bψ − Bφ)

(
(ζ, w), (σ, u) − (ζ, w)

)
.

(3.27)

Then, according to the definition of Fφ (cf. (3.9)), and applying the Cauchy−Schwarz’s inequality, we deduce
that

∣∣∣(Fφ − Fψ)
(
(σ, u) − (ζ, w)

)∣∣∣ =

∣∣∣∣
∫

Ω

f (φ − ψ) · (u − w) − κ2

∫

Ω

f(φ − ψ) · div(σ − ζ)

∣∣∣∣

≤ ‖f‖∞,Ω ‖φ − ψ‖0,Ω

{
‖u − w‖0,Ω + κ2 ‖div(σ − ζ)‖0,Ω

}

≤
(
1 + κ2

2

)1/2
‖f‖∞,Ω ‖φ − ψ‖0,Ω ‖(σ, u) − (ζ, w)‖H .

(3.28)

In turn, it follows easily from (3.8) that

(Bψ − Bφ)
(
(ζ, w), (σ, u) − (ζ, w)

)
=

∫

Ω

{
μ(φ) − μ(ψ)

μ(φ)μ(ψ)

}
ζ
d :

{
(σ − ζ)d − κ1 ∇(u − w)

}
,

from which, thanks to the lower bound of μ (cf. (2.2)) and its Lipschitz-continuity assumption (3.15), and
applying Cauchy−Schwarz and Hölder inequalities, we find that

∣∣∣(Bψ − Bφ)
(
(ζ, w), (σ, u) − (ζ, w)

)∣∣∣ ≤
Lµ

μ2
1

∫

Ω

∣∣(φ − ψ) ζd
∣∣ ∣∣(σ − ζ)d − κ1 ∇(u − w)

∣∣

≤
Lµ

μ2
1

∥∥ (φ − ψ) ζ
∥∥

0,Ω

∥∥(σ − ζ)d − κ1 ∇(u − w)
∥∥

0,Ω

≤
Lµ

μ2
1

‖ζ‖L2p(Ω) ‖φ − ψ‖L2q(Ω)

{
‖σ − ζ‖0,Ω + κ1 |u − w|1,Ω

}

≤
Lµ (1 + κ2

1)
1/2

μ2
1

‖ζ‖L2p(Ω) ‖φ − ψ‖L2q(Ω) ‖(σ, u) − (ζ, w)‖H ,

(3.29)
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where p, q ∈ [1, +∞) are such that 1
p + 1

q = 1. Next, bearing in mind the further regularity ε assumed in (3.22),

we notice that the Sobolev embedding Theorem (cf. [1], Thm. 4.12, [29], Thm. 1.3.4) establishes the continuous
injection iε : Hε(Ω) −→ Lε∗

(Ω) with boundedness constant Cε, where

ε∗ :=

{ 2
1−ε if n = 2,

6
3−2ε if n = 3.

Thus, choosing p such that 2p = ε∗, we deduce that ζ := S1(ψ) does in fact belong to L
2p(Ω), and hence,

thanks to the aforementioned continuity, there holds

‖ζ‖L2p(Ω) ≤ Cε ‖ζ‖ε,Ω, (3.30)

which, when needed, can be bounded by (3.22), yielding for each ψ with ‖ψ‖1,Ω ≤ r

‖ζ‖L2p(Ω) ≤ Cε C̃S(r)
{
‖uD‖1/2+ε,ΓD

+ ‖f‖∞,Ω ‖ψ‖0,Ω

}
.

In addition, according to the above choice of p, that is p = ε∗/2, we readily find that

2q :=
2p

p − 1
=

{ 2
ε if n = 2,

3
ε if n = 3

=
n

ε
· (3.31)

In this way, inequalities (3.27), (3.28), (3.29), and (3.30), together with the identity (3.31), imply (3.26) and
complete the proof. �

Lemma 3.10. Let α̃ := ϑ1

2 c2
p

be the strong monotonicity constant provided in the proof of Lemma 3.6.

Then, there exists a positive constant C̃, depending on α̃, c(Ω), and Lγ (cf. (3.5), (3.14)), such that for all
(φ, u), (ϕ, w) ∈ H1

ΓD
(Ω) × H1(Ω), with ‖u‖1,Ω, ‖w‖1,Ω < ϑ1

2 cp c(Ω) , there holds

‖S̃(φ, u) − S̃(ϕ, w)‖1,Ω ≤ C̃
{
‖k‖ ‖φ− ϕ‖0,Ω + ‖S̃(ϕ, w)‖1,Ω ‖u − w‖1,Ω

}
. (3.32)

Proof. Given (φ, u), (ϕ, w) as stated, we let φ̃ := S̃(φ, u) and ϕ̃ := S̃(ϕ, w), that is (cf. (3.11))

Au(φ̃, ψ̃) = Gφ(ψ̃) and Aw(ϕ̃, ψ̃) = Gϕ(ψ̃) ∀ ψ̃ ∈ H1
ΓD

(Ω).

It follows, according to the strong monotonicity of Au with constant α̃, and then subtracting and adding
Gϕ(φ̃ − ϕ̃) = Aw(ϕ̃, φ̃ − ϕ̃), that

α̃ ‖φ̃ − ϕ̃‖2
1,Ω ≤ Au(φ̃, φ̃ − ϕ̃) − Au(ϕ̃, φ̃ − ϕ̃)

= Gφ(φ̃ − ϕ̃) − Gϕ(φ̃ − ϕ̃) + Aw(ϕ̃, φ̃ − ϕ̃) − Au(ϕ̃, φ̃ − ϕ̃)

=

∫

Ω

(
γ(φ) − γ(ϕ)

)
k · ∇(φ̃ − ϕ̃) +

∫

Ω

ϕ̃ (u − w) · ∇(φ̃ − ϕ̃),

where the last equality has employed the definitions given by (3.4) and (3.12). Then, applying the Lipschitz-
continuity of γ (cf. (3.14)), the Cauchy−Schwarz’s inequality, and the estimate (3.5), we deduce from the
foregoing equation that

α̃ ‖φ̃ − ϕ̃‖2
1,Ω ≤

{
Lγ ‖k‖ ‖φ − ϕ‖0,Ω + c(Ω) ‖ϕ̃‖1,Ω ‖u − w‖1,Ω

}
|φ̃ − ϕ̃|1,Ω,

which gives (3.32) and finishes the proof. �

The following result is a straightforward corollary of Lemmas 3.9 and 3.10.
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Lemma 3.11. Given r > 0, we let W :=
{

φ ∈ H1
ΓD

(Ω) : ‖φ‖1,Ω ≤ r
}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2 CS cp c(Ω)
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

·

Then, with the constants C and C̃ from Lemmas 3.9 and 3.10, for all φ, ϕ ∈ H1
ΓD

(Ω) there holds

‖T(φ) − T(ϕ)‖1,Ω ≤
{

C̃ ‖k‖ + C C̃ ‖T(ϕ)‖1,Ω ‖f‖∞,Ω

}
‖φ − ϕ‖0,Ω

+ C C̃ ‖T(ϕ)‖1,Ω ‖S1(ϕ)‖ε,Ω ‖φ − ϕ‖Ln/ε(Ω).
(3.33)

Proof. It suffices to recall from Section 3.2 that T(φ) = S̃(φ,S2(φ)) ∀φ ∈ H1
ΓD

(Ω), and then apply Lem-
mas 3.8, 3.9, and 3.10. �

The announced properties of T are proved now.

Lemma 3.12. Given r > 0, we let W :=
{

φ ∈ H1
ΓD

(Ω) : ‖φ‖1,Ω ≤ r
}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2 CS cp c(Ω)
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

·

Then, T : W −→ W is continuous and T(W ) is compact.

Proof. We first observe, thanks now to the Rellich−Kondrachov compactness Theorem (cf. [1], Thm. 6.3, [29],
Thm. 1.3.5), that the injection i : H1(Ω) −→ Ls(Ω) is compact, and hence continuous, for each s ≥ 1 (when
n = 2), and for each s ∈ [1, 6) (when n = 3). Then, according to the assumptions on the further regularity ε
(cf. (3.22)), namely ε ∈ (0, 1) in R2 and ε ∈ (1

2 , 1) in R3, we realize that n/ε belongs to the indicated ranges for

s, and therefore H1(Ω) is compactly, and hence continuously, embedded in Ln/ε(Ω), which together with (3.33)
imply the continuity of T. In turn, let {φk}k∈N be a sequence of W , which is clearly bounded. It follows that

there exist a subsequence {φ
(1)
k }k∈N ⊆ {φk}k∈N and φ ∈ H1

ΓD
(Ω) such that φ

(1)
k

w
−→ φ. In this way, since the

injections i1 : H1
ΓD

(Ω) −→ L2(Ω) and ĩ1 : H1
ΓD

(Ω) −→ Ln/ε(Ω) are compact, we deduce that φ
(1)
k −→ φ in

L2(Ω) and φ
(1)
k −→ φ in Ln/ε(Ω), which, combined with (3.33), implies that T(φ

(1)
k ) −→ T(φ) in H1

ΓD
(Ω).

This proves the compactness of T(W ) and finishes the proof. �

Finally, the main result of this section is given as follows.

Theorem 3.13. Given r > 0, we let W :=
{

φ ∈ H1
ΓD

(Ω) : ‖φ‖1,Ω ≤ r
}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2 CS cp c(Ω)
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

· (3.34)

Then the augmented mixed-primal problem (3.10) has at least one solution (σ, u, φ) ∈ HN (div; Ω) × H1(Ω) ×
H1

ΓD
(Ω) with φ ∈ W , and there holds

‖φ‖1,Ω ≤
2 c2

p

ϑ1

{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}
(3.35)

and

‖(σ, u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖1,Ω

}
. (3.36)
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Moreover, if the data k, f , and uD are sufficiently small so that, with the constants C, C̃, and C̃S(r) from

Lemmas 3.9 and 3.10, and estimate (3.22), and denoting by C̃ε the boundedness constant of the continuous
injection of H1(Ω) into Ln/ε(Ω), there holds

C̃ ‖k‖ + C C̃ r
{(

1 + r C̃ε C̃S(r)
)
‖f‖∞,Ω + C̃ε C̃S(r) ‖uD‖1/2+ε,ΓD

}
< 1, (3.37)

then the solution φ is unique in W .

Proof. According to the equivalence between (3.10) and the fixed point equation (3.13), and thanks to the
previous Lemmas 3.8 and 3.12, the existence of solution is just a straightforward application of the Schauder
fixed point theorem (cf. Thm. 3.7). In turn, the estimates (3.35) and (3.36) follow from (3.16) (cf. Lem. 3.4)
and (3.24) (cf. Lem. 3.6). Furthermore, given another solution ϕ ∈ W of (3.13), the estimates ‖T(ϕ)‖1,Ω =

‖ϕ‖1,Ω ≤ r, ‖S1(ϕ)‖ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,ΓD

+ ‖f‖∞,Ω ‖ϕ‖1,Ω

}
(cf. (3.22)), and ‖ψ‖Ln/ε(Ω) ≤ C̃ε ‖ψ‖1,Ω

∀ψ ∈ H1(Ω), confirm (3.37) as a sufficient condition for concluding, together with (3.33), that φ = ϕ. �

It is important to highlight here that the uniqueness of φ certainly implies, according to Lemma 3.4, the
uniqueness of the solution S(φ) := (σ, u) ∈ H of problem (3.7), and hence the foregoing theorem actually
guarantees that, under the asumption (3.34) on the data, there exists a unique solution (σ, u, φ) ∈ HN (div; Ω)×
H1(Ω) × H1

ΓD
(Ω) of problem (3.10) such that φ ∈ W .

4. The Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of the augmented mixed-primal problem (3.10).
To this end, we now let Th be a regular triangulation of Ω by triangles K (resp. tetrahedra K in R3) of diameter

hK , and define the meshsize h := max
{
hK : K ∈ Th

}
. In addition, given an integer k ≥ 0, for each K ∈ Th

we let Pk(K) be the space of polynomial functions on K of degree ≤ k, and define the corresponding local
Raviart−Thomas space of order k as

RTk(K) := Pk(K) ⊕ Pk(K)x,

where, according to the notations described in Section 1, Pk(K) = [Pk(K)]n, and x is the generic vector in
Rn. Then, we introduce the finite element subspaces approximating the unknowns σ, u, and φ, respectively, as
the global Raviart−Thomas space of order k, and the corresponding Lagrange spaces given by the continuous
piecewise polynomials of degree ≤ k + 1, that is

H
σ
h :=

{
τ h ∈ HN (div; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rn, ∀K ∈ Th

}
, (4.1)

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K) ∀K ∈ Th

}
, (4.2)

Hφ
h :=

{
ψh ∈ C(Ω) ∩ H1

ΓD
(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th

}
. (4.3)

In this way, the underlying Galerkin’s scheme, given by the discrete counterpart of (3.10), reads: find
(σh, uh, φh) ∈ H

σ
h × Hu

h × Hφ
h such that

Bφh
((σh, uh), (τ h, vh)) = Fφh

(τ h, vh) ∀(τ h, vh) ∈ H
σ
h × Hu

h ,

Auh
(φh, ψh) =

∫

Ω

γ(φh)k · ∇ψh +

∫

Ω

gψh ∀ψh ∈ Hφ
h.

(4.4)
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Throughout the rest of this section we adopt the discrete analogue of the fixed point strategy introduced in
Section 3.3. Hence, we now let Sh : Hφ

h −→ H
σ
h × Hu

h be the operator defined by

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh, uh) ∀φh ∈ Hφ
h,

where (σh, uh) ∈ H
σ
h × Hu

h is the unique solution of

Bφh
((σh, uh), (τh, vh)) = Fφh

(τ h, vh) ∀ (τ h, vh) ∈ H
σ
h × Hu

h , (4.5)

with Bφh
and Fφh

being defined by (3.8) and (3.9), respectively, with φ = φh. In addition, we let S̃h : Hφ
h×Hu

h −→

Hφ
h be the operator defined by

S̃h(φh, uh) := φ̃h ∀ (φh, uh) ∈ Hφ
h × Hu

h ,

where φ̃h ∈ Hφ
h is the unique solution of

Auh
(φ̃h, ψ̃h) = Gφh

(ψ̃h) ∀ ψ̃h ∈ Hφ
h, (4.6)

with Auh
and Gφh

being defined by (3.4) and (3.12), respectively, with u = uh and φ = φh. Finally, we define

the operator Th : Hφ
h −→ Hφ

h by

Th(φh) := S̃h(φh,S2,h(φh)) ∀φh ∈ Hφ
h,

and realize that (4.4) can be rewritten, equivalently, as: find φh ∈ Hφ
h such that

Th(φh) = φh. (4.7)

Certainly, all the above makes sense if we guarantee that the discrete problems (4.5) and (4.6) are well-posed.
Indeed, it is easy to see that the respective proofs are almost verbatim of the continuous analogues provided in
Section 3.3, and hence we simply state the corresponding results as follows.

Lemma 4.1. Assume that κ1 ∈ (0, 2δµ1

µ2
) with δ ∈ (0, 2μ1), and that 0 < κ2, κ3. Then, for each φh ∈ Hφ

h the

problem (4.5) has a unique solution Sh(φh) := (σh, uh) ∈ H
σ
h ×Hu

h . Moreover, with the same constant CS > 0
from Lemma 3.4, there holds

‖Sh(φh)‖H = ‖(σh, uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φh‖0,Ω

}
∀φh ∈ Hφ

h.

Proof. It suffices to see that for each φh ∈ Hφ
h, Bφh

is elliptic on H
σ
h × Hu

h with the same constant α from
Lemma 3.4 (cf. (3.19)), and that ‖Fφh

‖(
H

σ
h×Hu

h

)
′ is bounded as in (3.21) with φh in place of φ. The rest of the

proof is a direct application of the Lax−Milgram’s lemma. �

Lemma 4.2. Let φh ∈ Hφ
h and uh ∈ Hu

h such that ‖uh‖1,Ω < ϑ1

2 cp c(Ω) (cf. (2.3), (3.1), (3.5)). Then, there

exists a unique φ̃h := S̃h(φh, uh) ∈ Hφ
h solution of (4.6), and there holds

‖S̃h(φh, uh)‖1,Ω = ‖φ̃h‖1,Ω ≤
2 c2

p

ϑ1

{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}
.

Proof. It basically follows by observing that, under the assumption on ‖uh‖1,Ω, Auh
becomes Lipschitz-

continuous and strongly monotone on Hφ
h × Hφ

h with the constants L̃uh
:= ϑ̃2 + c(Ω) ‖uh‖1,Ω and α̃ := ϑ1

2 c2
p

given in the proofs of Lemmas 3.5 and 3.6, respectively, and then applying again ([27], Thm. 3.3.23). In addition,
the fact that ‖Gφ‖ is bounded independently of φ (cf. Proof of Lem. 3.5), confirms the same upper bound for
‖Gφh

‖(
Hφ

h

)
′ . �



AN AUGMENTED MIXED-PRIMAL FINITE ELEMENT METHOD FOR A COUPLED FLOW-TRANSPORT PROBLEM 1415

We now aim to show the solvability of (4.4) by analyzing the equivalent fixed point equation (4.7). To this
end, in what follows we verify the hypotheses of the Brouwer fixed point theorem, which is given as follows (see,
e.g. [11], Thm. 9.9-2).

Theorem 4.3. Let W be a compact and convex subset of a finite dimensional Banach space X and let T :
W → W be a continuous mapping. Then T has at least one fixed point.

We begin with the discrete version of Lemma 3.8.

Lemma 4.4. Given r > 0, we let Wh :=
{

φh ∈ Hφ
h : ‖φh‖1,Ω ≤ r

}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2 CS cp c(Ω)
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

·

Then Th(Wh) ⊆ Wh.

Proof. It is a straightforward consequence of Lemmas 4.1 and 4.2. �

The discrete analogue of Lemma 3.9 is provided next. We notice in advance that, instead of the regularity
assumption employed in the proof of that result, which actually is not needed nor could be applied in the present
discrete case, we simply utilize a L4 − L4 − L2 argument.

Lemma 4.5. There exists a positive constant C, depending on μ1, κ1, κ2, Lµ, and α (cf. (2.2), (3.6), (3.15),
(3.19)), such that

‖Sh(φh) − Sh(ψh)‖H ≤ C
{
‖f‖∞,Ω ‖φh − ψh‖0,Ω + ‖S1,h(ψh)‖L4(Ω) ‖φh − ψh‖L4(Ω)

}
, (4.8)

for all φh, ψh ∈ Hφ
h.

Proof. It proceeds exactly as in the proof of Lemma 3.9, except for the derivation of the discrete analogue
of (3.29), where, instead of choosing the values of p and q determined by the regularity parameter δ, it suffices
to take p = q = 2, thus obtaining

∣∣∣(Bψh
− Bφh

)
(
(ζh, wh), (σh, uh) − (ζh, wh)

)∣∣∣

≤
Lµ (1 + κ2

1)
1/2

μ2
1

‖ζh‖L4(Ω) ‖φh − ψh‖L4(Ω) ‖(σh, uh) − (ζh, wh)‖H ,

for all φh, ψh ∈ Hφ
h, with (σh, uh) := Sh(φh) and (ζh, wh) := Sh(ψh). Thus, the fact that the elements of H

σ
h

are piecewise polynomials insures that ‖ζh‖L4(Ω) < +∞ for each ζh ∈ H
σ
h . Further details are omitted. �

Now, utilizing Lemma 4.5 and the discrete analogue of Lemma 3.10 (which for sake of space saving is not
specified here), we can prove the discrete version of Lemma 3.11.

Lemma 4.6. Given r > 0, we let Wh :=
{

φh ∈ Hφ
h : ‖φh‖1,Ω ≤ r

}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2 CS cp c(Ω)
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

·

Then, with the constants C and C̃ from Lemmas 4.5 and 3.10, for all φh, ϕh ∈ Hφ
h there holds

‖Th(φh) − Th(ϕh)‖1,Ω ≤
{

C̃ ‖k‖ + C C̃ ‖Th(ϕh)‖1,Ω ‖f‖∞,Ω

}
‖φh − ϕh‖0,Ω

+ C C̃ ‖Th(ϕh)‖1,Ω ‖S1,h(ϕh)‖L4(Ω) ‖φh − ϕh‖L4(Ω).
(4.9)
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Consequently, since the foregoing lemma and the continuous injection of H1(Ω) into L4(Ω) confirm the
continuity of Th, we conclude, thanks to the Brouwer fixed point theorem (cf. Thm. 4.3) and Lemmas 4.4
and 4.6, the main result of this section.

Theorem 4.7. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2 CS cp c(Ω)
and γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

·

Then the Galerkin scheme (4.4) has at least one solution (σh, uh, φh) ∈ H
σ
h × Hu

h × Hφ
h with φh ∈ Wh, and

there holds

‖φh‖1,Ω ≤
2 c2

p

ϑ1

{
γ2 |Ω|1/2 ‖k‖ + ‖g‖0,Ω

}

and
‖(σh, uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φh‖1,Ω

}
.

5. A priori error analysis

Given (σ, u, φ) ∈ HN(div; Ω) × H1(Ω) × H1
ΓD

(Ω) with φ ∈ W , and (σh, uh, φh) ∈ H
σ
h × Hu

h × Hφ
h with

φh ∈ Wh, solutions of (3.10) and (4.4), respectively, we now aim to derive a corresponding a priori error
estimate. For this purpose, we now recall from (3.10) and (4.4), that the above means that

Bφ((σ, u), (τ , v)) = Fφ(τ , v) ∀(τ , v) ∈ HN(div; Ω) × H1(Ω),

Bφh
((σh, uh), (τ h, vh)) = Fφh

(τ h, vh) ∀(τ h, vh) ∈ H
σ
h × Hu

h ,
(5.1)

and
Au(φ, ψ) = Gφ(ψ) ∀ψ ∈ H1

ΓD
(Ω),

Auh
(φh, ψh) = Gφh

(ψh) ∀ψh ∈ Hφ
h.

(5.2)

Next, we recall from [22] a Strang-type lemma, which will be utilized in our subsequent analysis.

Lemma 5.1. Let H be a Hilbert space, F ∈ H ′, and A : H → H ′ a nonlinear operator. In addition, let
{Hn}n∈N be a sequence of finite dimensional subspaces of H, and for each n ∈ N consider a nonlinear operator
An : Hn → H ′

n and a functional Fn ∈ H ′
n. Assume that the family {A} ∪ {An}n∈N is uniformly Lipschitz

continuous and strongly monotone with constants ΛLC and ΛSM, respectively. In turn, let u ∈ H and un ∈ Hn

such that
[A(u), v] = [F, v] ∀ v ∈ H and [An(un), vn] = [Fn, vn] ∀ vn ∈ Hn,

where [·, ·] denotes the duality pairings of both H ′ × H and H ′
n × Hn. Then for each n ∈ N there holds

‖u − un‖H ≤ ΛST

⎧
⎨

⎩ sup
wn∈Hn
wn �=0

∣∣ [F, wn] − [Fn, wn]
∣∣

‖wn‖H

+ inf
vn∈Hn
vn �=0

⎛

⎝‖u − vn‖H + sup
wn∈Hn
wn �=0

∣∣ [A(vn), wn] − [An(vn), wn]
∣∣

‖wn‖H

⎞

⎠

⎫
⎬
⎭ ,

with ΛST := Λ−1
SM max

{
1, ΛSM + ΛLC

}
.

Proof. It is a particular case of ([22], Thm. 6.4). �
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We begin our analysis by denoting as usual

dist
(
φ, Hφ

h

)
:= inf

ϕh∈Hφ
h

‖φ − ϕh‖1,Ω,

and

dist
(
(σ, u), Hσ

h × Hu
h

)
:= inf

(τh,vh)∈H
σ
h
×Hu

h

‖(σ, u) − (τh, vh)‖H .

Then, we have the following result concerning ‖φ − φh‖1,Ω.

Lemma 5.2. Let C̃ST := α̃−1 max
{
1, α̃ + L̃

}
, with α̃ := ϑ1

2 c2
p

and L̃ := ϑ̃2 + ϑ1

2 cp
. Then there holds

‖φ − φh‖1,Ω ≤ C̃ST

{
Lγ ‖k‖ ‖φ− φh‖0,Ω + c(Ω) ‖φ‖1,Ω ‖u − uh‖1,Ω

+

(
1 + c(Ω) ‖u − uh‖1,Ω

)
dist(φ, Hφ

h)

}
.

(5.3)

Proof. We first observe from Lemmas 3.5, 3.6, and 4.2, that the nonlinear operators Au and Auh
are both

strongly monotone and Lipschitz-continuous on their corresponding spaces with constants α̃ and L̃, respectively.
Then, by applying the abstract Lemma 5.1 to the context (5.2), we find that

‖φ − φh‖1,Ω ≤ C̃ST

⎧
⎪⎪⎨

⎪⎪⎩
sup

ψh∈H
φ
h

ψh �=0

∣∣Gφ(ψh) − Gφh
(ψh)

∣∣
‖ψh‖1,Ω

+ inf
ϕh∈H

φ
h

ϕh �=0

(
‖φ − ϕh‖1,Ω + sup

ψh∈H
φ
h

ψh �=0

∣∣Au(ϕh, ψh) − Auh
(ϕh, ψh)

∣∣
‖ψh‖1,Ω

)
⎫
⎪⎪⎬
⎪⎪⎭

.

(5.4)

Next, we proceed similarly as in the proof of Lemma 3.10 to estimate each term in the foregoing equation
involving a supremum. In fact, according to the definition of Gφ (cf. (3.12)), and applying the same arguments
from that proof, we readily see that

sup
ψh∈H

φ
h

ψh �=0

∣∣Gφ(ψh) − Gφh
(ψh)

∣∣
‖ψh‖1,Ω

≤ Lγ ‖k‖ ‖φ − φh‖0,Ω. (5.5)

In turn, it is clear from the definition of Au (cf. (3.4)) and the estimate (3.5) that for each ϕh ∈ Hφ
h there holds

sup
ψh∈H

φ
h

ψh �=0

∣∣Au(ϕh, ψh) − Auh
(ϕh, ψh)

∣∣
‖ψh‖1,Ω

≤ c(Ω) ‖ϕh‖1,Ω ‖u − uh‖1,Ω

≤ c(Ω) ‖φ − ϕh‖1,Ω ‖u − uh‖1,Ω + c(Ω) ‖φ‖1,Ω ‖u − uh‖1,Ω.

(5.6)

In this way, replacing (5.5) and (5.6) back into (5.4), we arrive at (5.3) and end the proof. �

The following lemma provides a preliminary estimate for the error ‖(σ, u) − (σh, uh)‖H .
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Lemma 5.3. Let CST := α−1 max
{
1, α+‖B‖

}
, where ‖B‖ and α are the boundedness and ellipticity constants,

respectively, of the bilinear forms Bφ (cf. (3.17), (3.19)). Then there holds

‖(σ, u) − (σh, uh)‖H ≤ CST

{
(
1 + 2 ‖B‖

)
dist

(
(σ, u), Hσ

h × Hu
h

)

+
(
1 + κ2

2

)1/2
‖f‖∞,Ω ‖φ − φh‖0,Ω +

Lµ (1 + κ2
1)

1/2

μ2
1

Cε ‖σ‖ε,Ω ‖φ − φh‖Ln/ε(Ω)

}
.

(5.7)

Proof. By applying the abstract Lemma 5.1 to the context (5.1), we obtain

‖(σ, u) − (σh, uh)‖H

≤ CST

{
sup

(τh,vh)∈Hσ
h

×Hu
h

(τ h,vh) �=0

∣∣Fφ(τ h, vh) − Fφh
(τh, vh)

∣∣
‖(τh, vh)‖H

+ inf
(ζh,wh)∈Hσ

h
×Hu

h
(ζh,wh) �=0

(
‖(σ, u) − (ζh, wh)‖H

+ sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh) �=0

∣∣Bφ((ζh, wh), (τ h, vh)) − Bφh
((ζh, wh), (τ h, vh))

∣∣
‖(τ h, vh)‖H

)}
.

(5.8)

Then, proceeding analogously as in the proof of Lemma 3.9 (cf. (3.28)), we first deduce that

sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh) �=0

∣∣Fφ(τ h, vh) − Fφh
(τ h, vh)

∣∣
‖(τh, vh)‖H

≤
(
1 + κ2

2

)1/2
‖f‖∞,Ω ‖φ − φh‖0,Ω. (5.9)

In turn, in order to estimate the supremum in (5.8), we add and substract suitable terms to write

Bφ((ζh, wh), (τ h, vh)) − Bφh
((ζh, wh), (τ h, vh)) = Bφ((ζh, wh) − (σ, u), (τ h, vh))

+
(
Bφ − Bφh

)
((σ, u), (τ h, vh)) + Bφh

((σ, u) − (ζh, wh), (τ h, vh)),

whence, applying the boundedness (3.17) to the first and third terms on the right hand side of the foregoing
equation, and proceeding analogously as for the derivation of (3.29) and (3.30) with the second one, we find that

sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh) �=0

∣∣Bφ((ζh, wh), (τh, vh)) − Bφh
((ζh, wh), (τ h, vh))

∣∣
‖(τh, vh)‖H

≤ 2 ‖B‖ ‖(σ, u) − (ζh, wh)‖H +
Lµ (1 + κ2

1)
1/2

μ2
1

Cε ‖σ‖ε,Ω ‖φ − φh‖Ln/ε(Ω).

(5.10)

Finally, by replacing (5.9) and (5.10) into (5.8), we arrive at (5.7), which ends the proof. �

We now combine the inequalities provided by Lemmas 5.2 and 5.3 to derive the Céa estimate for the total
error ‖φ − φh‖1,Ω + ‖(σ, u) − (σh, uh)‖H . To this end, and in order to simplify the subsequent writing, we
introduce the following constants

C1 := C̃ST Lγ , C2 := C̃ST c(Ω) r CST (1 + κ2
2)

1/2, C3 := C̃ST c(Ω) r CST

Lµ (1 + κ2
1)

1/2

μ2
1

Cε C̃S(r) C̃ε.
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Hence, by replacing the bound for ‖u − uh‖1,Ω given by (5.7) into the second term on the right hand side
of (5.3), recalling that ‖φ‖1,Ω ≤ r, employing from (3.22) that

‖σ‖ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω

}
,

using again that C̃ε is the boundedness constant of the continuous injection of H1(Ω) into Ln/ε(Ω), and per-
forming several algebraic manipulations, we can assert that

‖φ − φh‖1,Ω ≤
{
C1 ‖k‖ +

(
C2 + r C3

)
‖f‖∞,Ω + C3 ‖uD‖1/2+ε,ΓD

}
‖φ − φh‖1,Ω

+ C̃ST c(Ω) r CST

(
1 + 2‖B‖

)
dist

(
(σ, u), Hσ

h × Hu
h

)

+ C̃ST

(
1 + c(Ω) ‖u − uh‖1,Ω

)
dist(φ, Hφ

h).

(5.11)

Note here that ‖u‖1,Ω and ‖uh‖1,Ω are estimated according to (3.16), and hence the expression in (5.11)

multiplying dist(φ, Hφ
h) is already controlled by constants, parameters, and data only. As a consequence of the

foregoing discussion, we can establish the following result providing the requested Céa estimate.

Theorem 5.4. Assume that the data k, f , and uD are sufficiently small so that

C1 ‖k‖ +
(
C2 + r C3

)
‖f‖∞,Ω + C3 ‖uD‖1/2+ε,ΓD

<
1

2
· (5.12)

Then, there exist positive constants C4 and C5, depending only on parameters, data, and other constants, all
them independent of h, such that

‖φ − φh‖1,Ω + ‖(σ, u) − (σh, uh)‖H ≤ C4 dist
(
(σ, u), Hσ

h × Hu
h

)
+ C5 dist(φ, Hφ

h). (5.13)

Proof. The estimate for ‖φ−φh‖1,Ω follows straightforwardly from (5.11) and (5.12), and then, the replacement

of it back into (5.7), using also that ‖φ − φh‖Ln/ε(Ω) ≤ C̃ε ‖φ − φh‖1,Ω, completes the proof. �

We end this section with the corresponding rates of convergence of our Galerkin scheme (4.4).

Theorem 5.5. In addition to the hypotheses of Theorems 3.13, 4.7, and 5.4, assume that there exists s > 0
such that σ ∈ H

s(Ω), divσ ∈ Hs(Ω), u ∈ H1+s(Ω), and φ ∈ H1+s(Ω). Then, there exists Ĉ > 0, independent
of h, such that, with the finite element subspaces defined by (4.1), (4.2), and (4.3), there holds

‖φ − φh‖1,Ω + ‖(σ, u) − (σh, uh)‖H

≤ Ĉ hmin{s,k+1}
{
‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖1+s,Ω + ‖φ‖1+s,Ω

}
.

(5.14)

Proof. It follows directly from the Céa estimate (5.13) and the approximation properties of H
σ
h , Hu

h , and Hφ
h

(cf. [5, 10, 21]). �

6. Numerical results

We illustrate the performance of our mixed-primal finite element method with some numerical tests. We first
study the accuracy of the approximations by manufacturing an exact solution of the nonlinear problem (2.1)
defined on Ω = (0, 1)2. We introduce the coefficients μ(φ) = (1 − cφ)−2, γ(φ) = cφ(1 − cφ)2, ϑ(|∇φ|) =
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Figure 1. Example 1: computed errors e(φ), e(σ), e(u) associated to the mixed-primal approx-
imation versus the number of degrees of freedom Nh for RT0 − P1 − P1 and RT1 − P2 − P2

finite elements (left and right, respectively). See values in Table 1. (In color online).

m1 + m2(1 + |∇φ|2)m3/2−1, and the source terms on the right hand sides are adjusted in such a way that the
exact solutions are given by the smooth functions

φ(x1, x2) = b − b exp(−x1(x1 − 1)x2(x2 − 1)), u(x1, x2) =

(
sin(2πx1) cos(2πx2)
− cos(2πx1) sin(2πx2)

)
,

σ(x1, x2) = 2π

⎛
⎜⎜⎝

cos(2πx1) cos(2πx2)

(1 − bc + bce−x1(x1−1)x2(x2−1))2
− sin(2πx1) sin(2πx2)

(1 − bc + bce−x1(x1−1)x2(x2−1))2

sin(2πx1) sin(2πx2)

(1 − bc + bce−x1(x1−1)x2(x2−1))2
− cos(2πx1) cos(2πx2)

(1 − bc + bce−x1(x1−1)x2(x2−1))2

⎞
⎟⎟⎠− (x2

1 − x2
2)I,

for (x1, x2) ∈ Ω. We take b = 15, c = m1 = m2 = 1/2, m3 = 3/2 and set ΓD = ∂Ω, where φ vanishes and uD is
imposed accordingly to the exact solution. The mean value of trσh over Ω is fixed via a penalization strategy.
As defined above, the scalar field φ is bounded in Ω and so the coefficients are also bounded. In particular we
have μ1 = 0.99 and μ2 = 3.35. Therefore, and as suggested by Lemma 3.4, the stabilization constants are chosen
as κ1 = μ2

1/μ2 = 0.2976, κ2 = 1/μ2 = 0.2985, and κ3 = κ1/2 = 0.1488.
The domain is partitioned into quasi-uniform meshes with 2n + 3, n = 0, 1, . . . , 8 vertices on each side of the

domain. The convergence of the approximate solutions is assessed by computing errors in the respective norms
and experimental rates, that we define as usual

e(σ) := ‖σ − σh‖div,Ω, e(u) := ‖u − uh‖1,Ω, e(φ) := ‖φ − φh‖1,Ω,

r(σ) :=
log(e(σ)/ê(σ))

log(h/ĥ)
, r(u) :=

log(e(u)/ê(u))

log(h/ĥ)
, r(φ) :=

log(e(φ)/ê(φ))

log(h/ĥ)
,

where e and ê denote errors computed on two consecutive meshes of sizes h and ĥ, respectively. Notice that these
errors are computed between the finite element approximation and the corresponding interpolate of the exact
solution. Values and plots of errors and corresponding rates associated to RTk − Pk+1 − Pk+1 approximations
with k = 0 and k = 1 are summarized in Table 1 and Figure 1, respectively, where we observe convergence rates
of O(hk+1) for stresses, velocities and the scalar field in the relevant norms. These findings are in agreement
with the theoretical error bounds of Section 5 (cf. (5.14)). A Newton–Raphson’s algorithm with a tolerance of
1E-08 has been applied to the resolution of the nonlinear problem (4.4), and at each iteration the linear systems
resulting from the linearization were solved by means of the multifrontal massively parallel solver (MUMPS [3]).
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Table 1. Example 1: convergence history and Newton iteration count for the mixed-primal
RTk − Pk+1 − Pk+1 approximations of the coupled problem, k = 0, 1. Here Nh stands for the
number of degrees of freedom associated to each triangulation Th.

Nh h e(φ) r(φ) e(σ) r(σ) e(u) r(u) iter

Augmented RT0 − P1 − P1 scheme

187 0.353553 0.891473 − 58.80212 − 16.97841 − 8
278 0.282843 0.711188 0.970463 48.21425 0.852938 13.99512 1.014962 7
514 0.202031 0.512189 0.975540 35.19082 0.935794 8.041585 1.424675 7
1202 0.128565 0.327347 0.990462 22.67913 0.972039 3.573343 1.579459 7
3442 0.074432 0.189813 0.997142 13.16677 0.994888 1.461483 1.563582 6
11 378 0.040406 0.103089 0.999241 7.138732 1.002043 0.639297 1.235346 6
41 074 0.021107 0.053859 0.999801 3.722753 1.002661 0.305779 1.113577 6
155 762 0.010795 0.027705 0.999948 1.904552 1.002240 0.152283 1.034021 6
606 322 0.005460 0.013933 0.999987 0.961174 1.001041 0.076408 1.010863 6

Augmented RT1 − P2 − P2 scheme

595 0.353553 0.123752 − 19.88141 − 3.675443 − 7
903 0.282843 0.079988 1.955574 13.55213 1.717465 2.237812 2.223581 6
1711 0.202031 0.041028 1.984189 7.213065 1.874291 1.026756 2.215637 6
4095 0.128565 0.016689 1.990120 2.989083 1.949025 0.343355 2.223416 6
11 935 0.074432 0.005607 1.995567 1.012340 1.981522 0.089977 2.150313 6
39 903 0.040406 0.001654 1.998442 0.299392 1.994287 0.022247 2.187332 6
144 991 0.021107 0.000451 1.999545 0.081778 1.998531 0.005629 2.116371 6
551 775 0.010795 0.000118 1.999836 0.021401 1.999468 0.001439 2.034801 6
2 164 783 0.005460 0.000026 1.999935 0.005014 2.006076 0.000357 2.013878 6

We mention that an average number of 7 Newton steps were required to reach the desired tolerance. All remaining
examples were carried out using k = 0, i.e., lowest-order Raviart−Thomas finite element approximations for
the rows of the Cauchy stress tensor, and piecewise linear approximations of velocity components and the scalar
field φ. The augmented mixed-primal approximations computed on a mesh of 37 249 vertices and 74 496 elements
are depicted in Figure 2.

In our second example we assess the capability of a 3D implementation by carrying out the benchmark test
of thermal convection on the cube Ω = (0, 1)3 (see e.g. [19, 26]). The relevant equations, here written in terms
of stresses σ, velocities u, and temperature φ correspond to the Boussinesq approximation and can be readily
recovered from (2.5) by setting g = 0, fφ = 1

ρ (0, φ − 1, 0)t, μ(φ) = Re−1 = (Ra/Pr)−1/2, ϑ(φ) = (Re Pr)−1,

γ(φ) = 0, where Pr = 0.71, Ra = 1E05, and ρ = 0.1 are the Prandtl (ratio between the viscous and thermal
diffusions), Rayleigh (only parameter remaining after nondimensionalization of the Boussinesq approximation),
and overheat ratio coefficients, respectively. Notice that this problem is linear, except for the convection term.
Even if the problem setting does not coincide exactly with the case analyzed previously, our goal is to illustrate
the applicability of the present coupling strategy in diverse scenarios. In fact, if we redefine f := 1

ρ(0, 1, 0)t,

then the functional (3.9) will eventually contain two additional terms independent of f , and all the subsequent
continuous and discrete analysis would remain unchanged after replacing fφ by fφ − f .

The stabilization constants are chosen as κ1 = μ, κ2 = 1/μ, and κ3 = μ/2. As boundary data we impose
uD = 0 on the whole ∂Ω, whereas we put φ = (2−ρ)/2 at x1 = 0 and φ = (2+ρ)/2 at x1 = 1. On the remainder
of ∂Ω we impose zero-flux conditions for φ, that is σ̃ · ν = 0. The domain is discretized on a mesh Th of 46 656
vertices and 271950 tetrahedra, and we represent the field quantities of interest in Figure 3. From these plots
we can observe a satisfactory qualitative agreement with respect to published data (see e.g. [14, 19, 26]).
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Figure 2. Example 1: RT0 − P1 − P1 approximation of stress components σh (top panels),
velocity components uh (with vector directions, bottom left and center, respectively), and scalar
field φh (bottom right) solving (3.10). The mesh has 37 249 vertices and 74 496 triangular ele-
ments. (In color online).

Moreover, Figure 4 reports on the mid-plane (x3 = 0.5) profiles and a comparison with respect to values
described in [19], including the average Nusselt number associated to a plane S (at fixed x1) and computed as
Nu =

∫
S Pr Reu1φ − ∂1φ. Our findings, after an average of 9 Newton iterations to reach a tolerance of 1E-08,

satisfactorily match the benchmark data in terms of maximum and minimum velocities and temperature profiles
at the symmetry lines x1 = 0.5 and x2 = 0.5. More quantitative comparisons are also presented in Table 2,
where we have collected some outputs of interest for different values of the Rayleigh number. For larger Rayleigh
numbers, an homotopy (or continuation) method was carried out on the Rayleigh number in order to ensure
convergence of the algorithm.

Our last example focuses on the simulation of the steady state of a clarifying-thickening process. The basin,
the different boundaries of the geometry, and the generated volumetric mesh consisting of 64 135 vertices and
370 597 tetrahedra are sketched in Figure 5. The size of the mesh and the finite element choice (row-wise lowest-
order Raviart−Thomas’s approximations for stresses and piecewise linear elements for velocity components and
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Figure 3. Example 2: computed temperature iso-surfaces (top left) and velocity streamlines
and vectors colored by magnitude (top center and right, respectively) and principal components
of the Cauchy stress (center and bottom rows) for the thermal cavity test. (In color online).

concentration) implies that at each Newton step we solve for a total of 2 515 211 degrees of freedom. The nonlinear
functions of the concentration are taken as in [7]: μ(φ) = (1 − φ/φmax)−2.5, γ(φ) = u∞(1 + φ(1 − φ/φmax))

2,

ϑ(φ) = γ(φ)σ0α(φ/φc)
α−1

φφcG∆ρ + u∞ and the source terms are f = (0, 0,−G)t, g = 0. The physical values assumed

by the concentration (it remains bounded between 0 and φmax) imply that the viscosity, hindered flux, and
compressibility coefficients satisfy (2.2) and (2.3) with μ1 = 1, μ2 = 2.7, γ1 = u∞, γ2 = 1.15u∞, ϑ1 = 4.28, ϑ2 =
29.74. However, notice that ϑ depends explicitly on φ and not on the concentration gradient, which was not
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Figure 4. Example 2: temperature profiles (solid blue, left axis) and velocity components
(dashed green, right axis) at x3 = 0.5, and comparison with respect to benchmark solutions (In
color online).

Table 2. Example 2: outputs of interest (Nusselt number, maximum value of the normal-
ized horizontal velocity on the mid-plane attained at (0.5, x∞

2 , 0.5), and maximum value of the
normalized vertical velocity and its position (x∞

1 , 0.5, 0.5) on the central horizontal plane, re-
spectively) for different values of the Rayleigh number, and comparison with respect to values
from [14,19].

Ra Nu max(|û1,h|) max(|û2,h|) x∞

1 x∞

2

Computed 103 1.134 0.129 0.131 0.176 0.845
[14] 103 1.117 0.136 0.138 0.178 0.813
[19] 103 − 0.132 0.131 0.200 0.833
Computed 104 2.030 0.195 0.229 0.121 0.819
[14] 104 2.054 0.192 0.234 0.119 0.823
[19] 104 2.100 0.201 0.225 0.117 0.817
Computed 105 4.321 0.145 0.244 0.064 0.843
[14] 105 4.337 0.153 0.261 0.066 0.855
[19] 105 4.361 0.147 0.247 0.065 0.855

Figure 5. Example 3: geometry of the clarifier-thickener unit (left panel) and tetrahedral mesh
Th with 64 135 vertices and 37 0597 elements (right panel). (In color online).
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Figure 6. Example 3: simulation of a clarifier-thickener unit. From left-top: approximated
concentration profile, opposite of the trace of the Cauchy stress tensor (which corresponds to
the suggested approximation of the pressure field), and velocity components (color online).

addressed in the solvability analysis of the model problem. While one could try to analyze this case by using
some classical results on pseudomonotone operators (see, e.g. [11], Sect. 9.3), ([27], Sect. 3.3)), in the forthcoming
work [2] we have chosen to extend the present approach to this modified model since in this way we are able
to derive not only the existence of continuous and discrete solutions but also the corresponding a priori error
analysis.

Boundary conditions are set as follows: concentration and velocities are fixed on the inlet disc Γin according
to φ = φin and u = uin = (0, 0,−u3,in)

t. At the outlet disk Γout we prescribe u = uout = (0, 0,−u3,out)
t, at the

overflow annulus we do not constraint the velocity field, and on the remainder of ∂Ω we put no slip boundary
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data for the velocity and zero-flux conditions for the concentration. Model parameters are set as u3,in =1.29E-02,
u3,out =2.54E-03, ∆ρ = 1562, φmax = 0.9, φc = 0.1, u∞ =2.2E-03, G = 9.81, φin = 0.08, α = 5, and σ0 =5E-02.
We mimic the behavior of a transient simulation by adding a mass term ηφ to the concentration equation, with
η =1E-03. Such a modification does not entail a major change in the analysis: it suffices to replace the part of
the flux φu by φ(u + η).

According to the bounds of the viscosity, the stabilization parameters were set as κ1 = κ2 = 0.4784, and
κ3 = 0.2392. We mention that 8 Newton iterations were needed to achieve a tolerance of 1E-07 for the energy
norm of the incremental approximations. The numerical results are depicted in Figure 6 (we show half of the tank
for visualization purposes), including concentration profile, velocity vectors, pressure approximation (computed
in terms of the trace of the Cauchy stress), and velocity components. We can observe that the material is
removed from the unit at the boundary Γout with concentration φ ≈ 0.24, which agrees with the results in e.g.
([6], Example 3).

Acknowledgements. The authors are very thankful to both referees for helpful indications and remarks, and particularly
to one of them who suggested key arguments to improve the analysis and results of our paper.
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