
An Authorizat ion Model for Workflows*

Vijayalakshmi Atluri and Wei-Kuang Huang

Center for Information Management, Integration, and Connectivity (CIMIC)

and

MS/CIS Department
Rutgers University

180 University Avenue, Newark, NJ 07102
{ atluri,waynexh@andromeda.rutgers.edu}

Abstract. Worldlows represent processes in manufacturing and office

environments that typically consist ofseverai well-defined activities (known

as tasks). To ensure that these tasks are executed by authorized users or

processes (subjects), proper authorization mechanisms must be in place.

Moreover, to make sure that authorized subjects gain access on the re-

quired objects only during the execution of the specific task, granting

and revoking of privileges need to be synchronized with the progression

of the workflow. A predefined specification of the privileges often allows

access for more than the time required, thus, though a subject completes

the task or have not yet begun the task, it may still possess privileges to

access the objects, resulting in compromising security.

In this paper, we propose a Workflow Authorization Model (WAM) that
is capable of specifying authorizations in such a way that subjects gain
access to required objects only during the execution of the task, thus
synchronizing the authorization flow with the workttow. To achieve this
synchronization~ we associate an Authorization Template (AT) with each
task~ which allows appropriate authorizations to be granted only when
the task starts and to revoke them when the task finishes. In this pa-
pert we also present a model of implementation based on Petri nets and
show how this synchronization can be implemented. Because the theo-
retical aspects of Petri nets have been extensively studied and due to
their strong mathematical foundation, a Petri net representation of an
authorization model serves as a good tool for conducting safety analysis
since the safety problem in the authorization model is equivalent to the
teachability problem in Petri nets.
K e y Words: Security~ Authorization, Workitow, Petri nets

1 I n t r o d u c t i o n

Workflows typically represent processes involved in manufactur ing and office

environments and heterogeneous database management systems. The various

activities in a workflow can usually be separated into well defined tasks. These

tasks in turn are related and dependent on one another, and therefore need to

* This work was supported in part by the National Science Foundation grant IRI-
9624222.

45

be executed in a coordinated manner. Execution of these separate tasks can
either be carried out by humans, processes such as an application program, or a
database management system.

To ensure that these tasks are executed by authorized subjects (users or
processes), appropriate authorization mechanisms must be in place. A suitable
authorization model for workflows must ensure that authorization is granted
only when the task starts and revoked as soon as the task finishes. Otherwise, a
subject may possess authorization for time periods longer than required, which
may compromise security.

For example, consider a workflow that represents document release process
in an organization. Assume this workflow consists of the following two tasks: A
scientist prepares a document (task 1) and then prior to releasing this docu-
ment gets approval from the patent-officer of his organization (task 2). During
execution of task 1, the scientist will have all the rights on the document (read,
write etc.). When he submits it to the patent-officer, a read authorization on
the document has to be granted to the patent-officer. Since the scientist should
not be allowed to modify the document during or after the approval process,
the write privilege of the scientist on the document must be revoked as soon as
he submits it for approval. This is required to ensure that the scientist is not
able to alter the document during or after the approval. (Such non-monotonic
authorization models can be found, for example, in [22].) In the paper world,
since the patient-officer receives a hard copy of the document, and therefore it
is no longer with the scientist, the revocation of the write privilege from the
scientist will be automatically accomplished. In case of electronic documents, a
proper authorization model should mimic such a scenario. In order to ensure au-
thorized subjects are granted privileges on required objects only while the task
is being executed, propagation of authorization (i.e. authorization flow) has to
be synchronized with the workflow.

To our knowledge, no authorization model can be found in the literature that
addresses this issue of achieving synchronization between authorization flow and
workflow. Recently, several extensions to the basic authorization model can be
seen in number of directions. One direction deals with increasing the expres-
sive power of the authorization models and developing appropriate tools and
mechanisms to support these models. These include introducing negative autho-
rization [3, 17], role-based and task-based authorizations and separation of duties
[6, 19, 20], and temporal authorization [2]. Other direction deals with extending
authorization models for advanced DBMSs such as object-oriented [8, 17, 4] and
distributed [25, 18, 11] DBMSs.

However, in these models, authorizations are in general specified with re-
spect to object, right, subject granting right, subject receiving right, etc. These
models study the propagation of authorization but do not tie it with any activ-
ity in the system. However, as seen from the above example, authorization flow
need to be tightly coupled to the workflow in order to ensure subjects possess
authorizations only when required. [21] also recognizes that more sophisticated
approaches than the conventional access control techniques are required when

46

dealing with situations that control operation sequences.
Although models exist that allow specification of authorizations associated

with a time interval, they are not suitable for workflow environments. For ex-
ample, recently, an authorization model to represent temporal privileges has
been proposed by Bertino et al. [2]. It allows authorizations to be specified on
objects for specified time intervals. In this model a temporal authorization is
specified as (t ime, auth), where time = [tb, re] is a time interval, and auth =
(s ,o ,m,pn,g) is an authorization. Here tb and t~ represent the beginning and
ending time during which auth is valid, s represents the subject, o the object, m
the privilege, pn whether negative or positive authorization, and g the grantor
of the authorization.

Since in this model authorization is granted during a predefined and fixed
time interval, it is not suitable when dealing with workflows because appropriate
authorizations should be granted or revoked synchronously with the starting and
ending of a task. This is because it is difficult to predict the actuM execution time
of each task in many workflow situations and therefore not possible to determine
their time interval in advance.

For example, imagine the following scenario: Suppose the authorization for
relevant subjects on required object to execute a task has been specified with
time interval [tb, re]. Also assume the task actually starts at ts and finishes by
tf. Consider the following three cases: (1) if [~b, t~] is same as It,, tl] , then autho-
rization is valid exactly during the execution of the task (2) if It,, tl] is within
[tb, re] then authorization is valid for a longer duration than required (3) if [tb, t~]
is within [t l , t ,] or [tb, te] overlaps [tl,ts], then either the authorization is not
valid when needed or valid for a longer period than required.

Even if one can determine the temporal interval during which a task has to
be executed, delays experienced by one task may propagate to subsequent tasks
thereby delaying their execution. Thus by the time the task actually starts, the
required authorization may expire. On the other hand, it is not practical for
a security administrator to monitor the workflow and grant (or revoke) autho-
rizations accordingly. Although no formal authorization models exist that can
synchronize authorization flow with the workflow, in some commercial Workilow
Management Systems (WFMSs) such as Lotus Notes, this can be simulated by
embedding scripts that test for the completion of the task and thereby revoke
authorizations for individuals who have performed the task.

Bertino et al.'s model also allows operations such as WHENEVEI~, ASLONGAS,
WHENEVERNOT and UNLESS to be specified on authorizations, where WEENEVEI~
states that a subject si can gain a privilege on object o WHENEVEtt subject s 1
has the same privilege on o. (ASLONGAS, WHENEVEItNOT and UNLESS can also be
interpreted similarly.) Since specification of authorizations is not based on the
tasks this model is not completely suitable for workflow environments.

In addition to synchronizing the authorization flow with the workflow, there
are severM other desirable features that a suitable workflow authorization model
must possess. We take a concrete example to illustrate these features.

EzampIe 1. Consider a workflow that represents the selection process of research

47

papers for a conference. This workflow consists of a number of tasks including
collection of papers from the authors, distribution of papers to selected reviewers,
generation of the reviews, summarizing all the reviews, forwarding the summary
and decision of the conference chair to the authors and then finally announcing
the list of selected papers to the research community. Assume that three indi-
viduMs are required to review each paper. Authors are given privileges to create
objects thereby anybody can submit a paper to the conference by creating an
object. Authors will have read and write privileges on their paper although the
write privilege is associated with a time limit since it has to be revoked after
the deadline for submission of the papers. The conference chair then selects the
reviewers. Though anyone among the set of reviewers may play the rote of a re-

viewer, for any given paper, the three reviewers have to be different individuals
and they must not be the authors of the paper. Reviewers send their responses
by creating an object on which only read privilege has to be given to the con-

ference chair. The conference chair then produces a summary of all the three
reviews which is accessible only to the chair and the authors of the paper at
which point authors are given back the write privileges on the paper. The final
decision as to whether the paper has been accepted or rejected is produced and
the list of accepted papers will be created by the conference chair, and this ob-

ject is public and anyone can gain read privileges on this object. This workflow
has been depicted in figure 1.

Fig. 1. Workflow Representing the Paper Reviewing Process

As seen from the example above, a workflow authorization model should

support the following features. We explain below why these are required with
the above example.

1. Authorizations have to be granted to subjects only during the execution of
the task and must be revoked immediately after the completion of the task.
This is required to guarantee that an author cannot modify the paper after
submitting it to the conference chair.

48

2. Capability to handle temporal constraints is required to express conditions
such as a reviewer must return the reviews by May 1996.

3. A role-based authorization is required to express an authorizat ion such as

~'anyone in the program committee may act as a reviewer."

4. Separation of duties, which is necessary to prevent a single person providing

all the three reviews on a paper, or an author of the paper reviewing his/her

own paper.

5. Event-based authorization is required because the paper has to be made

public and anyone can gain read access on the paper only if it is accepted for

publication. Otherwise, the author(s) gain all the privileges on the paper. In

other words, authorizations on objects and tasks may depend on the outcome

of a task (such as its success or failure, or even the value of the outcome of
the task).

In this paper, we propose a Workflo~z Authorization Model (WAM) that can

dynamically change the time interval that specifies during which the authoriza-

tion is valid. By the term dynamic, we mean that the t ime interval associated

with the required authorization to perform a task changes according to the time

during which the task actually executes. Our model addresses the first two issues

enumerated above, i.e., synchronization of authorizat ion flow with the workflow

and specification of temporal constraints. In WAM, we introduce the notion of

Authorization Template (AT) which specifies the static parameters of the au-

thorization that can be defined during the design of the workfiow and can be

attached to the task. When the task actually starts execution, AT is used to

derive the actual authorization. Section 2 presents WAM and shows how syn-

chronization of authorization flow and workflow can be achieved.

We have presented a model of implementation of WAM using Petri nets, in

which we show how synchronization of authorization flow and workflow can be

achieved. Petri nets have been widely used for modeling synchronous activities.

Their graphical nature and ability to model concurrent processes in a natural

manner make them excellent tools for modeling workfiow authorization. More-

over, because of their strong mathematical foundation, Petri nets are good tools

for analysis of the authorization models. The main reason for adapting Petri nets

is that the safety problem 2 in authorization models is equivalent to the teacha-
bility problem in Petri nets. Since Petri nets have been extensively studied with

respect to this issue, representation of WAM allows us to adapt the existing

teachability analysis techniques of Petri nets to conducting the safety analysis

of WAM. (Similar representations such as finite state au tomata for the enforce-

ment of security specifications [5] do not possess the aforementioned advantages

of Petri nets.) We use a combination of two extended Petri net models - col-

ored and timed Petri nets - to represent WAM as a Petri net. The Petri net

representation of WAM is presented in section 3.

In section 4, we have presented a brief discussion of how WAM can be ex-
tended to specify role-based authorizations and separation of duties.

2 The safety problem can be stated as the following question: "Is there a reachable state
in which a particular subject possesses a particular privilege for a specific object?"

49

2 Workflow Authorization Model (WAM)

In this section, we propose a workflow authorization model (WAM) and show

how required authorizations can be assigned to subjects so that the time inter-
val during which an authorization is valid can be synchronized with workfiow
execution.

A workflow W can be represented as a partially ordered set of tasks {wl, w2,
. . . w , } , where each task wi in turn can be defined as a set OPi of a partial or
total order of operations {opl, op2.. , op,} that involve manipulation of objects

[9].
Most workflows can be perceived as coordinated execution of tasks that in-

volve processing of relevant objects by subjects (either humans or programs).
Thus one can imagine every task starts when one or more objects arrive to the

task for processing, and when the task finishes these objects leave. For example,
consider the workflow of check processing consisting of three tasks: (1) prepa-
ration, (2) approval and (3) issue of the check. For the second task, i.e., check
approval, to start, the object (check) has to be sent from the previous task (i.e.,
check preparation). When the approval task finishes, the approved check has to

be sent to the following task, i.e., check issuing. Therefore, we assume a task
starts only when one or more objects arrive to the task and when it finishes
one or more objects leave the task. If there exists no such object moving from

one task to the other, then one can assume the signal which acts as an input to

trigger the starting of the task as an object.

Processing of a task involves accessing certain objects by certain subjects

with certain privileges. To execute a task wi, relevant privileges on required
objects have to be granted to appropriate subjects. In this section, we develop

several definitions to construct WAM.

Let S = {Sl, s2 . . .} denote the set of subjects, 0 = {ol, o2.. .} the set of ob-

jects/~ = {71,72.. .} a finite set of objects types. The function Y : O ~ r That
is, if Y(oi) = 7j, then o / i s of type 7i. Let P R denote a finite set of privileges.

The following defines a time set and a time interval.

Def in i t i on 1.

1. Time set T = { r E ~ 3 [r > _ 0 } , a n d

2. a time interval {[rhru] E T • 7" [r~ _< 7"u} represents the set of all closed
intervals. []

The above definition dictates that the interval is guided by an lower and
a upper boundary, rl and ~'~,, respectively. We say an interval It1, v2] is within
[r3, r4] iff r3 < vl and r4 ~ r2 and a time ~'1 is within ['r3, r4] iff r3 _ rl < r4.

Def in i t i on 2. We define a task wi as: (OPi,/~ZN~, FOUT~, [Th, fuji), where OPi is
the set of operations to be performed in wi, l~zy~ C F is the set of object types

3 7~ represents the se~ of all real numbers.

50

allowed as inputs, FOLrT~ C F is the set of object types expected as outputs, and
[~'l~, r~] is the time interval during which wi must be executed. O

Here [rl~, 7"~i] specify temporal constraints stating the lower and upper bounds

of the time interval during which a task is allowed to be executed. As an example,

a temporal constraint may be specified as follows: "a task for preparing a check

must be started after time = 10 and finished by time = 20."

Def in i t i on 3. We define a task.instance, w-ins~i as: (O P ERi, INi, OUTi, Its,, rl,])
where OPERi is the set of operations performed during the execution of wi, INi
is the set of input objects to wi such that INi = {z E O]Y(z) e FINj}, OUTi
is the set of output objects from wl such that OUR - {z e OIT(z) e Fo~rT,},
and [%~, rf~] is the time interval during which wi has been executed. D

Whenever a task is executed, a task-instance will be generated. Thus, a task

wi may generate several w-insti's. ~-5~ and 0-i~ in the above definition indicate the

time at which that particular task-instance has started and finished execution,

respectively, whereas [~'I~, ~'u~] represent the time during which the task must be

executed. Note that [rl,, ru,] may differ from [rs~,rj,], however, to ensure the

temporal constraints, [r,,, rl,] must be within [TL, ru,]. To guarantee the above

requirement, we use a model based on Petri nets.

D e f i n l t l o n 4 . "We define an authorization as a 4-tuple A = (s,o, pr, ['rb, re]),

where subject s is granted access on object o with privilege pr at t ime rb and is

revoked at time ~-e. []

D e f i n i t i o n 5. Given a task wi, we define an authorization template AT(wi) as
a 3-tuple AT(w~) = (si, (7 i , -) ,p r~) where

(i) s~ e S ,
(ii) (7i, -) is an object hole which can be filled by an object ol of type 7/, and

(iii) pri is the privilege to be granted to si on object oi when (' y i , -) is filled by

oi. []

In the definition for AT(w~) (i) says that only subject s~ is allowed to execute

task wi, (ii) dictates that only objects of type "Yi can be processed by wi thus

the object hole (7i, -) allows objects of only type 7i to be filled in, and (iii) says

that si requires a privilege pri on the objects that arrive at wi for processing.

Authorization templates are attached to the tasks in a workflow. 4 A task wi

may have more than one authorization template attached to it. More ATs are

required in cases where there are more than one type of object to be processed,

or more than one subject is required to perform the processing.

4 The notion of templates can also be found in systems such as Hydra [26] where a
template is defined as (type, required-rights). This is used to generate a new capa-
bility for an object by checking the type and rights specified in the template with its
type and existing capability. Our notion of authorization template is different from
that is Hydra in the sense that it grants a new authorization to a subject on the
specified object if the object's type is same as that specified in the template.

51

To distinguish the subjects and privileges in A T from those in A, we often
use s (A T) and p r (A T) .

An authorization template allows us to specify rules such as "A subject

John is allowed to perform check preparation." These can actually be stated
during the design process by the workflow designer. However, the authorization
to prepare the check is granted to John only when the task of check preparation
actually starts. And this privilege will be revoked when this task is completed.
The following authorization derivation rule ensures this.

Def in i t ion 6 A u t h o r i z a t i o n D e r i v a t i o n R u l e . Given an authorization tem-

plate A T (w i) = (si, (7 / , -) , p r i) of task wi = (OPi , FIN, , FOUT,, [rll, rttl]), an
authorization Ai = (si, oi, pri, [r~,, r,,]) is derived as follows:
Grant tLule: Suppose object oi E l"zgv~ is sent to wi at "rat to start wi. Let the

starting time of wi be rs,.
If ra, < r,,,, then si ,-- s (A T) , pri ~ p r (A T) , r~ t *-- r~t, and
(if rat < vtt then rb, ~-- rh; otherwise rbt ~-- ra~)
Revoke l~ule: Suppose wi ends at t i t at which point oi leaves wi.

I f u i < rut, then r~ t ~- vii. n

We explain below how authorizations are derived from the authorization
templates. Suppose a workfiow consists of two tasks wi and w 1. Also suppose
there exists a temporal constraint on wi which states that wi must be executed
only during the time interval [Th, r=i]. Assume executing wi involves processing

and therefore accessing object o which is of type 7/. To start wi, an object o
of type 7i is first sent as an input to wi. ~ After completing the execution, wi

passes the object o to the next task wj. The authorization templates associated

with wi and wj are: A T (w i) = (si, (7 i , -) , p r i) and A T (w j) = (sj , (7 / , -) , P r j)

(in this case 7 / m a y equal 3'i).
Execution of wi starts when o arrives to wi. Let this time be rat. If "r~ t is

within the specified time interval [rh, rut] then wi will be started, and the object
hole in the authorization template is filled with o. At this point, the correspond-
ing authorization Ai is derived according to the authorization derivation rule as
follows: If r~ > rh, then the time at which the object arrives (rat) is assigned
to rbt, and the specified time before which the task must complete (r~q) is as-
signed to 7"et. Assigning r,, t as re t is required to ensure that Ai is not valid after
the specified interval even if the task is still executing beyond the upper bound
specified in the time constraint of wi. However, if rai < rh, then vll is assigned

to both rat. That is, even if the object arrives earlier than the specified time
interval, authorization is valid only from rtt but not from the time at which the

object arrives. If rat > ru, then the object is rejected. Thus si is given privilege
pri on o only when wi starts execution.

When wi finishes its execution (say at r/i), o is passed on to wj . Now, the
object hole in the authorization template A T (w j) is filled with o, while that in
A T (w i) becomes empty. If rll < r=~ then tel in Ai is modified such that re~ =

s If there are no input objects to be sent to wi, one can imagine that the input to start
a task can be treated as an object or a dummy object can be assumed.

52

~'t~" Otherwise, l"e~ is not modified. Thus si has privilege pri on o only until vl~ ,
i.e., only during the execution of wi and is taken away from it as soon as wi is
completed. Even if wi does not complete by time ~'u~, Ai is valid only until ~'~.
The validity of authorization is therefore guided by the specified duration. The
authorization thus created showing the duration that the authorization has been
granted for a particular task can be used for auditing purposes. In the following,
we explain the process of deriving authorizations by taking a real example.

Example 2. Consider once again the check processing workflow, which involves
the following three tasks, Wl, w~ and w3 denoting prepare check, approve check
and issue check, respectively. They can be expressed as follows:

wl = ({read request, prepare check}, {request, check), {check), [10,50])
~ = ({approve check), { check), { check), [20,60])
w3 -- ({issue check), { check), { check), [40,80])

Suppose the associated subjects for performing these processes are John,
Mary, and Ken, respectively. Now, instead of granting all ihe required privileges
for every involved staff in advance, we first create the following authorization
templates. (Appropriate authorizations to perform these tasks are not enforced
until the tasks are actually processed.)

ATI(wl) = (John, (request,-), read)
AT2(wl) = (John, (check,-), prepare)
AT(w2)= (Mary, (check,-), approve)
AT(w3)= (Ken, (check,-), issue)

Now suppose the requests for payment arrive as follows.

Request rql at 40
Request rq2 at 55.

Before any task starts, no one in the workflow has been granted any valid
authorization. At 40, the object rql arrives to wl. This object is filled into the
authorization template ATl(wt) = (John, (request,-), read), thereby generating
an authorization (John,rql, read, [40,50]). According to wl, a new object check,
say ck023 is created at wl. Thus AT2(wl) = (John, check(-), prepare) is filled
with ck023 thus generating another authorization (John, ck023, prepare, [40,50]).

Suppose John finishes wt at 47, then the authorizations on rql and ck023
are revoked for John by replacing the upper bound with 47, thus forming the
authorizations as (John, rql, read, [40,47]), and (John, ck023, prepare, [40,47]).
Also note that, at this point, a task-instance w-insQ = ({read rql, prepare
ck023}, {rql}, {ck023}, [40,47]) will also be generated.

Suppose at 47, check1 is sent to w2. Then the authorization template AT(wz)=
(Mary, (check,-),approve) would be filled, thus generating the authorization
(Mary, ck023, approve, [47, 60]). Assume w2 completes at 54. Then the autho-

53

rization is changed to (Mary, (ck023, approve, [47,54]). At this point the object
ck023 is sent to w3 which fills AT(w3)= (Ken, (check,-), issue) and generates an

authorization (Ken, ck023, issue, [54,80]). After the completion of this task (say
at 60) this authorization changes to (Ken, ck023, issue, [54,60]).

However, in case of rq2, since the upper limit in wl = ({read request, prepare
check}, {request}, {check}, [10,50]) is lower than the time at which rq2 arrives
at wl (55) the authorization template does not generate an authorization. Thus
the workflow cannot be started for rq2, and therefore, there will not be a task-
instance for rq2.

For the sake of simplicity, indeed, in this example we have omitted details such

as when a check is issued, it has to be assigned to an account and appropriate

authorizations such as read, write (to perform debit) have to be granted on this
account.

3 A P e t r i n e t r e p r e s e n t a t i o n o f t h e W o r k f l o w

A u t h o r i z a t i o n M o d e l

In this section, we present a model of implementation of WAM, which is based
on Petri nets (PN). PNs are a graphical as well as a mathematical modeling

tool. As a graphical tool PNs provide visualization (similar to flow charts, block
diagrams, and the like) of the workflow process, and as a mathematical tool
PNs enable analysis of the behavior of the workflow. Petri net representation

of the Workflow Authorization Model provides us with good analysis tools for

safety because the safety problem in the workflow authorization models can be
made equivalent (with an appropriate PN representation) to the teachability
problem in Petri nets. Thus, existing reachability analysis techniques, methods
and results can be directly adapted to WAM. Therefore, in this section, we first
provide a brief review of Petri nets. Then we show how Petri nets can be used

as a modeling tool to represent WAM. We use a combination of two extended

Petri net models - colored and timed Petri nets - to represent WAM as a Petri
net.

3.1 O ve rv i e w o f P e t r i N e t s

A Petri Net (PN) is a bipartite directed graph consisting of two kinds of nodes
called places and transitions where arcs (edges) are either from a place to a
transition or from a transition to a place. While drawing a PN, places are repre-
sented by circles and transitions by bars. A marking may be assigned to places.

If a place p is marked with a value k, we say that p is marked with k tokens.
Weights may be assigned to the edges of PN, however, in this paper we use only
the ordinary PN where weights of the arcs are always equal to 1.

De f in i t i on 7. [16] A Petri net (PN) is a 5-tuple, P N - (P, T, F, H, M) where

P = {Pl, p2 , Pn} is a finite set of places,
T = {~i, ~2 , t~,} is a finite set of transitions,

54

F _c (p x T) u (T x P) is a set of arcs, and

PrnT = @ and P U T # @.
H = F --~ {1, 2, 3 , . . .} is the weight of each arc,
M = P --* {0, 1, 2, 3 , . . .} is the marking. n

We use m(p) to denote the marking of place p (or number of tokens in p),

f(p, t) to denote an arc from p to ~ and f(t, p) to denote an arc from t to p.
A transition (place) has a certain number (possibly zero) of input and output

places (transitions).

D e f i n i t i o n 8. [16] Given a PN, the input and output set of transitions (places)
for each place pi (ti) are defined as,
the set of input transitions ofpi , denoted .pi = {tilf(ti,pi) E F}
the set of output transitions of p . denoted pi* = {tj If(P~, t j) E F}, and
the input and output set of places for each transition ti are defined as,

the set of input places of ti, denoted . t i = {pj]f(pj,ti) E F}
the set of output places of ti, denoted t i . = {pj[f(ti,pj) E F}. []

At any time a transition is either enabled or disabled. A transition ti is enabled
if each place in its input set . q has at least one token. An enabled transition

can fire. In order to simulate the dynamic behavior of a system, a marking in a
PN is changed when a transition fires. Firing of ti removes the token from each

place in oti, and deposits one into each place in ti*. The consequence of firing
a transition results in a change from original marking M to a new marking Mq
For the sake of simplicity, we assume firing of a transition is an instantaneous
event. The firing rules can be formally stated as follows:

D e f i n i t i o n 9.

1. A transition ti is said to be enabled if Vpj E . t i , (m(pj) > 0). An enabled
transition may fire.

2. Firing a transition ~i results in a new marking M ~ as follows: Vpj E *ti, and

Vp~ e ~ . , ,~ ' (p j) = m(p j) - 1 A m'(p~) = -~(pk) + 1 []

Ezample 3. Figure 2 shows an example of a simple PN in which more than one

firing sequence can be generated. It comprises of four places pl,p2,P3, and P4,
and two transitions t l and t2. The input and output sets of the places and
transitions are as follows: *tl = {Pl,P2}, *t2 = {P2}, Q| = {P3}, t2* = {P4},

/93 =- {tl}, "P4 = {t2}, Pt" = {tt}, and p2 = {ti,t2}.
The initial state of the PN is shown in figure 2(a) where Pl and P2 are both

marked with one token each. Since both places in the input set of Q are marked
(i.e., both m(pl), re(p2) > 0), Q is enabled. Similarly, t2 is also enabled as
re(p2) > 0. Although both t l and t2 are enabled, firing one of them will disable
the other. Thus, this net will result in two different firing sequences. Suppose
t l fires first, it results in a new marking where the tokens from Pl and p~ are
removed and a token is placed in P3, as shown in figure 2(b). Since P2 becomes
empty, this disables ~2. The second firing sequence would result in by firing t2

Pi

P2

(a) Initial marking

55

(b) if tl fires first

Fig. 2. An example PN

(c) if t 2 fires fb:st

first. It removes one token from p2 and deposits one into P4 thus resulting in

a marking as depicted in figure 2(c). Since P2 is empty, t l is disabled. Because

there are no more transitions to fire after firing either t l or t2, the PN stops

(said to be not live).

D e f i n i t i o n 10. A marking M is said to be reachable from a marking M0 if there

exists a sequence of firings that transforms M0 to M. []

Reachability is a fundamental property for studying the dynamic properties

of any system. It has been shown [12] that the reachability problem is decidable

although it takes at least exponential space and time.

3.2 P e t r i N e t R e p r e s e n t a t i o n o f W A M

We use a combination of timed and colored Petri nets [23, 15, 24] for representing

WAM. The definition for colored and timed Petri nets is as follows:

D e f i n i t i o n 11. A Colored + Timed Petri Net (CTPN) [10, 7] 6 is a tuple C T P N -
(PN, 17, C, E, D, IN) where

(i) P N = (P, T, F, M) is an ordinary Petri net.

(ii) A finite set of colors or types, called color sets 17 = {c'1, a2 , . . . }

(iii) C is a color function such that C(p) E 17MS 7 and Vy E m(p), C(y) E
(iv) E, the arc set, defined from F into a set such that:

Vf(p, I(*, p) F, EI c(p)Ms
(v) D is a delay function, D : P ---* T

(vi) I N is an interval function such that IN(t) = [rz(t), r , (t)] E {T x TI~'l(t) <

Although we use the term "timed," our timed PN is different from the traditionM
timed PN.

* ~MS represents a multi-set or a bag over ~7. For example, given a set ~7 = {a, b },
the multi-sets a, a + b, a + 25 are members of ~ms.

56

We represent a token in place p as (v, z) where v E C(m(p)) represents the
color of the token and z represents its t imestamp such that z 6 T. Whenever a
token moves from one place to another through a fired transition, its t imestamp
is modified as the firing time of the transition.

The above definition dictates that each token has a color (or type) which
is defined in the color set Z. Each place has a color set (i.e., denoted as C(p))
attached to it which specifies the set of allowable colors of the tokens to enter
the place. For a token to reside in a place, it must satisfy that the color of token

is a member in the color set of the place. Each arc f(p, 4) or f(t, p) is associated
with a color set such that this set is eonhained in the multi-set of C(p).

A transition t is enabled only if all of its input places p contain at least as
many tokens of the type as that specified in the arc set El(p,t) of the corre-

sponding f(p, t). An enabled transition fires after the delay D(p) = d specified
in its input place, t fires only if this time falls within the specified time interval

IN(t). Both the time interval and delay can be specified as variables instead of

fixed values. When more than one input place exists, the transition fires after
the maximum delay of all the input places has elapsed, s Upon firing, a transi-
tion t consumes as many tokens of colors from each of its input places p as those

specified in the corresponding E/(p,t) and deposits as many tokens with specified
colors into each output place p as those specified in the corresponding Ef(t,p).
That is, the arc set of f(p, t) specifies the number of tokens of specified colors
to be removed from p when t fires, and the arc set f (t , p) specifies the number
of tokens of specified colors to be inserted into p when t fires.

Marking of a place re(p) is expressed as a list of tokens with respect to
distinctive colors (e.g., re(p) =3(g), 2(r)). A transformation of colors may occur
during firing of a transition. The firing of a transition is determined by the firing
rules and the transformation by the arc set E.

The firing rules can be formally stated as follows:

D e f i n l t i o n l 2 . Given a transition ti such that IN(~i) = in(t), ~-,,(~)], Vpj 6 ,ti
and Vp~ E f;i|

1. ti is said to be enabled if E(pi,t~) C m(pj) and max{z + D(pj) where x =

max{zjlzj is the timestamp of all m(pj)}} is within IN(q). An enabled
transition may fire.

2. Suppose ti fires at n . Firing of ti results in a new marking M' as follows:
m'(pk) = m(pk) + Ef(t,,p~) 9 and the timestamp of each element in m'(p~) is

ri. [3

We now illustrate the working of CTPN with a simple example. Assume there
are two places Px and p2 and a transition t l as shown in figure 3(a) such that
the color sets of pl and P2 are C(p~) = {(a}, , (c>} and C(p~) = {(a), (c), (d>},

8 If two or more transitions have the same input set~ then more than one transition
is enabled. In that ease, only one transition fires. Selection of the tiring trans[tlon
among the many enabled tr~.nsitions is determined non-deterministica]ly.

Note that these two are bags but not sets.

57

(a) be/ore t I fires ~) ~ r t l f i r ~

C(pl) = {<a>, , <c> }

<a>+

[4, 81

<a.>+<d:

C(p~) = {<a>, <c>, <d> } <

f

g

P2

Pl ~ Pl
dl=3 all=3

<a>+ f

[4, 8]

g
<a>+<d.~

(:)

t l t I

P2

d 2

Fig. 3. An example showing the working of CTPN

respectively. The delay associated with Pl, i.e., dl = 3. The time interval of Q,
IN(Q) = [4, 8]. Suppose Pl is initially marked with three tokens: one of each
color ((a), 1), ((b), 3) and ((c), 4). The arc set associated with the two arcs f and
g are E l = (a} + (b) and Eg = (a) + (d). The corresponding CTPN is shown in
figure 3(a). Transition t l is enabled at time 7 because the maximum t imestamp

of all the tokens in Pi is 4 and the time delay of Pi is 3. Since E l C C(pt) and
and the enabled time is within IN(ti), tl is enabled. When t l fires, one token

of each color (a) and (b> are removed from Pi, and according to Eg one token
of each color (a> and (d) with timestamp = 7 are deposited in P2. The resulting
CTPN is shown in figure 3(b).

G

dli = "[:ti-~si if "gli>'gsi
= 0 otherwise

dui= Tui-qTsi if "Cui,'gsi

= 0 otherwise

dpi=e>0 if "~si>~:ui

= 0 otherwise

Fig. 4. A CTPN -~th temporal constraints

58

We have represented the temporal constraint by attaching r with the time
interval [r~(t), r , (t)] in the constraint as a gate on transition t. This means,

is enabled only during this time interval and is disabled during all other times

even if tokens are present in its input places. A detailed implementation of the

temporal constraint for each transition ~ is shown in figure 4. Note that the delays

d h and d,~ are not predefined constants but vary depending on the enabled t ime

(or token arrivM time) ra, as follows: If ~t > r~ , then dt~ = r h - ra~, otherwise

d h = 0. If r ~ > ra,, then du~ = r u t - ~'a~, otherwise du~ = 0. If ra~ > ru~,
then dp~ = e (where e is a small positive value). It works as follows: when tix

fires, Pq,Pi= and Pis are all marked. If r~ < rh, delay d h ensures that tit can

be enabled no sooner than "0~ thereby guaranteeing the lower boundary of the

constraint. If vii < rat _< ru~, d h becomes 0 which allows ti, to be enabled and

therefore fire immediately. When "ra~ > "ru~, both dh,du ~ are 0 and dp~ = e. Thus

ti= is enabled and therefore fires, disabling t i , . Since pi= is no longer marked,

Q, cannot fire, thus ensuring that authorizations are never granted if the object

arrives after the upper bound on the constrain~ has elapsed.

3.3 C T P N r e p r e s e n t a t i o n o f W A M

In the Petri net representation of WAM, we use two distinct color sets 1"2 and A

such that 12 U A = • and 12 fq A = 0, where we use 12 to denote the types of

objects and A to denote the different privileges.

To represent WAM as a CTPN, we use the following mapping:

1. Two transitions G and t f to represent the beginning and ending of a task,

and the time at which they fire denote r, and r l , respectively.

2. A time interval IN(t) at each t , and ty to represent the specified time

constraint of the task ([rh r ,]) .

3. A place to represent the execution state of the task w (depicted as a circle)

4. Different colored tokens to represent different types of objects (wl ,w2. . .) ,
i .e . , /2 = _P.

5. A place to represent each subject (denoted as a square in the diagram), i.e.,

s in AT(w). x~
6. Different colored tokens to represent different types of object-privilege pairs

(~ , A 2 . . .) , i.e., A = / ~ • PR.
7. A color set associated with circles (squares) to denote t, he allowed type of

objects (object-privilege pairs)

8. An arc set of f(p, t) (where p is a circle) to represent the type of input objects

to be sent to a task for execution.

9. An arc set of f(~,p) (where p is a circle) to represent the type of output

objects of the task.

io If a task is associated with multiple AT's with different subjects, then each subject
has to be represented as a different square. On the other hand, if a single subject
is involved in number of AT's for that task, then the arc function of the input arc
reflects this.

59

10. An are set of f (p , t) (where p is a square) to represent the privileges (repre-
sented as object-privilege pairs) to be granted when a task starts.

11. An arc set of f (t , p) (where p is a square) to represent the privileges to be
revoked when a task completes its execution.

12. A delay (d) associated with the place to represent the execution time of the
task. Note that d is associated with only places representing tasks (circles)
but not subjects (squares).

13. A token (v, z) to represent the movement of objects (privileges) to and from
the tasks (subjects) where v is the color of the token representing the type
of the object (object-privilege pair), and z the timestamp representing the
arrival time of the object ra.

sj
s i

di dj

Fig. 5. A CTPN representation of WAM for a Workflow with two tasks

Figure 5 shows a CTPN representation of the authorization model for a
workflow consisting of two tasks wi and wj. The execution state of wi and wj
are represented as two places (circles), and the subjects authorized to execute
these two tasks si and sj are represented as another two places (squares). t,~ fires
when an object of type 7/arrives, thus starting wi. A token of color 7/ is placed
in wi and another token (7i,pri) is placed in si. Thus privilege is granted to si
on the object only at this point. After di, the task completes its execution thus
firing tf~. This removes the objects from wi and place them in another place bij
since both El(w,,t l ,) and Ef(tl,,b~.j) is {(7i)}. Here bij represents the state after
wi finishes but before w i starts. Firing of t1~ also removes the privilege (7i, pri)
from sl, but does not deposit any token in bij.

The CTPN of the WAM for the workflow in example 2 is shown in figure
6. Figure 7 shows the state when wl starts execution. It shows objects and the
privileges as tokens in wi and "John," respectively. The two tokens in each place
correspond to request and check. Figures 8 and 9 depict the states when wl
finishes execution and w2 starts execution, respectively.

Jo
h

n

M
ar

y

K
en

d
1

d2

63

A
T

 l (
w

 1
) =

 (
Jo

tm
, (

re
qu

es
t,

-)
, r

ea
d)

A

T
(w

2
)

=
 (

M
ar

y
,

(c
h

ec
k

,
-)

,
ap

p
ro

v
e)

A

T
(w

3
)

=
 (

K
en

,
(c

h
ec

k
,

-)
,

is
su

e)

A
T

2(
w

 1
) =

 (
Jo

hn
,

(c
he

ck
.

-)
, p

re
pa

re
)

**
 R

em
ax

-k
: F

c,
 r s

in
ap

li
ci

ty
 of

 n
ot

at
to

n,
 t

he
 <

xe
qu

es
t>

 a
~d

 <
ch

ec
k

>

ty
pe

s
ar

e
su

bs
it

ut
ed

 w
it

h
<

rq
>

 a
nd

 <
ck

>
, r

es
pe

ct
iv

el
y

F
ig

.
6

.
C

T
P

N

fo
r
t
h
e
 W

A
M

o

f
th

e

C
h

e
c

k
 P

ro
c

e
ss

in
g

w

o
rl

d
io

w

Jo
l~

n
M

ar
y

K

en

<
rq

G

a
d

>

~
<

rq

re
a

d
>

""

I1
0

80
1

d
I

d2

63

A
IF

 (
Jo

hn
.

rq
l,

re

ad
,

[4
0,

50
])

A

T
(w

2
)

=
 (

M
ar

y
,

(c
h

ec
k

,
-)

,
ap

p
ro

v
e)

A

T
(w

3
)

=
 (

K
en

,
(c

h
o

ck
,-

),
 i

ss
u

e)

A
 I

~
 (

Jo
hn

,
ck

02
3,

 p
re

pa
re

,
[4

0,
50

])

O
~

O

F
ig

.
7

.
W

h
e

n

w
l

s
ta

r
ts

Jo
h

n

M
ar

y

K
en

<r

q,
 re

ad
>

-
.

.
.

.
.

_

.

I
k

t~
 2

ts
 2

L,
 p

p~
ov

v~
l

I'
~

"

t
t

<c
k.

 ts
su

e>
 _

.1

L

<
c~

is
su

r
--

<r
q>

 '
.

~

"

"
lc

:{
 11

0,
50

]
--

[2

 0
1

6
0

~
2

:,

 6
0

]'
~

<

;
:

0
~

0
,

80

]

d
l

d
2

d 3

A
 1

 i =
 (

Jo
hn

,
rq

l.
 r

ea
d,

 [
40

.4
7]

)
A

T
(w

2
)

=
 (

M
ar

y
,

(c
h

ec
k

,
-)

,
ap

p
ro

v
e)

A

T
(w

 3
)

=
 (

K
en

,
(c

he
ck

,
-)

,
is

su
e)

A
 1

~
 (

Jo
hn

.
ck

02
3,

 p
re

pa
re

.
I4

0.
47

])

F
ig

.
8

.
W

h
e

n
 w

j
fi

n
is

h
es

Jo
h

n

M
ar

y

<r
q,

 re
ad

>
K

en

<r
q,

 re
ad

>
�9

 <c
k,

 p
re

pa
re

>
, <

ok
, p

re
pa

re
>

<o
k,

 a
pp

ro
ve

>
.

.
ar

e>
J

--
~

<
r

--

13
1 2

ts

2
<

c
k

'a
p

p
r~

k"

.

.
.

~
k

 ..
..

>

J
L

<
o

L
i.

~
.e

>

,_

I's
l

tf
l

"
tl'

2
b2

3
ts

3
I ~

r
.

.
t

<r
q>

W

 3

d
l

d 2

A
 1

 ff
 (

Jo
hn

,
rq

 1
,

re
ad

, [
40

,4
7]

)
A

 2
 =

 (
M

ar
y

,
ck

0
2

3
,

ap
p

ro
v

e,
 [

,1
7,

60
])

A

T
(w

3
)

=
 (

K
en

,
(c

he
ck

, -
),

 i
ss

u
e)

A
 I

f
(J

oh
n,

 c
k0

23
, p

re
pa

re
,

[4
0,

47
])

o~

F
ig

.
9

.
W

h
e

n
 w

2
 s

ta
rt

s

62

4 E x t e n s i o n s t o t h e W o r k f l o w A u t h o r i z a t i o n M o d e l

In the WAM proposed in section 2 and its Petri net representation presented in
section 3, we have not incorporated all the desirable features of WAM described
in section 1. In this section, we will provide a brief explanation of how role-based

authorizations and separation of duties can be incorporated into our model.
Most commercial Workflow Management Systems (WFMSs) such as Lotus

Notes and Action Workflow enforce security based on organizational roles [14, 13,
9]. Privilege to perform a task is assigned to an organizational role rather than
to human users, and human users in turn are authorized to assume prespecified
roles. It is particularly beneficial in workfiow environments to facilitate dynamic
load balancing when a task can be performed by several individuals.

Note that the subject in the AT's can be specified in terms of roles [19, 21]
by replacing s with R in A T as follows:

A T = ((R , -) (% -) , pr, [~'l, ~.])11

For example, considering example 2 once again~ the corresponding A T ' s are

modified as:

() = (clerk, (request,-),read)
AT2(wl) = (clerk, (check,-), prepare)
AT(w2)= (supervisor, (check,-), approve)
AT(w3)= (clerk, (check,-), issue)

The authorization derivation rule to derive A from A T need to be modified

as follows.

Definition 13 Authorization Derivation Rule with Roles. Given an au-

thorization template A T (w i) = (R~, (7 i , -) , pri) of task wi = (OPi, FZN~, FouTt,
['rt~, ~'t,,]), an authorization Ai = (si, oi, Wi , [rbt, re~]) is derived as follows:
Grant Rule: Suppose object oi E Fztr is sent to w~ at rat to start wi. Let the
starting time of wi be ~',~.

If rat _< r~,, then si 6 Ri, pri *--- p r (AT) , ~'~ *-- ~',,,, and
(if ra~ _ rzt then ~'b~ ~ r~; otherwise ~'b~ ~ ~'~t.
Revoke Rule: Suppose wi ends at 1"/~ at which point oi leaves wi.

If v/~ < v~, then re~ ~- Tit. []

This authorization rule is similar to that in definition 6 except that we select
a subject from the set of subjects playing the specific role while assigning the
authorizations.

Separation of duties can be incorporated by including the identity of the
place (i.e. subject) to the token. That is, a token is of the form ((p, v>, z) where
p is the place v refers to the object type and z is the current timestamp.

11 Here the notion of (R, -) is similar to that of object hole. The actual authorization
is derived when this is filled by a subject.

63

5 Conclus ions and Future work

In this paper, we have presented an authorization model for workflow environ-

ments that is capable of synchronizing the authorization flow along with the

workflow. Our model is also capable of ensuring temporal constraints on tasks.

We have provided an implementation model based on Petri nets. We have also
shown how to incorporate authorizations that can be assigned to organizational

roles rather than to subjects and how separation of duties can be incorporated.

As part of future work, we intend to implement WAM and conduct the safety

analysis. Moreover, in this paper, we have not considered the various depen-

dencies among the tasks within a workflow. A complete model should take into

account these dependencies as well. We intend to combine the Petri net models

developed in [1] into the proposed CTPN.

References

1. Vijayalakshmi Atluri and Wei-Kuang Huang. An extended petri net model for
supporting workflows in a multilevel secure environment. In Proc. o / the lOth

IFIP WG 11.3 Workshop on Database Security, July 1996.
2. Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela Samarati. A temporal

access control mechanism for database systems. IEEE Transactions on Knowledge

and Data Engineering, 8(1):67-80, 1996.

3. Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. Authorizations in rela-
tional database management systems. In Proc. First A CM Con]erence on Com-

puter and Communications Security, Fairfax, VA, November 1993.

4. Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. High assurance discre-
tionary access control for object bases. In Proc. First ACM Con]erence on Com.
puter and Communications Security, Fairfax, VA, November 1993.

5. J. Biskup and C. Eckert. About the enforcement of state dependent security speci-
fications. In Proc. o/the 7th IFIP WG 11.3 Workshop on Database Security, pages
3-17, August 1993.

6. David D. Clark and David R. Wilson. A comparison of commercial and military
computer security policies. In Proc. IEEE Symposium on Security and Privacy,
pages 184-194, Oakland, California, April 1987.

7. Rene David and Hassane Alla. Petri Nets and Gra/cet - Tools for modeling discrete
event systems. Prentice Hall, 1992.

8. E. B. Fernandez, E. Gudes, and H. Song. A security model for object-oriented
databases. Proc. IEEE Symposium on Security and Privacy, pages 110-115, May
1989.

9. Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of work-
flow management: From process modeling to workflow automation infrastructure.
Distributed and Parallel Databases, pages 119-153~ 1995.

10. K. Jensen. Colour petri nets: A high level language for system design and anal-
ysis. In K.Jensen and G. Rozenberg, editors, High-level Pctri Nets - Theory and

Application~ pages 44-119. Springer-Verlag, Lecture Notes in Computer Science,
1991.

64

11. D. Johnscher and K.R. Dittrich. Argos - A configurable access control system
for interoperable environments. In Proc. of the 9th IFIP WG 11.3 Workshop on
Database Security, pages 39-63, August 1995.

12. S. R. Kosaraju. Decidability and teachability in vector addition systems. In Proc.
of the 1.~th ACM Symposium on Theory of Computing, pages 267-281, May 1982.

13. Lotus Corporation. Lotus Notes Administrator's Reference Manual, Release ~,
1996.

14. Raul Medina-Morn, Harry K.T. Wong, and Pablo Flores. ActionWorkflowtm as
the enterprise integration technology. Bulletin of IEEE Technical Committee on
Data Engineering, 16(2):49-52, 1993.

15. S. Morasca, M.Pezz~, and M. Trublan. Timed hlgh-level nets. Journal of Real-
Time Systems, 3:165 - 189, 1991.

16. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541-580, April 1989.

17. F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next-
generation database systems. ACM Trans. on Database Systems, 16(1):88-131,
March 1991.

18. Pierangela Samarati, Paul Ammann, and Sushi] Jajodia. Propagation of autho-
rizations in distributed database systems. In Proc. Second ACM Conference on
Computer and Communications Security, Fairfax, VA, November 1994.

19. Ravi S. Sandhu. Transaction control expressions for separation of duties. In Fourth
Computer Security Applications Conference~ pages 282-286, 1988.

20. Ravi S. Sandhu. Separation of duties in computerized information systems. In
Sushil Jajodia and Carl Landwehr, editors, Database Security~ IV: Status and
Prospects, pages 179-189. North Holland, 1991.

21. Ravi S. Sandhu. Role-based access control models. [EEE Computer, pages 38-47,
February 1996.

22. Ravl S. Sandhu
rights. In Proc.

and Gurpreet S. Suri. Non-monotonic transformation of access
IEEE Symposium on Security and Privacy, pages 148-161, Oak-

land, California, May 1992.
23. W.M.P van der Aalst. Interval timed coloured petri nets and their analysis. In

Application and Theory of Petri Nets 1993~ Proc. I~th International Conference,
volume 691, pages 453-472, Chicago, (USA), 1993. Springer-Verlag, Lecture Notes
in Computer Science.

24. K.M. van Hee, L.J. Somers, and M. Voorhoeve. Executable specifications for dis-
tributed information systems. In E.D. Falkenberg and P. Lindgreen, editors, Proc.
of the IFIP TC 8 /WG 8.1 Working Conference on Information System Concepts:
An In-depth Analysis, volume 691, pages 139-156, Namur, (Belgium), 1989. Else-
vier Science Publishers, Amsterdam.

25. Thomas Y.C. Woo and Simon S. Lain. Authorization in distributed systems: A
formal approach. In Proc. IEEE Symposium on Security and Privacy, pages 33-
50, Oakland, California, May 1992.

26. William A. Wulf, Roy Levin, and Samuel P. Harbison. HYDRA/C.mmp, An Ex-
perimental Computer System. McGraw-HilL 1981.

