
An Auto-adaptive Dead Reckoning Algorithm for 
Distributed Interactive Simulation 

Wentong Cai Francis B.S. Lee L. Chen 
School of Applied Science 

Nanyang Technological University 
Nanyang Avenue 
Singapore 639798 

Email: {aswtcai,ebslee}@ntu.edu.sg 

Abstract 

This paper describes a new, auto-adaptive algorith,m 
for dead reckoning in DIS. In general dead-reckoning 
algorithms use a fixed threshold to control the extmpo- 

lation errors. Since a fixed threshold cannot adequately 
han,dle the dynamic relationships between moving en- 
tities, a multi-level threshold scheme is proposed. The 
definition of threshold levels is based on the concepts of 
area of interest (AOI) and sensitive region (SR), and 
the levels of threshold are adaptively adjusted based on 
the relative distance between entities during the simv& 
tion. Various experiments were conducted. The results 
show that the proposed auto-adaptive dead reckoning 

algorithm can achieve considerable reduction in update 
packets without sacrificing accuracy in extrapolation. 
Keywords: Distributed Interactive Simulation (DIS), 
Dead Reckoning, Relevance Filtering, Extrapolation, 
Area of Interest (AOI), Sensitive Region (SR), Multi- 
level Threshold, Adaptive Algorithm. 

1. Introduction 

Distributed Interactive Simulation (DIS) is a tech- 
nology for linking simulations of various types at mu- 
tiple locations to create a realistic, complex, “virtual 
world” for the simulation of highly interactive activ- 
ities. The High Level Architecture (HLA) [lo] is a 
general purpose architecture designed to promote sim- 
ulation reuse and interoperability. This is achieved 
through the HLA concept of the federation: a com- 
posable set of interacting simulations. Moreover, t,he 
DIS community has developed the real-time platform 
reference federation object model (RPR FOM) [9] t,o 
provide the functionality of the DIS standard within 

the HLA environment. 

Since simulation entities are physically distributed 
in DIS, for a large scale DIS exercise, updating states of 
the simulation entities may generate a large amount of 
communication and thus saturate network bandwidth. 
To reduce t,he amount of communication, dead reckon- 
isng (DR.) technique, a fundamental feature of the DIS 
standard [5], was developed. 

Previous research works on dead reckoning have 
been largely focused on the evaluation of extrapola- 
tion equations [4, 61, and the performance investiga- 
tion of DR. mechanisms (e.g., [2, 31). In this paper, we 
introduce an adaptive dead reckoning algorithm that 
reduces the number of state update packets without 
sacrificing extrapolation accuracy. The performance of 
the algorithm will also be studied. 

111 general: dead reckoning algorithms use a fixed 
threshold, regardless of the relationship between the 
entities, to control errors in extrapolation. In order 
to maintain an adequate accuracy, a small threshold 
is usually used. However, since the exact position is 
not import,ant for entities that are far away from each 
other, unnecessary update packets may be generated. 
To reduce the number of update packets while main- 
taining adequate accuracy, in our adaptive dead reck- 
oning algorithm, t,he threshold is dynamically changed 
according to the relative distances between simulation 
entities. Concepts found in relevance filtering are used 
in our definition of threshold levels. 

Our work is different from the works done in the 
areas of relevance filtering (e.g., [l, 7, 8]), although we 
have the same goal, that is, to reduce the traffic on the 
network and to improve the scalability of DIS systems. 
Relevance filt,ering is concerned with eliminating the 
t,ransmission of irrelevant packets, whereas, our work 
focuses on reducing the number of state update packets 
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One-Step Two-Step 

lst Order xt = xtt + Q’T xt = xt’ + -7 

2”d Order xt = xtt + Uttr + 0.5nt,r2 xt = xt, + ut,r + 6.571;;,” +’ 

Table 1. Extrapolation Equations 

caused by the dead reckoning mechanism. 
This paper is arranged as follows: Section 2 will give 

a brief introduction on dead reckoning. The definition 
of threshold levels and our ada,ptive dead reckoning al- 
gorithm will be covered in Section 3. Section 4 will 
report some preliminary experiment results, and Sec- 
tion 5 will conclude the paper and outline our future 
works. 

2. Dead Reckoning 

One of the important aspects in DIS is the ability 
of each simulator to represent accurately in real-time 
the state of all simulation entities, including both lo- 
cal and remote, participating in the same DIS exer- 
cise. To reduce the number of state update packets, 
the DR technique is used. In addition to the high fi- 
delity model that maintains the accurate position about 
its own simulation entities, each simulator also has a 
dead reckoning model that estimates the position of all 
simulation entities (both local and remote). The antic- 
ipated position of an entity is usually calculated based 
on the last (or past) accurate state information of the 
entity using an extrapolation equation (see Table 1). So, 
instead of transmitting state update packets, the esti- 
mated position of a remote simulation entity can be 
readily available through a simple, local computation. 

To maintain the accuracy, after each update of its 
own simulation entity, a simulator needs to compare 
the true position of the entity obtained from the high 
fidelity model and its extrapolated position. If the dif- 
ference between the true and the extrapolated position 
is greater than a pre-defined threshold, a state update 
packet will need to be sent to other simulators. Ex- 
trapolation for the entity will then be corrected by all 
dead reckoning models at all simulators, based on the 
updated state of the entity. 

Threshold is an important parameter in the DR al- 
gorithm. It is used to control the accuracy of extrap- 
olation, and affects the number of entity state update 
packets generated. A small threshold makes DR al- 
gorithm generate state update packets at a higher fre- 
quency, but results in higher accuracy in the estimation 
of the entity’s position. On the other hand, the DR al- 
gorithm using large threshold generates fewer update 

packets, but its accuracy is also lower. 
Current extrapolation equations can be divided into 

two groups: one-step formulas and multi-step formu- 
las [6]. One-step formulas only use the last state update 
packet to extrapolate an entity’s position, whereas, 
multi-step formulas use the last two or more state up- 
date packets in the extrapolation, In our experiments, 
one-step, second order formula is used. 

In Table 1, xtl, ut/ and at, represent respectively 
the position, velocity and acceleration of the entity 
as found in the last state update packet. Similarly, 
xt”, ut/f and at,! are the position, velocity and acceler- 
ation of the second last state update packet. T is the 
elapse time from the last update. The formulas are 
used to extrapolate the position of the entity at time 
t = t’ + 7. 

3. Adaptive Multi-level Threshold 

Generally, DR algorithms are implemented with a 
fixed threshold. Although it is easy for the simulator 
to operate the DR model, a fixed threshold may not 
adequately handle the dynamic relationship between 
entities. In fact, the value of the threshold is relevant to 
the distance between entities. In DIS, each entity, like 
the real object it simulates, may have different int,erests 
in other entities around it. For example, when two 
entities are close to each other, each of them may need 
to pay more attention to the other’s movement. In 
this case, a small threshold should be used because 
the accuracy of extrapolation is important. However, 
when two entities are far away from each other, the 
position of one entity may become irrelevant to the 
other entity. Thus, a large threshold will be sufficient 
under this situation. 

To determine the levels of threshold, concepts in rel- 
evance filtering [7] are used. In relevance filtering, area 
of interest (AOI) of an entity, also called reachability 
region in [l], is defined as a circle with a constant ra- 
dius around the entity. The length of radius is usually 
defined according to the entity type. Hence, the A01 
of all entities (either local or remote) can be easily de- 
termined by a simulator. In addition to AOI, an entity 
also has its sensitive region (SR). If one entity moves 
into another entity’s SR, a collision will likely happen. 
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Level 4 3 2 1 
Description no overlap overlap of AOIs in another in another 

of AOIs with another entity entity’s A01 entity’s SR 

Table 2. Threshold Levels 

(h) CC) Cd) 

Figure 1. Multi-level Threshold Illustration 

By using AOI, SR and the distance between entities, 
four threshold levels can be defined, with level 1 being 
the smallest threshold and level 4 the largest. They 
are listed in Table 2 and illustrated in Figure 1. In the 
figure, the circle with a solid line represents the entity’s 
AOI, and the circle with a dotted line represents the 
entity’s SR. 

When an entity A’s A01 is not overlapped with any 
other entity’s A01 (part (a) of Figure l), the level 
4 threshold will be used in entity A’s extrapolation. 
Large errors are allowed in the extrapolation, and up- 
date packets will be sent at a low frequency. In this 
case, entity A’s movement is not interesting to other 
entities. and extrapolation can be less accurate. 

When the entity A’s A01 is overlapped with the en- 
tity B’s AOI, the extrapolation of entity A’s movement 
needs to be more accurate. There are three cases: 

l If entity A is in entity B’s SR (part (d) of Figure l), 
to prevent entity B from making misjudgment on 
collision, level 1 threshold (that is, the smallest 
threshold) has to be used in entity A’s extrapola- 
tion. In this case, entity A’s update packet will be 
emitted most frequently, but its extrapolation will 
be the most accurate. 

l If entity A is outside entity B’s SR but within its 
A01 (part (c) of Figure l), level 2 threshold will 
be adopted. To avoid missing the detection of 
an approaching entity, entity B needs to have a 
more accurate position of entity A. However, there 
is no danger of making misjudgment on collision. 
Therefore, a small threshold will be adequate in 
entity A’s extrapolation. 

l If entity A is outside entity B’s A01 (part (b) of 
Figure l), level 3 threshold will be used. Since the 
two AOIs are overlapped, one entity may move 

t,o anot,her’s A01 in a short period of time. The 
extrapolation of A’s position still needs to be accu- 
rate, but the requirement is less rigid. Entity A’s 
update packets do not need to be sent frequently 
because A is not in B’s AOI. So, a relatively large 
threshold can be used in entity A’s extrapolation. 

In all these cases, extrapolation of A needs to be accu- 
rate, though the degree of accuracy required is differ- 
ent. 

Threshold values at different threshold levels may be 
determined by factors in the simulation environment or 
entit,y characteristics. For example, the value of level 4 
threshold could be limited by an entity’s AOI, and the 
value of level 1 threshold may be defined by the colli- 
sion distance between entities. In a DIS exercise, any 
entity’s movement is restricted by the network delay 
and the time spent by the simulator to process simu- 
lation events. For this reason, judgment of collision of 
simulation entities is not like that of real objects. Gen- 
erally, if the distance between two entities is less than a 
pre-defined collision distance, a collision is considered 
to have happened in the simulation. 

For each local simulation entity e that belongs to a 
simulator i, these four levels of threshold will be used 
in the extrapolation. If an error is detected at a certain 
threshold level k, an update packet will be sent only to 
the simulators with a remote entity re whose threshold 
level is k or less. An update packet will be sent to all 
other simulators only when an error is detected at the 
t,hreshold level 4. In this way, update packets will be 
sent only to the relevant entities, and the amount of 
communication will be reduced. 

For a local entity e and a remote entity re, 
TLevel [e ,re] gives the threshold level used to decide 
when to send re e’s update packet. It determines how 
often re may receive e’s update packets. Different re- 
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/* for simulator i *f 
I* assume that V e and re, TLevel [e ,rel = 4 initially * / 
for every received packet of remote entity re do 

for each local entity e E simulator i do { 
Dist = distance(e.re); 
if Dist < ,401(e) + AOl(re) then 

if Dist < SR(re) then 
TLevel[e,rel = 1; 

else 
if Dist < AOl(re) then 

TLevel Ce,rel = 2; 
l?lX 

TLevel Ce,rel = 3; 
I?& 

TLevelle,rel = 4; 

I 

Figure 3. Algorithm to Determine Threshold Level 

/* for simulator i */ 
for each .state update of local entity e do [ 

extrapolate e’s position based on the past state information; 
/* send update packet if necessary ‘/ 
switch Diff = ITruePoaition -ExtrapolatedPosition 1 { 

case Diff > LevelOneThreshold 
multicast an update packet to the group 

{simulator k / re E simulator k A TLevel Ce,rel = 1); 
break; 

caseDiff > LevelTvoThreshold 
multicast an update packet to the group 

(simulator k 1 re E simulator k A TLevel Ce,rel < 2); 
break; 

case Diff > LevelThreeThreshold 
multicast an update packet to the group 

snnu ator k / re E simulator k A TLevel [e .rel 5 3); 
h e:k: ’ I 3 

caseDiff > LevelFourThreshald 
broadcast an update packet to all other simulators; 
break; 

default 

Figure 4. Algorithm to Send Update Packets 

85 



Figure 2. Multi-level Threshold Example 

mote entities may have different threshold levels. For 
example, in Figure 2, different threshold levels will be 
used in entity A’s extrapolation. Update packets will 
be sent only to entity B when an extrapolation error 
happens at threshold level 2. If an extrapolation error 
occurs at threshold level 3, an update packet will then 
be sent to both entities B and C. An update packet will 
be sent to all other entities (that is, entities B, C, D and 
E) when an error happens at threshold level 4. 

Our adaptive, multi-level dead reckoning algorithm, 
therefore, consists of two parts: 

. For each remote entity re, to determine its thresh- 
old level when its update packet is received; and 

l For each local entity e, to determine the sending 
of its update packet when its state changes. 

The first. part of the algorithm is given in Figure 3, 
where function .401(e) returns the radius of A01 of 
entity e, and function SR(e) returns the radius of SR. 
The second part of the algorithm is given in Figure 4. 

4. Experiment Results 

To test the algorithm, two experiments were con- 
ducted. In both experiments, a simulated environ- 
ment was created and a program was written to simu- 
late what should happen in a distributed environment. 
Statistics, such as total number of update packets gen- 
erated and average extrapolation accuracy, were col- 
lected during the simulation. 

4.1. Experiment One 

In the first experiment, there are two entities: one is 
a motionless entity (ME) at position (110,O); the other 
entity (referred to as a test entity, TE) is moving along 
a circle with center (0, 0) and radius 100. The radiuses 
of ME’s SR and A01 are 10 and 50 respectively. The 
level 1, 2, 3 and 4 threshold values of TE are 5, 10, 20 
and 40 respectively. The collision distance is assumed 

to be 5. The unit used for distance in the experiment 
is meter. 

Figure 5 shows the the trajectory of TE’s movement 
(that is, the smooth sinusoid curve) and its extrapola- 
tion in z dimension when the fixed threshold values are 
used. Note that the trajectory of ME is the straight line 
at 110. The number of update packets (that is, DRNUN) 
is also shown in the figure. When the threshold is 5 
(Figure 5(a)), the extrapolation is sufficiently accurate 
for ME to make correct collision decisions. When the 
threshold is 10 (Figure 5(b)), since the extrapolation is 
less accurate, the ME may make some wrong collision 
judgments as TE is moving close to it. However, fewer 
update packets are generated in this case (14 compared 
to 19). 

Figure 6 shows the trajectory of TE’s movement 
when the threshold value is adjusted adaptively. It can 
be seen that when TE is approaching ME, the extrap- 
olation error becomes smaller and smaller. Therefore, 
the extrapolation of TE at the closest point to ME is 
accurate enough for ME to make the correct judgment. 
In addition, since a large threshold will be used when 
TE is far away from ME, the number of update pack- 
ets generated is also low. In fact, the least number of 
updat.e packets (that is, 13) is generated in this case. 
So, by adaptively adjusting threshold values, we can 
achieve the required accuracy as in the case shown in 
Figure 5(a) as well as the low generation rate of update 
packets as in the case shown in Figure 5(b). 

4.2. Experiment Two 

In the second experiment, an entity may move ran- 
domly in a 500m x 7OOm two dimensional space, and 
is represented by a circle with radius of 2.5m. For this 
simple experiment, we assume that all entities have the 
same A01 and SR. The radiuses of an entity’s A01 and 
SR are defined as 32~1 and 10m respectively. The num- 
ber of entities in the experiment varies from 16 to 32, 
and each entity is simulated by a simulator. The posi- 
tion of each entity is updated every 5 sec. At each 
update, the speed and direction of each entity may 
change randomly. The maximum speed is 3 m/set, 
and the maximum acceleration is 0.5. The simulation 
duration is 10 minutes. 

In our experiments, the extrapolation accuracy is 
defined by average error in AOI and avero@ etr~r in 
SR. The average error in A01 is calculated using the 
procedure shown in Figure 7. For each position update, 
the averageerror between the real and the extrapolated 
positions is calculated. For each entity e, we are only 
interested in those entities whose real position is in e’s 
A01 (that is, the set Se). The average error in SR can 



Figure 5. Extrapolation with Constant Threshold 
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Figure 6. Extrapolation with Multi-level Threshold 



be calculated similarly if SR is used instead of A01 in 
Se’s definition. 

Threshold 2 8 12 18 24 

# of PD”s 9705 67% 6203 5638 5230 
Avg E in A*, 0.5645 2.4,71 3.0295 5.6165 8.6891 
Avg E in SR 0.5573 2.4637 3.6056 5.1140 6.7460 

32 entities in the simulnfion 

Table 3. Fixed Threshold Results 

Table 3 shows the number of PDU (Packet Data 
Unit) generated and the average error in A01 and SR 
when fixed threshold is used in the dead reckoning algo- 
rithm. (The unit of threshold is meter.) The following 
are some observations obtained from these numbers: 

l As the threshold used increases, fewer PDUs will 
be generated, but the average error in A01 (and 
SR) increases. 

l In most of the cases, there is no large dil&rence 
between the average error in A01 and the average 
error in SR, since the fixed threshold is used. 

l Except when the smallest threshold (i.e., 2) is 
used, for all other cases the average errors are 
large, compared to the entity’s size. 

Table 4. Multi-Level Threshold Results 

Table 5. Multi-Level Threshold Values 

Table 4 shows the number of PDUs generated and 
the average error in A01 and SR when our multi- 
level threshold dead reckoning algorithm is used. The 

threshold values used in different levels are listed in 
Table 5. 

It can be seen from Table 4 that there is a great 
reduction in the average error in SR, compared to the 
average error in AOI. In our algorithm, if entity A is in 
entity B’s SR, a minimum threshold will be used in the 
dead reckoning so that B will receive A’s update packets 
most frequently. In this case, B will know A’s position 
most accurately. 

Compared to the case where the threshold is fixed 
at the minimum (that is, 2), using multi-level thresh- 
old, the reductions on the number of PDUs are 29% 
and 19% for 16 and 32 entities respectively. The av- 
erage errors in A01 increase. But, the average errors 
in SR are unaffected in both scenarios. Compared to 
the case where the threshold is fixed at 8, the number 
of PDUs increases slightly when multi-level threshold 
is used. The percentage increments are 2% and 14% 
respectively for 16 and 32 entities. However, the a~- 
wage errors in SR are reduced greatly by about 77% 
for both situations. The average errors in A01 are also 
reduced. 

In summary, the above two experiments demon- 
strate the feasibility of our adaptive, multi-level thresh- 
old dead reckoning algorithm. The results show that 
using multi-level threshold in dead reckoning, adequate 
extrapolation accuracy can be achieved with the re- 
duced number of state update packets. 

5. Conclusions 

This paper describes a new, auteadaptive algorithm 
for dead reckoning in DIS. Since using a fixed threshold 
to control extrapolation error may either generate un- 
necessary update packets (when threshold is small) or 
result in mistakes in the simulation (when threshold is 
large), a multi-level threshold scheme is proposed in the 
paper. The definition of threshold levels are based on 
the concepts of A01 and SR, and the levels of threshold 
are adaptively adjusted based on the relative distance 
between entities during the simulation. Depending on 
the threshold level, an update package is sent only to 
the relevant entities. Thus, a close-by entity may re- 
ceive more update packages than an entity that is far 
away. To test the scheme, two experiments were con- 
ducted. The results show that the multi-level thresh- 
olds can adequately reflect the dynamic relationship 
between entities. It reduces the rate of transmitting 
update packages while maintaining adequate accuracy 
in the extrapolation. 

In our future work, we will look at the implemen- 
tation details of the algorithm. In particular, we will 
study how this algorithm can fit into the framework 



SumOfErrorl = 0; 
NunUpdates = 0; 
/* (a) calculate the sum of average errors for all updates * / 
for each position update do { 

NumEntities = 0; 
SumOfError2 = 0; 
/* (b) calculate the sum of average errors for all entities in each update */ 
for each entity e do { 

SumOfError3 = 0; 
J’ (c) calculate the sum of errors relative to an entity e */ 
Se = {et 1 e! real position in e’s AOI); 
for each entity e! in Se do 

SumOfError3 = SumofError3 + the difference between 
the real position of e! and its extrapolated position; 

SumOffirrorZ = SumOfError2 + SumOfError3 / SizeOf 
NumEntities++; 

1 
SumOffirrorl = SumOfErrorl + SumOtErrorZ / NunEntities; 
NumUpdates++; 

j* (d) calculate the average error in A01 */ 
AvgErrorInAOI = SumOffirrorl / NumUpdates; 

Figure 7. Procedure to Calculate The Average Error in AOI 

of the High-Level Architecture (HLA). We will also in- 
vestigate a more systematic approach to defining the 
threshold values for different threshold levels. In ad- 
dition, further experiments will also be conducted for 
more realistic scenarios. 
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