
An Auto-adaptive Dead Reckoning Algorithm for
Distributed Interactive Simulation

Wentong Cai Francis B.S. Lee L. Chen
School of Applied Science

Nanyang Technological University
Nanyang Avenue
Singapore 639798

Email: {aswtcai,ebslee}@ntu.edu.sg

Abstract

This paper describes a new, auto-adaptive algorith,m
for dead reckoning in DIS. In general dead-reckoning
algorithms use a fixed threshold to control the extmpo-

lation errors. Since a fixed threshold cannot adequately
han,dle the dynamic relationships between moving en-
tities, a multi-level threshold scheme is proposed. The
definition of threshold levels is based on the concepts of
area of interest (AOI) and sensitive region (SR), and
the levels of threshold are adaptively adjusted based on
the relative distance between entities during the simv&
tion. Various experiments were conducted. The results
show that the proposed auto-adaptive dead reckoning

algorithm can achieve considerable reduction in update
packets without sacrificing accuracy in extrapolation.
Keywords: Distributed Interactive Simulation (DIS),
Dead Reckoning, Relevance Filtering, Extrapolation,
Area of Interest (AOI), Sensitive Region (SR), Multi-
level Threshold, Adaptive Algorithm.

1. Introduction

Distributed Interactive Simulation (DIS) is a tech-
nology for linking simulations of various types at mu-
tiple locations to create a realistic, complex, “virtual
world” for the simulation of highly interactive activ-
ities. The High Level Architecture (HLA) [lo] is a
general purpose architecture designed to promote sim-
ulation reuse and interoperability. This is achieved
through the HLA concept of the federation: a com-
posable set of interacting simulations. Moreover, t,he
DIS community has developed the real-time platform
reference federation object model (RPR FOM) [9] t,o
provide the functionality of the DIS standard within

the HLA environment.

Since simulation entities are physically distributed
in DIS, for a large scale DIS exercise, updating states of
the simulation entities may generate a large amount of
communication and thus saturate network bandwidth.
To reduce t,he amount of communication, dead reckon-
isng (DR.) technique, a fundamental feature of the DIS
standard [5], was developed.

Previous research works on dead reckoning have
been largely focused on the evaluation of extrapola-
tion equations [4, 61, and the performance investiga-
tion of DR. mechanisms (e.g., [2, 31). In this paper, we
introduce an adaptive dead reckoning algorithm that
reduces the number of state update packets without
sacrificing extrapolation accuracy. The performance of
the algorithm will also be studied.

111 general: dead reckoning algorithms use a fixed
threshold, regardless of the relationship between the
entities, to control errors in extrapolation. In order
to maintain an adequate accuracy, a small threshold
is usually used. However, since the exact position is
not import,ant for entities that are far away from each
other, unnecessary update packets may be generated.
To reduce the number of update packets while main-
taining adequate accuracy, in our adaptive dead reck-
oning algorithm, t,he threshold is dynamically changed
according to the relative distances between simulation
entities. Concepts found in relevance filtering are used
in our definition of threshold levels.

Our work is different from the works done in the
areas of relevance filtering (e.g., [l, 7, 8]), although we
have the same goal, that is, to reduce the traffic on the
network and to improve the scalability of DIS systems.
Relevance filt,ering is concerned with eliminating the
t,ransmission of irrelevant packets, whereas, our work
focuses on reducing the number of state update packets

a2
1084.4097/99 $10.00 0 1999 IEEE

One-Step Two-Step

lst Order xt = xtt + Q’T xt = xt’ + -7

2”d Order xt = xtt + Uttr + 0.5nt,r2 xt = xt, + ut,r + 6.571;;,” +’

Table 1. Extrapolation Equations

caused by the dead reckoning mechanism.
This paper is arranged as follows: Section 2 will give

a brief introduction on dead reckoning. The definition
of threshold levels and our ada,ptive dead reckoning al-
gorithm will be covered in Section 3. Section 4 will
report some preliminary experiment results, and Sec-
tion 5 will conclude the paper and outline our future
works.

2. Dead Reckoning

One of the important aspects in DIS is the ability
of each simulator to represent accurately in real-time
the state of all simulation entities, including both lo-
cal and remote, participating in the same DIS exer-
cise. To reduce the number of state update packets,
the DR technique is used. In addition to the high fi-
delity model that maintains the accurate position about
its own simulation entities, each simulator also has a
dead reckoning model that estimates the position of all
simulation entities (both local and remote). The antic-
ipated position of an entity is usually calculated based
on the last (or past) accurate state information of the
entity using an extrapolation equation (see Table 1). So,
instead of transmitting state update packets, the esti-
mated position of a remote simulation entity can be
readily available through a simple, local computation.

To maintain the accuracy, after each update of its
own simulation entity, a simulator needs to compare
the true position of the entity obtained from the high
fidelity model and its extrapolated position. If the dif-
ference between the true and the extrapolated position
is greater than a pre-defined threshold, a state update
packet will need to be sent to other simulators. Ex-
trapolation for the entity will then be corrected by all
dead reckoning models at all simulators, based on the
updated state of the entity.

Threshold is an important parameter in the DR al-
gorithm. It is used to control the accuracy of extrap-
olation, and affects the number of entity state update
packets generated. A small threshold makes DR al-
gorithm generate state update packets at a higher fre-
quency, but results in higher accuracy in the estimation
of the entity’s position. On the other hand, the DR al-
gorithm using large threshold generates fewer update

packets, but its accuracy is also lower.
Current extrapolation equations can be divided into

two groups: one-step formulas and multi-step formu-
las [6]. One-step formulas only use the last state update
packet to extrapolate an entity’s position, whereas,
multi-step formulas use the last two or more state up-
date packets in the extrapolation, In our experiments,
one-step, second order formula is used.

In Table 1, xtl, ut/ and at, represent respectively
the position, velocity and acceleration of the entity
as found in the last state update packet. Similarly,
xt”, ut/f and at,! are the position, velocity and acceler-
ation of the second last state update packet. T is the
elapse time from the last update. The formulas are
used to extrapolate the position of the entity at time
t = t’ + 7.

3. Adaptive Multi-level Threshold

Generally, DR algorithms are implemented with a
fixed threshold. Although it is easy for the simulator
to operate the DR model, a fixed threshold may not
adequately handle the dynamic relationship between
entities. In fact, the value of the threshold is relevant to
the distance between entities. In DIS, each entity, like
the real object it simulates, may have different int,erests
in other entities around it. For example, when two
entities are close to each other, each of them may need
to pay more attention to the other’s movement. In
this case, a small threshold should be used because
the accuracy of extrapolation is important. However,
when two entities are far away from each other, the
position of one entity may become irrelevant to the
other entity. Thus, a large threshold will be sufficient
under this situation.

To determine the levels of threshold, concepts in rel-
evance filtering [7] are used. In relevance filtering, area
of interest (AOI) of an entity, also called reachability
region in [l], is defined as a circle with a constant ra-
dius around the entity. The length of radius is usually
defined according to the entity type. Hence, the A01
of all entities (either local or remote) can be easily de-
termined by a simulator. In addition to AOI, an entity
also has its sensitive region (SR). If one entity moves
into another entity’s SR, a collision will likely happen.

83

Level 4 3 2 1
Description no overlap overlap of AOIs in another in another

of AOIs with another entity entity’s A01 entity’s SR

Table 2. Threshold Levels

(h) CC) Cd)

Figure 1. Multi-level Threshold Illustration

By using AOI, SR and the distance between entities,
four threshold levels can be defined, with level 1 being
the smallest threshold and level 4 the largest. They
are listed in Table 2 and illustrated in Figure 1. In the
figure, the circle with a solid line represents the entity’s
AOI, and the circle with a dotted line represents the
entity’s SR.

When an entity A’s A01 is not overlapped with any
other entity’s A01 (part (a) of Figure l), the level
4 threshold will be used in entity A’s extrapolation.
Large errors are allowed in the extrapolation, and up-
date packets will be sent at a low frequency. In this
case, entity A’s movement is not interesting to other
entities. and extrapolation can be less accurate.

When the entity A’s A01 is overlapped with the en-
tity B’s AOI, the extrapolation of entity A’s movement
needs to be more accurate. There are three cases:

l If entity A is in entity B’s SR (part (d) of Figure l),
to prevent entity B from making misjudgment on
collision, level 1 threshold (that is, the smallest
threshold) has to be used in entity A’s extrapola-
tion. In this case, entity A’s update packet will be
emitted most frequently, but its extrapolation will
be the most accurate.

l If entity A is outside entity B’s SR but within its
A01 (part (c) of Figure l), level 2 threshold will
be adopted. To avoid missing the detection of
an approaching entity, entity B needs to have a
more accurate position of entity A. However, there
is no danger of making misjudgment on collision.
Therefore, a small threshold will be adequate in
entity A’s extrapolation.

l If entity A is outside entity B’s A01 (part (b) of
Figure l), level 3 threshold will be used. Since the
two AOIs are overlapped, one entity may move

t,o anot,her’s A01 in a short period of time. The
extrapolation of A’s position still needs to be accu-
rate, but the requirement is less rigid. Entity A’s
update packets do not need to be sent frequently
because A is not in B’s AOI. So, a relatively large
threshold can be used in entity A’s extrapolation.

In all these cases, extrapolation of A needs to be accu-
rate, though the degree of accuracy required is differ-
ent.

Threshold values at different threshold levels may be
determined by factors in the simulation environment or
entit,y characteristics. For example, the value of level 4
threshold could be limited by an entity’s AOI, and the
value of level 1 threshold may be defined by the colli-
sion distance between entities. In a DIS exercise, any
entity’s movement is restricted by the network delay
and the time spent by the simulator to process simu-
lation events. For this reason, judgment of collision of
simulation entities is not like that of real objects. Gen-
erally, if the distance between two entities is less than a
pre-defined collision distance, a collision is considered
to have happened in the simulation.

For each local simulation entity e that belongs to a
simulator i, these four levels of threshold will be used
in the extrapolation. If an error is detected at a certain
threshold level k, an update packet will be sent only to
the simulators with a remote entity re whose threshold
level is k or less. An update packet will be sent to all
other simulators only when an error is detected at the
t,hreshold level 4. In this way, update packets will be
sent only to the relevant entities, and the amount of
communication will be reduced.

For a local entity e and a remote entity re,
TLevel [e ,re] gives the threshold level used to decide
when to send re e’s update packet. It determines how
often re may receive e’s update packets. Different re-

a4

/* for simulator i *f
I* assume that V e and re, TLevel [e ,rel = 4 initially * /
for every received packet of remote entity re do

for each local entity e E simulator i do {
Dist = distance(e.re);
if Dist < ,401(e) + AOl(re) then

if Dist < SR(re) then
TLevel[e,rel = 1;

else
if Dist < AOl(re) then

TLevel Ce,rel = 2;
l?lX

TLevel Ce,rel = 3;
I?&

TLevelle,rel = 4;

I

Figure 3. Algorithm to Determine Threshold Level

/* for simulator i */
for each .state update of local entity e do [

extrapolate e’s position based on the past state information;
/* send update packet if necessary ‘/
switch Diff = ITruePoaition -ExtrapolatedPosition 1 {

case Diff > LevelOneThreshold
multicast an update packet to the group

{simulator k / re E simulator k A TLevel Ce,rel = 1);
break;

caseDiff > LevelTvoThreshold
multicast an update packet to the group

(simulator k 1 re E simulator k A TLevel Ce,rel < 2);
break;

case Diff > LevelThreeThreshold
multicast an update packet to the group

snnu ator k / re E simulator k A TLevel [e .rel 5 3);
h e:k: ’ I 3

caseDiff > LevelFourThreshald
broadcast an update packet to all other simulators;
break;

default

Figure 4. Algorithm to Send Update Packets

85

Figure 2. Multi-level Threshold Example

mote entities may have different threshold levels. For
example, in Figure 2, different threshold levels will be
used in entity A’s extrapolation. Update packets will
be sent only to entity B when an extrapolation error
happens at threshold level 2. If an extrapolation error
occurs at threshold level 3, an update packet will then
be sent to both entities B and C. An update packet will
be sent to all other entities (that is, entities B, C, D and
E) when an error happens at threshold level 4.

Our adaptive, multi-level dead reckoning algorithm,
therefore, consists of two parts:

. For each remote entity re, to determine its thresh-
old level when its update packet is received; and

l For each local entity e, to determine the sending
of its update packet when its state changes.

The first. part of the algorithm is given in Figure 3,
where function .401(e) returns the radius of A01 of
entity e, and function SR(e) returns the radius of SR.
The second part of the algorithm is given in Figure 4.

4. Experiment Results

To test the algorithm, two experiments were con-
ducted. In both experiments, a simulated environ-
ment was created and a program was written to simu-
late what should happen in a distributed environment.
Statistics, such as total number of update packets gen-
erated and average extrapolation accuracy, were col-
lected during the simulation.

4.1. Experiment One

In the first experiment, there are two entities: one is
a motionless entity (ME) at position (110,O); the other
entity (referred to as a test entity, TE) is moving along
a circle with center (0, 0) and radius 100. The radiuses
of ME’s SR and A01 are 10 and 50 respectively. The
level 1, 2, 3 and 4 threshold values of TE are 5, 10, 20
and 40 respectively. The collision distance is assumed

to be 5. The unit used for distance in the experiment
is meter.

Figure 5 shows the the trajectory of TE’s movement
(that is, the smooth sinusoid curve) and its extrapola-
tion in z dimension when the fixed threshold values are
used. Note that the trajectory of ME is the straight line
at 110. The number of update packets (that is, DRNUN)
is also shown in the figure. When the threshold is 5
(Figure 5(a)), the extrapolation is sufficiently accurate
for ME to make correct collision decisions. When the
threshold is 10 (Figure 5(b)), since the extrapolation is
less accurate, the ME may make some wrong collision
judgments as TE is moving close to it. However, fewer
update packets are generated in this case (14 compared
to 19).

Figure 6 shows the trajectory of TE’s movement
when the threshold value is adjusted adaptively. It can
be seen that when TE is approaching ME, the extrap-
olation error becomes smaller and smaller. Therefore,
the extrapolation of TE at the closest point to ME is
accurate enough for ME to make the correct judgment.
In addition, since a large threshold will be used when
TE is far away from ME, the number of update pack-
ets generated is also low. In fact, the least number of
updat.e packets (that is, 13) is generated in this case.
So, by adaptively adjusting threshold values, we can
achieve the required accuracy as in the case shown in
Figure 5(a) as well as the low generation rate of update
packets as in the case shown in Figure 5(b).

4.2. Experiment Two

In the second experiment, an entity may move ran-
domly in a 500m x 7OOm two dimensional space, and
is represented by a circle with radius of 2.5m. For this
simple experiment, we assume that all entities have the
same A01 and SR. The radiuses of an entity’s A01 and
SR are defined as 32~1 and 10m respectively. The num-
ber of entities in the experiment varies from 16 to 32,
and each entity is simulated by a simulator. The posi-
tion of each entity is updated every 5 sec. At each
update, the speed and direction of each entity may
change randomly. The maximum speed is 3 m/set,
and the maximum acceleration is 0.5. The simulation
duration is 10 minutes.

In our experiments, the extrapolation accuracy is
defined by average error in AOI and avero@ etr~r in
SR. The average error in A01 is calculated using the
procedure shown in Figure 7. For each position update,
the averageerror between the real and the extrapolated
positions is calculated. For each entity e, we are only
interested in those entities whose real position is in e’s
A01 (that is, the set Se). The average error in SR can

Figure 5. Extrapolation with Constant Threshold

.... ---7--.~: j ~: -....._..i

Figure 6. Extrapolation with Multi-level Threshold

be calculated similarly if SR is used instead of A01 in
Se’s definition.

Threshold 2 8 12 18 24

of PD”s 9705 67% 6203 5638 5230
Avg E in A*, 0.5645 2.4,71 3.0295 5.6165 8.6891
Avg E in SR 0.5573 2.4637 3.6056 5.1140 6.7460

32 entities in the simulnfion

Table 3. Fixed Threshold Results

Table 3 shows the number of PDU (Packet Data
Unit) generated and the average error in A01 and SR
when fixed threshold is used in the dead reckoning algo-
rithm. (The unit of threshold is meter.) The following
are some observations obtained from these numbers:

l As the threshold used increases, fewer PDUs will
be generated, but the average error in A01 (and
SR) increases.

l In most of the cases, there is no large dil&rence
between the average error in A01 and the average
error in SR, since the fixed threshold is used.

l Except when the smallest threshold (i.e., 2) is
used, for all other cases the average errors are
large, compared to the entity’s size.

Table 4. Multi-Level Threshold Results

Table 5. Multi-Level Threshold Values

Table 4 shows the number of PDUs generated and
the average error in A01 and SR when our multi-
level threshold dead reckoning algorithm is used. The

threshold values used in different levels are listed in
Table 5.

It can be seen from Table 4 that there is a great
reduction in the average error in SR, compared to the
average error in AOI. In our algorithm, if entity A is in
entity B’s SR, a minimum threshold will be used in the
dead reckoning so that B will receive A’s update packets
most frequently. In this case, B will know A’s position
most accurately.

Compared to the case where the threshold is fixed
at the minimum (that is, 2), using multi-level thresh-
old, the reductions on the number of PDUs are 29%
and 19% for 16 and 32 entities respectively. The av-
erage errors in A01 increase. But, the average errors
in SR are unaffected in both scenarios. Compared to
the case where the threshold is fixed at 8, the number
of PDUs increases slightly when multi-level threshold
is used. The percentage increments are 2% and 14%
respectively for 16 and 32 entities. However, the a~-
wage errors in SR are reduced greatly by about 77%
for both situations. The average errors in A01 are also
reduced.

In summary, the above two experiments demon-
strate the feasibility of our adaptive, multi-level thresh-
old dead reckoning algorithm. The results show that
using multi-level threshold in dead reckoning, adequate
extrapolation accuracy can be achieved with the re-
duced number of state update packets.

5. Conclusions

This paper describes a new, auteadaptive algorithm
for dead reckoning in DIS. Since using a fixed threshold
to control extrapolation error may either generate un-
necessary update packets (when threshold is small) or
result in mistakes in the simulation (when threshold is
large), a multi-level threshold scheme is proposed in the
paper. The definition of threshold levels are based on
the concepts of A01 and SR, and the levels of threshold
are adaptively adjusted based on the relative distance
between entities during the simulation. Depending on
the threshold level, an update package is sent only to
the relevant entities. Thus, a close-by entity may re-
ceive more update packages than an entity that is far
away. To test the scheme, two experiments were con-
ducted. The results show that the multi-level thresh-
olds can adequately reflect the dynamic relationship
between entities. It reduces the rate of transmitting
update packages while maintaining adequate accuracy
in the extrapolation.

In our future work, we will look at the implemen-
tation details of the algorithm. In particular, we will
study how this algorithm can fit into the framework

SumOfErrorl = 0;
NunUpdates = 0;
/* (a) calculate the sum of average errors for all updates * /
for each position update do {

NumEntities = 0;
SumOfError2 = 0;
/* (b) calculate the sum of average errors for all entities in each update */
for each entity e do {

SumOfError3 = 0;
J’ (c) calculate the sum of errors relative to an entity e */
Se = {et 1 e! real position in e’s AOI);
for each entity e! in Se do

SumOfError3 = SumofError3 + the difference between
the real position of e! and its extrapolated position;

SumOffirrorZ = SumOfError2 + SumOfError3 / SizeOf
NumEntities++;

1
SumOffirrorl = SumOfErrorl + SumOtErrorZ / NunEntities;
NumUpdates++;

j* (d) calculate the average error in A01 */
AvgErrorInAOI = SumOffirrorl / NumUpdates;

Figure 7. Procedure to Calculate The Average Error in AOI

of the High-Level Architecture (HLA). We will also in-
vestigate a more systematic approach to defining the
threshold values for different threshold levels. In ad-
dition, further experiments will also be conducted for
more realistic scenarios.

References

[l] M. Bassiouni, M.-H. Chiu, M. Loper and M. Gar-
nsey. Relevance Filtering for Distributed Interac-
tive Simulation. Computer Systems Science &Y En-
gineering, Vo1.13, No.1, pp.39-47, Jan 1998.

[Z] Corentin Durbach and Jean-Michel Fourneau. Per-
formance Evaluation of a Dead Reckoning Mech-
nism. In Proc. of IEEE 2nd Int. Workshop on Dis-
tributed Interactive Simulation and Real-time Ap-
plications, pp.23-29, July 1998.

[3] G. Figart, C. Slaton and S. Slosser. Using Encum-
brance Factors to Improve Dead Reckoning Ap-
proaches to Object Regeneration and Modeling. In
Proc. of 14th DIS Workshop on Standards for the
Interoperability of Distributed Simulation, March
1996.

[4] L. Foster and P. Maassel. The Characterization of
Entity State Error and Update Rate for DIS. In
Proc. of 11th DIS Workshop on Standards for the

Interoperability of Distributed Simulation, pp.61-
73, Sept. 1994.

[5] IEEE 1278. Standard for Information Technology
- Protocols for Distributed Interactive Simulation
Applications. 1993.

[6] Kuo-Chi Lin. Dead Reckoning and Distributed In-
teractive Simulation. In Proc. of SPIE Conference
(AeroSense’95), Orlando Florida, April 1995.

[7] Katherine L. Morse. Interest Management in La&e-
Scale Distributed Simulation. Dept. of Information
& Computer Science, Univ. of California at Irvine,
Technical Report #96-27, 1996.

[8] S.J. Rak and Daniel J. van Hook. Eva&ion of
Grid-based Relevance Filtering for Multicast Group
Assignment. In Proc. of 14th DIS Workshop on
Standards for the Interoperability of Distributed
Simulation, pp.739.747, March 1996.

[9] G. C. Shanks. The RPR FOM, A Reference Feder-
ation Object Model to Promote Simulation Inter-
operability. In Proc. Spring Simulation Interoper-
ability Workshop, 1997.

[lo] U.S. Department of Defense. High Level Architec-
ture Interface Specification, Version 1.3, April 1998.
(Available at: http://www.dmso.mil/hla/)

89

