
Computing Education 2006 - Proc. Eighth Australasian Computing Education Conference (ACE2006)

A A lasian S d f R di d C h ° Skill ° Byline-researchn ustra asian tu y 0 ea mg an ompre ension S In undertaken as

Novice Programmers, using the Bloom and SOLO Taxonomies UTS staff
member

Jacqueline L. Whalley
Computer and Information Sciences
Auckland University of Technology
Private Bag 92006, Auckland 1020,

New Zealand

Raymond Lister
Faculty ofInformation Technology
University of Technology, Sydney

Broadway, NSW 2007,
Australia

jacqueline.whalley@aut.ac.nz

Errol Thompson
Department of Information Systems

Massey University
Wellington

New Zealand

raymond@it.uts.ac.au

Tony Clear and Phil Robbins
Computer and Information Sciences
Auckland University of Technology
Private Bag 92006, Auckland 1020,

New Zealand

E.L.Thompson@massey.ac.nz

P. K. Ajith Kumar
Bay of Plenty Polytechnic,

Tauranga,
New Zealand

Christine Prasad
School of Computing and
Information Technology

Unitec New Zealand
Auckland,

New Zealandtony.clear@aut.ac.nz
phil.robbins@aut.ac.nz

Ajith.Kumar@boppoly.ac.nz

cprasad@unitec.ac.nz

Abstract

In this paper we report on a multi-institutional
investigation into the reading and comprehension skills of
t'FoViCe pI6gfammers. This work extends previous studies
(Lister 2004, McCracken 2001) by developing a question
set within two key pedagogical frameworks: the Bloom
and SOLO taxonomies. From this framework of analysis
some interesting emergent patterns relating the cognitive
level of the questions to student performance have been
identified.

Keywords: Bloom's Taxonomy, SOLO, novice
programming, multi-institutional.

1 Introduction

A 2001 ITiCSE working group assessed the programming
ability of an international population of students from
several universities (McCracken et. al. 2001). The
students were tested on a common set of program-writing
problems and the majority of students performed more
poorly than expected. It was not clear why the students
struggled to write the required programs. One possible
explanation is that students lacked knowledge of
fundamental programming constructs. Another possible
explanation is that students were familiar with the
constructs but lacked the ability to "problem solve".

In 2004, another ITiCSE working group (the "Leeds
group") attempted to investigate some of the reasons why

Copyright © 2006, Australian Computer Society, Inc.
This paper appeared at the Eighth Australasian
Computing Education Conference (ACE2006), Hobart,
Tasmania, Australia, January 2006. Conferences in
Research in Practice in Information Technology, Vol. 52.
Denise Tolhurst and Samuel Mann Eds. Reproduction for
academic, not-for profit purposes permitted provided this
text is included.

students find programming difficult (Lister et. al. 2004).
The working group attempted to benchmark the program-
reading skills of novice programmers. They found that
many students could not answer program reading
problems, "suggesting that such students have a fragile
grasp of skills that are a pre-requisite for problem-
solving".

As interesting as the results are from the Leeds group, the
project did not have a sufficient theoretical underpinning.
The choice of the reading problems was not informed by
a theoretical model. The multiple choice problems were
taken from past exam papers written by Lister. The only
criterion for choosing the problems was the percentage of
students who had answered each question correctly.
Furthermore, the analysis of the data was not driven by
any theory or model of how students should solve or
actually address problems.

The work described in this paper uses a revised version of
Bloom's taxonomy (Anderson et al. 2001) to generate
and analyse program reading questions and uses the
SOLO taxonomy (Biggs and Collis 1982) in the analysis
of some of the data.

1.1 Project Timeline and Organisation

The authors are based at five different tertiary education
institutions. They first met to discuss this project in
December 2004. At that meeting, a draft instrument was
developed, using the revised Bloom's taxonomy.

For the next 6 months, authors at three of the
participating institutions collected data from their
students. In July 2005, the authors met again to analyse
and discuss their results. It was at this meeting that the
SOLO taxonomy was introduced as a tool for analysing
the data.

243

mailto:jacqueline.whalley@aut.ac.nz
mailto:raymond@it.uts.ac.au
mailto:E.L.Thompson@massey.ac.nz
mailto:tony.clear@aut.ac.nz
mailto:phil.robbins@aut.ac.nz
mailto:Ajith.Kumar@boppoly.ac.nz
mailto:cprasad@unitec.ac.nz

CRPIT Volume 52

2 Question-writing and Bloom's Taxonomy

The Leeds group divided their multiple choice questions
into two broad types. The first type of question was a
'fixed-code' question. In questions of this type, students
were given a short piece of code and asked to determine
the value output, or the value contained by a variable,
after that code was executed. The second type of multiple
choice question was a 'skeleton-code' question. In this
type of question, students were given a piece of code with
one or more lines missing. They were also told the
intended function of the code, and were asked to select
from the available options the code that would correctly
complete the skeleton. The Leeds group observed that, as
a general rule, students found 'fixed-code' questions
easier than 'skeleton-code' questions, but they did not
offer an explanation of why that should be the case.

'Fixed-code' questions may be considered to fit into the
Executing subcategory of the cognitive process category
Apply. This is described in the revised Bloom's
taxonomy as "applying a procedure to a familiar task".

Categorizing 'skeleton-code' questions into the revised
Bloom's taxonomy is more difficult than fixed-code
questions, because students appear to manifest a greater
variety of approaches to solving 'skeleton-code'
questions. A student might solve a 'skeleton-code'
multiple choice question via the cognitive process of
Apply, in the subcategory of Executing. That is, the
student might substitute each of the given options into the
skeleton, execute the code for each of those substitutions,
and then select the substitution that led to the intended
behaviour. On the other hand, a student might solve a
skeleton-code multiple choice question by reasoning
about how the parts of the code relate to one another.
Depending upon exactly how that was done, the student
could be operating at either the Analyse or Evaluate
levels. In some rare instances a student may even be
operating at the Create level.

The revised Bloom's taxonomy is a fertile source of ideas
for question generation. After examining the categories
in the revised taxonomy, and relating them to
programming, we found that more question types than
just 'fixed-code' and 'skeleton-code' questions may be
generated, as is illustrated in the next section of the paper.

3 Study Instrument Development
The set of 10 questions surveyed in this paper, consisted
of 9 multiple choice questions and one short-answer
question. In order to identify what was being tested in
terms of programming ability the working group decided
to develop an instrument that was built upon a
framework. Two of the multiple choice questions used in
this study (l and 9) were taken directly from the Leeds
working group instrument (5 and 2 respectively; Lister
2004). These two questions allowed for some direct
comparative analysis.

The remaining 8 questions were designed by the working
group, using the revised Bloom's taxonomy, with the
express purpose of devising a diverse set of questions to

244

evaluate the program comprehension skills of novice
programmers.

The complete set of 10 questions is available from a web
site (Bracelet). To conserve space in this paper, the 10
questions are summarised as follows:

QI: A "fixed-code" question, identical to Question 5
from the Leeds working group. The code contains a
single "while" condition, with a simple terminating
condition that does not involve conjunctions or
disjunctions, with five assignment statements within
the loop.

Q2: Students were given a piece of code and were
required to find the matching flow chart.

Q3: Similar to question 2, but in this case the students
were supplied with a structure diagram and had to
select the piece of code that performed the same
task.

Q4. Students were given a piece of code, a single "if'
statement with an "else" component, that set a
boolean variable to true if an integer variable
contained a value within a given range; otherwise
the boolean variable was set to false. The students
were required to identify a functionally equivalent
piece of code from the options. Each option
consisted of an "if/else" statement. Each "if'
statement's boolean condition contained either a
conjunction or a disjunction.

Q5: A "fixed-code" question. The code consisted of
nested "for" loops, with a simple "if' condition
within the inner loop.

Q6: The code contained a single "while" condition, which
stepped an integer variable "i" through a series of
values. The code also contained a single array
initialized to a set of values. The student was
required to choose from among the four options the
best English language description of what the code
did.

Q7: The complete text of this question is given later in
the paper. The students were given some buggy
code, told the intended function of that code, and
given an example of the incorrect output of the
buggy code. The students were then asked to select a
change to the code that would fix the bug.

Q8: A "skeleton-code" question, with part of one line
missing, the boolean condition of an "if' statement.
The code was intended to check whether the
characters stored in an array formed a palindrome.
The code contained a single "while" statement, with
a boolean condition containing two conjuncts. The
body of the loop consisted of two assignment
statements. The missing "if' conditions immediately
followed the "while" loop. Students had to choose
the appropriate boolean condition for the missing 'if
statement.

Q9: A "fixed-code" question, identical to question 2 from
the Leeds working group. The code contained a
single "while" condition, with a complicated "if'

Computing Education 2006 - Proc. Eighth Australasian Computing Education Conference (ACE2006)

condition within it. The students were only given
the code. They were not told the function of the
code, which was to count the number of identical
elements in two sorted integer arrays omitting the
first element in both arrays.

Q I0: The complete text of this question is given later in
the paper. This is the only question in the complete
set of questions which is not a multiple choice
question. Instead, students were given a short piece
of code and asked to describe the purpose of the
code "in plain English".

The instrument also contained an 11th question which is
not discussed in this paper.

3.1 Bloom Categorisation, Version 1

Given our aim of investigating how novices comprehend
code, the goal was to design a set that tested the full range
of cognitive processes within the Understand cognitive
domain of the Bloom's Revised Taxonomy (Anderson
2001). This proved more difficult than anticipated. While
the revised taxonomy was a fertile source of ideas for
generating questions, once a question was written, it was
sometimes difficult to formally place it within the revised
taxonomy. The examples given by the taxonomy's
authors are not easy to translate into the programming
domain. In many cases the categories within the
knowledge domain, did not readily fit with concepts and
tasks required in computer programming. It was difficult
to match the cognitive tasks undertaken for each question
with Bloom's cognitive processes. This resulted in the
working group initially categorising most of the questions
within the relatively low cognitive level of Understand.

3.2 Bloom Categorisation, Version 2

At the group's second meeting, it was realised that the
authors had initially categorised the questions according
to what we thought the students would do when
attempting the questions.

A review of our categorisation was undertaken over three
sessions by a consensus between six members of the
working group. This recategorisation assumed that the
Bloom categories represented a normative model of good
practice carried out by students.

The revised Bloom's categorisation is given in Table 1.

It appears that in our initial categorisation we
underestimated the level of cognition required to solve
some questions. Consequently, not all the 10 questions
are within the Understand cognitive domain of the
Bloom's Revised Taxonomy (Anderson 2001), as had
been our original intention.

A small set of interviews with a group of independent
academics that had attempted the study instrument were
subjected to a "think out loud" interview, like the
interviews conducted by the Leeds group (Lister 2004).
The interview transcripts lead us to conclude that the best
way to refine the categorisation of questions would be by
a post-study review of the original categorisations using
interview descriptions of the steps taken to solve each

question. This "think out loud" approach was not used
with the students in the course of this study but will be
used in the future.

Q Cognitive Process Cognitive Process
Categories Subcategories

1 Apply Executing

2 Understand Comparing

3 Understand Comparing

4 Understand Comparing

5 Apply Executing

6 Apply Executing

7 Analyse Differentiating

8 Analyse Differentiating

9 Apply Executing

10 Understand Comparing

Table 1: Revised Bloom's categorisation ofthe
question set

3.3 Study Instrument Localisation Issues

Although many of the questions in this study were
originally developed in Java, none of the students who
actually attempted the 10 questions were taught Java as
their first programming language. It was thus necessary
to localise the problem set for each institution so that
students would be presented with problems in a language
with which they were familiar. It was also decided that
each institution would apply their own naming
conventions and layout standards to the code presented to
the students.

Therefore the instrument was also produced in Delphi, C#
and C++ dialects. In the course of devising the new
questions, the group noted that each language has its own
unique idiomatic and syntactical features, which implied
subtle differences in the representation of even rather
simple MCQ's. Differences in initialization values for
indexes, and in relational operators, had the effect of
changing the distracters in several instances. However,
this localisation did not result in changes to the logic of
the questions or the answer sets.

4 Data Collection /

The data collected in the initial phase of this study
consisted of student answers to nine MCQs and two short
answer questions. Analysis of the short answer to
question 11, revealed significant complexities and
therefore lies outside the scope of this paper.

One hundred and seventeen students participated in this
study. These students had either nearly completed or just
completed the first semester of their first programming
course. In all cases the MCQs counted towards the
student's final grade and were taken under examination
conditions.

245

CRPIT Volume 52

5 Performance Data Analysis on the MCQs

The analysis of the performance data for the MCQs was
undertaken using quartiles so that it would be comparable
with the previous study by Lister (2004).

Performance data varied from a normal distribution so the
use of quartiles is appropriate for MCQ data
categorisation (Figure I).

VI 30
"E
CJ) 25
'0.a 20
::. 15
o; 10
~ 5
i 0

023 4 5 6 789
Score on all 9 MCQs (N=117)

Figure 1: Distribution of scores for students who
attempted all MCQs

Analysis of the MCQs was undertaken by establishing
quartile boundaries and placing the data into quartiles.

5.1 Performance Data Discussion

Questions 4, 5, 6 and 8 worked well in separating out the
more able from the less able students. Most of the
distracters worked effectively. So while the difficulty and
overall performance varied there was nothing remarkable
about these MCQs to report so the analysis of these
questions has not been included in this paper.

The two most difficult questions proved to be questions 7
and 8. The Bloom's categorisation of these two questions
(Figure 2) identified that they were at the highest level of
cognitive processing (analyse) in the MCQ problem set.

100
l!!
CJ) 803:
VI
c: 60III

tie 40•..
0
0 20-0~ 00

2 3 4 6 9 5 8 7

questions

I 0 understand • apply D analyze

Figure 2: Performance by Bloom's category

5.2 Question 2: The Easiest Question

Over 90% of students answered question 2 correctly.
Students were given a piece of code and were required
find the matching flow chart. This question was at the
lowest cognitive skill level assessed by the set of 10

246

questions. The full text for question 2 is provided in the
appendix of this paper.

MCQs are a common way of testing students in many
disciplines, and there is considerable body of literature
devoted to the construction and analysis of such tests
(Ebel and Frisbie 1986, Linn and Gronlund 1995,
Haladyna 1999). A common way of analysing the
effectiveness of a MCQ is based upon the notion that
MCQs should be answered correctly by most strong
students, and incorrectly by most weak students. For
question 2, approximately 100% of students in the first
quartile (i.e. students who scored 8-9 on all 9 MCQs)
answered this question correctly, whereas approximately
80% of students in the bottom quartile (i.e. scored 1-4 on
all 9 MCQs) answered this question correctly. On the
basis of these two percentages for the top and bottom
quartiles, this MCQ is not effective at distinguishing
between stronger and weaker students.

A similar but more comprehensive quartile analysis of
question 2 is given in Figure 3. This type of figure is an
established way of analysing MCQs (Haladyna 1999). It
shows the performance of all four student quartiles and
also summarizes the actual choices made by students in
each quartile. The horizontal axis represents the four
student quartiles. The uppermost trend line in that figure
represents choice C, the correct choice for Question 2. As
stated earlier, approximately 100% of students in the first
quartile chose option C. The percentage of students who
chose option C was also almost 100% for the second and
third as well, but dropped to 80% for the fourth quartile
students, where approximately 20% of the students were
distracted by option D.

Question 2 (option c correct)

100
VI 80 -+-A•..
CJ)
3: 60

__ S

VI
e 40 -'-C'III-0 20 -e--D~0 0 ~E

2 3 4
quartile

Figure 3: Student responses to Q2, by quartiles'

While this question was not effective at distinguishing
between strong and weak students, it does at least
establish that most students have some minimal grasp of
flow control structures in their first programming
language.

1 The quartiles have been numbered from 1-4 where the I"
quartile is actually the top quartile. While this is unusual this
identificationof quartiles has been adopted in order to allow
comparativeanalysis between this study and the Lister (2004)
study.

Computing Education 2006 - Proc. Eighth Australasian Computing Education Conference (ACE2006)

5.3 Questions 1&9: The Lister Study Questions

Questions I and 9 were taken directly from an earlier
paper by Lister (2004). In this study similar trend lines
(Figure 4, Figure 5) were observed to those recorded by
Lister (2004). However, in this study the distracter A for
question 9 proved to be a stronger distracter for students
in the lower two quartiles.

Question 9 (option B is correct)
100

e 80 I--+-Aell
~ 60en I_Be Ins 40 I-.-c'0

:::!:: 20 t-o-0 ,
Q -~I

0
2 3 4

quartile

Figure 4: Student responses to Q9, by quartiles

Question 1 (option A is correct)

100
l!! 80;
en 60
e
ns 40 +---------~~f---i
'0
'#. 20

o -I---1..- •••••r;;;;;;;;;~~-4~

-+-A

~B

I-'-C
-0
••...••• E-------- ----;:07"/~~._

2 3 4

quartile

Figure 5: Student responses to Ql, by quartiles

5.4 Question 7: The Hardest Question

The complete text for this question is given in Figure 7.
The quartile analysis for this question is given in
Figure 6.

Question 7 (option A is correct)

80
en
~ 60
~ene 40ns-0 20'#.

0

-~-
-+-A

_B

-'-C
~O

2 3
quartile

4

Figure 6: Student responses to Q7, by quartiles

Distracter B was weak and obvious to even the poorest
students. Distracter C was only effective on those
students who were in the bottom quartile. However
distracter D was extremely strong for all students. On the
surface, D appears to be correct because by incrementing

iIndex after the assignment of a value to iSum at
termination of the loop the desired value of 7 is achieved
for iSum. Unless students also track the value of
i I ndex they do not discover that the value of i Index
after exiting the while loop is not giving the correct value.
Perhaps the students assume that it is correct because it is
correct in the original question stem code.

Question 7 was intended to make the students operate at a
higher cognitive level when it was designed. Figure 2
indicates that it does that and the fmdings indicate that
even the best students had difficulty thinking at this level.

Ouestion 7

The following segment of code was intended to add
the elements of the array iNumbers, from left to
right, until the sum of those elements is greater than
the value stored in the variable iLimit:
int iNumbers[iMAX] = {..some values here ..};
int iLimit = 3;
int iIndex = 0;
int iSum = 0;

while((iSum <= iLimit) && (iIndex < iMAX))
{

iIndex = iIndex + I;
iSum = iSum + iNumbers[iIndex];

The code was intended to finish with the variable
iIndex containing the first position in the array
where the sum exceeds iLimit, and iSum containing
the sum ofthe array elements from iNumbers(O] to
iNumbers(iIndex] inclusive.

However the given code is buggy. For example, if
iNumbers has the values {2, 1,4,5, 7}, iIndex
should be 2 and iSum should be 7.

Instead, after the above segment of code is executed,
iIndex equals 2 and iSum equals 5.

The bug in the above code can be fixed by:

a) Replacing iIndex = 0 with iIndex =-1

b) Replacing iSum = 0 with iSum =-1

c) Replacing iSum <= iLimit with iSum < iLimit
d) Moving iIndex = iIndex + 1 from above
Sum = iSum + iNumbers[iIndex] to below it

Figure 7: Question 7 ofthe problem set

5.5 Question 3: The Peculiar Question

Question 2 and question 3 were very similar questions,
but the students found question 3 more difficult than
question 2. Both questions required the translation of an
algorithm or piece of logic from one representation to
another. In the case of question 2 (Figure 3) the students
were provided with a piece of code and asked to choose
the flow diagram that represented the logic of the code.

247

CRPIT Volume 52

Two things made question 3 different. Firstly the logic
was reversed. Instead of translating from code to a
diagram the students were translating from a diagram to
code. Secondly the notation of the diagrammatic
representation was changed from a flow chart to a
structure diagram. One conclusion that may be drawn is
that students find structure diagrams harder to interpret
than flowcharts. This reflects some of the working group
members' experiences when trying to teach algorithmic
design to novice programmers using the structure
diagram notation.

Quite clearly distracter C was strong for people in the
upper middle quartile. The error in C was very minor; an
incorrect relational operator was employed in the loop's
termination condition. Both A and B contained a bug that
we would expect to be harder to identify, the assignment
in the body of the loop was incorrect. Additionally, A
contained the same error as in distracter C. The bottom
quartiles strongest distracter was B. So although they got
the termination condition of the while loop correct they
overlooked the serious logic flaw caused by the
misassignment in the loop body.

Because the stronger students may have perceived this
question as 'easy' it can be postulated that the minor error
in C was overlooked by many of the students in the upper
middle quartile. This bug was not overlooked by those in
the lower middle quartile who would, perhaps, have had
less confidence and checked all the options before
committing to one answer. In the study instrument
distracter C was the first option that performed a correct
assignment or array copy process. Perhaps the upper
middle quartile students selected this option without
checking further options to ensure their choice was
correct. This means that either distracter C needs to be
restructured or simply changed in terms of position on the
question sheet.

Question 3 (option D is correct)

100
1/1 80 [A•..
Gl
3: 60 -+-B1/1
e
III 40 ••...•.•••C-0~ 20 ~D

0

0
2 43

quartile

Figure 8: Student responses to Q3, by quartiles

6 Question 10: Summarisation of code

When faced with a code summarisation task, the
participants provide a range of responses. Question 10,
Figure 9, requires the participants to describe the code in
plain English. The responses vary in terms of the
precision of the description and the amount of code
covered by the description. Some summarisation options
may be clearly identified as not correlating with the
provided code. The remaining summaries varied in terms

248

of both detail and accuracy with respect to the provided
code. A different form of classification was required for
this question. The SOLO taxonomy (Biggs 1982, Biggs
1999) provided an approach for performing this analysis.

Question 10

In plain English, explain what the following

segment of code does:

bool bValid = true;

for (int i = 0; i < iMAX-I; i++)

if (iNumbers[i] > iNumbers[i+ I])

bValid = false;

Figure 9: Question 10 ofthe problem set

6.1 SOLO analysis categories

To analyse the responses to this question, a series of
categories (Table 2) based on the SOLO taxonomy (Biggs
and Collis 1982) were developed. As this question
provided minimal opportunity to provide an 'extended
abstract' response (the highest level in the SOLO
taxonomy), this was excluded as an outcome option. The
following categories (Table 2) were applied to the
responses.

SOLO category Description

Relational Provides a summary of what the

[R] code does in terms of the code's
purpose.

Multistructural A line by line description is

[M]
provided of all the code.
Summarisation of individual
statements may be included

Unistructural Provides a description for one

[U]
portion of the code (i.e. describes
the if statement)

Prestructural Substantially lacks knowledge of

[P] programming constructs or IS

unrelated to the question

Blank Question not answered

Table 2: SOLO Categories

The student responses above prestructural vary in terms
of the amount of code considered in the description (the
width) and the extent to which the elements of the code
have been related to each other. In the terminology of the
SOLO taxonomy, these variations are referred to
respectively as the "width" and "depth" of understanding.

Computing Education 2006 - Proc. Eighth Australasian Computing Education Conference (ACE2006)

The subjects in this study did however perform in a
manner consistent with the cognitive difficulty levels,
indicated by the assigned Bloom category far each MCQ.
This is an encouraging finding as it suggests an ability for
educators to apply a "level of difficulty" yardstick with
some granularity, to the setting of a programming MCQ.

Analysis of student performance through the SOLO
taxonomy did suggest a degree of consistency with the
SOLO model, with weaker students less likely to show
performance at higher levels of the taxonomy, and
stronger students tending to show higher level
capabilities. However the results also hinted at the
conclusion that novice programmers were not yet able to
work at a fully abstract level. The stages through which
novice programmers develop to a strongly relational
performance level, and the time that this development
process may take, needs further investigation and may
have been significantly underestimated in many modem
computing curricula. Students who cannot read a short
piece of code and describe it in relational terms are not
well equipped intellectually to write code of their own.

The authors believe that this study provides a mare
rigorous framework for evaluating performance of
novices in programming tasks than the Leeds group
study. Through extensions of this study we hope to
provide further data to help educators better assess
programming comprehension. It is also hoped that by
confirming or contradicting the findings emerging from
this work, we can deepen our own understandings of how
novices learn how to comprehend and write programs.

Acknowledgements

The authorship team would like to thank, in no particular
order, Gordon Stegink (formerly of Hope College
Michigan, and visiting professor 2003-2004 at Auckland
University of Technology), John Hamer (Auckland
University), Andrew Luxton-Rielly (Auckland
University), Bob Gibbons (Manukau Institute of
Technology), Minjie Hu (Tairawhiti Polytechnic), Cathy
Saenger (Eastern Institute of Technology), Joy Gasson
(Otago Polytechnic) and Hamiora Te Mamo (Waikato
Institute of Technology) for their contribution to the
initial draft of the study instrument and their helpful
discussions. We would also like to thank Gordon
Grimsey (Auckland University of Technology) for his
assistance in the data collection phase.

8 References

Anderson, L.W., Krathwohl, D.R, Airasian, P.W.,
Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths,
R. and Wittrock, M.e.. (Eds) (2001): A Taxonomy for
Learning, Teaching and Assessing. A Revision of
Bloom's Taxonomy of Educational Objectives. New
York, Addison Wesley Longman, Inc.

Biggs, J. B. (1999): Teaching for quality learning at
University, Buckingham. Open University Press.

Biggs, J. B. & Collis, K. F. (1982): Evaluating the quality
of learning: The SOLO taxonomy (Structure of the

Observed Learning Outcome). New York, Academic
Press.

Bloom, B.S., et al.: (1956) Taxonomy of Educational
Objectives: Handbook I: Cognitive Domain.
Longrnans, Green and Company.

Bracelet Project http://elena.aut.ac.nz/homepages/staffi'J-
Whalley/ BRACElet.htm (Accessed October 27,2005)

Chi, M. T. H., Glaser, R. & Farr, M. J. (Eds.) (1988): The
nature of expertise, Hillsdale, NJ, Lawrence Erlbaum
Associates.

Ebel, R. and Frisbie, D. (1986): Essentials of Educational
Measurement. Prentice Hall, Englewood Cliffs, NJ.

Haladyna, T. (1999): Developing and Validating
Multiple-Choice Questions (2nd Edition). Lawrence
Erlbaum Associates, Mahwah, NJ.

Linn, R. and Gronlund, N. (1995): Measurement and
Assessment in Teaching. Prentice Hall, Upper Saddle
River, NJ.

Lister, R., Adams E.S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Mostrom, J.E.,
Sanders, K., Seppalla, 0., Simon, B. and Thomas, L.
(2004): A Multi-National Study of Reading and
Tracing Skills in Novice Programmers. SIGSCE
Bulletin, 36(4):119-150.

McCracken, M., V. Almstrum, D. Diaz, M. Guzdial, D.
Hagen, Y. Kolikant, C. Laxer, L. Thomas, 1.Utting, T.
Wilusz, (2001): A Multi-National, Multi-Institutional
Study of Assessment of Programming Skills of First-
year CS Students. SIGCSE Bulletin, 33(4): 125-140.

Oliver, D., Dobele, T., Greber, M., & Roberts, T. (2004):
This Course Has a Bloom Rating of 3.9. Proc. of the
sixth conference on Australian computing education,
Dunedin, New Zealand, 57: 227 - 231.

Wiedenbeck, S., Fix, V. & Scholtz, J. (1993):
Characteristics of the mental representations of novice
and expert programmers: An empirical study.
International Journal of Man-Machine Studies, 39:
793-812.

251

CRPIT Volume 52

canst int iMAX = 3;

Question 3

1
I I I

Initialise Initialise while index1 is
index1 to O Index2 to MAX less than~X

1
I I 1

Copy number from
decrement index1 in array1 to increment

inde>Q elementatindex2 in index1
array2

Appendix

Questions were given to the students with one complete
question per page. Here some of the indenting and
formatting has been changed in order to fit the journal
format.

Question 2

Consider the following segment of code:

int iVal = 0;
while (iVal < iMAX)

cout « iVal; a) ilndexl 0;

iVal = iVal + 1; ilndex2 iMAX;
while (ilndexl <= iMAX)

Which of these flowcharts represents the logic of this code?

a)

~

b)
ilndex2--;
iArrayl[ilndexl] iArray2[ilndex2] ;

~ iVal=Q

iIndexl++i

b) ilndexl 0;

No
iVai < 3? >--~--- No ilndex2 iMAX;

iVai < 3?

iVai =
iVai + 1 I

,- :.[-
iVai" 1

- - ---

while (ilndexl < iMAX)

print iVai ilndex2--;
iArrayl [iIndexl]
ilndexl++;

iArray2 [iIndex2];

c) ilndexl
ilndex2

0;

iMAX;
while (ilndexl <= iMAX)

iIndex2--;
iArray2 [ilndex2] iArrayl [iIndexl];

c) d)

iVai = a rver = 0
iIndexl++i

Yes

d) iIndexl o·
~NO

I
!
I
:

I

I

iIndex2 iMAX;
while (ilndexl < iMAX)

print iVai
print iVai ilndex2--;

iVai =
iVai" 1

iArray2 [ilndex2] iArrayl [ilndexl];

iVai =
iVai ..•.1

ilndexl++;

Question 3

Study the structure diagram:

Array I and Array2 are both arrays contammg MAX
integers. Which of these code segments correctly
implements the logic shown in the above diagram?

252

