
An Auto-generated Nonlinear MPC Algorithm for Real-Time Obstacle
Avoidance of Ground Vehicles*

Janick V. Frasch1,2,5, Andrew Gray2, Mario Zanon3,
Hans Joachim Ferreau3,4, Sebastian Sager5, Francesco Borrelli2, and Moritz Diehl3

Abstract— We address the problem of real-time obstacle
avoidance on low-friction road surfaces using spatial Nonlinear
Model Predictive Control (NMPC). We use a nonlinear four-
wheel vehicle dynamics model that includes load transfer. To
overcome the computational difficulties we propose to use
the ACADO Code Generation tool which generates NMPC
algorithms based on the real-time iteration scheme for dynamic
optimization. The exported plain C code is tailored to the model
dynamics, resulting in faster run-times in effort for real-time
feasibility. The advantages of the proposed method are shown
through simulation.

I. INTRODUCTION

Recent contributions to theory and algorithms have en-
larged the application spectrum of real-time Model Predictive
Control (MPC), cf. [3], [5], [10], [18], [26]. In the area
of semi-autonomous vehicle control, MPC has become an
attractive method for the reliable tracking of feasible tra-
jectories by ground vehicles [7]. The real-time trajectory
generation however, particularly in the presence of obstacles,
remains very challenging. Trajectories generated by using
linearized or oversimplified models can ignore important
nonlinear dynamics that play a major role when the vehicle
is operated close to the limits of its handling capability. This
often demands a compromise in the MPC design between
limited capabilities and violation of system constraints, par-
ticularly in the presence of external disturbances and model
uncertainties. On the other hand, due to the computational
demand of nonlinear optimization methods, nonlinear MPC
(NMPC) is still not generally applicable to agile autonomous
vehicles, thus limiting the usability of detailed nonlinear
vehicle models.

* This research was supported by Research Council KUL: PFV/10/002
Optimization in Engineering Center OPTEC, GOA/10/09 MaNet and
GOA/10/11 Global real- time optimal control of autonomous robots
and mechatronic systems. Flemish Government: IOF/KP/SCORES4CHEM,
FWO: PhD/postdoc grants and projects: G.0320.08 (convex MPC),
G.0377.09 (Mechatronics MPC); IWT: PhD Grants, projects: SBO LeCoPro;
Belgian Federal Science Policy Office: IUAP P7 (DYSCO, Dynamical
systems, control and optimization, 2012-2017); EU: FP7-EMBOCON (ICT-
248940), FP7-SADCO (MC ITN-264735), ERC ST HIGHWIND (259 166),
Eurostars SMART, ACCM.

1Interdisciplinary Center for Scientific Computing (IWR), University
of Heidelberg. Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
janick.frasch at iwr.uni-heidelberg.de

2Department of Mechanical Engineering, UC Berkeley. 2169 Etcheverry
Hall, Berkeley, CA, 94720, USA

3Department of Electrical Engineering, KU Leuven. Kasteelpark Aren-
berg 10, B-3001 Leuven, Belgium

4ABB Corporate Research. Segelhofstrasse 1K, CH-5405 Baden-Dättwil,
Switzerland

5Institute for Mathematical Optimization, Faculty of Mathematics, Otto
von Guericke University Magdeburg, Magdeburg, Germany

A simplification approach frequently chosen in previous
work to reduce the computational effort is the decomposition
of the problem into a two-level NMPC problem, featuring a
high level path planner utilizing a simple model on a long
prediction horizon, and a low level path follower utilizing a
more detailed model on a short prediction horizon.

In [13] a motion primitive path planner is used at the high
level, while a 6-state nonlinear bicycle model similar to [7]
is used at the lower level. This approach however limits the
vehicle maneuverability to only a subset of motions since the
path planner selects a sequence of primitives from an offline
precomputed look-up table.

The authors of [12] use an NMPC path planner based on
a point-mass vehicle model, while basing the path follower
on the more detailed model from [7]. The decomposition
allowed for real-time implementation, but the trajectories
generated by the point-mass NMPC path planner were re-
ported to not always be feasible for the actual vehicle due to
oversimplification and unmodeled dynamics (cf. [13], [11]).

An additional limiting factor to the vehicle maneuverabil-
ity common to the work mentioned above is the assumption
of a constant longitudinal vehicle speed. In an attempt to
overcome this, the authors used a transformation of time-
dependent vehicle dynamics into position-dependent vehicle
dynamics for the high level path planner in [11]. Obstacle
constraints can thus be modeled only depending on the free
variable of the ODE system, independent of the vehicle ve-
locity. The vehicle model includes dynamics for its position
and velocity states and features a nonlinear Pacejka-type tire
model [22]. This significantly improved the behavior of the
controller proposed in [11] but the simplified bicycle model
utilized for the planner still generated paths that could not
be accurately followed by the low level controller.

In this paper we propose an auto-generated tailored NMPC
algorithm for the path planning problem. It is based on the
Real-Time Iteration (RTI) scheme [5] for Bock’s multiple
shooting method [2]. The generation of customized source
code for optimization problems originates in [21], [20].
Recently this idea has been extended in [16] to the generation
of fast NMPC algorithms, resulting in the open source
ACADO Code Generation tool.

We extend the model used in [11] to a four-wheel vehicle
dynamics model that models wheel dynamics and load
transfer. Using the presented algorithmic approach we obtain
faster computation and significantly faster feedback times,
while increasing the accuracy of the model prediction. A
simulation using the same parameters as in [11] is shown to

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 4136

run in computation times of only a few milliseconds with
a feedback delay of far less than a millisecond. A more
computationally complex simulation, utilizing the higher-
fidelity vehicle model, is shown to run well within real-
time requirements. Since the ACADO Code Generation tool
exports self-contained static memory C code it is particularly
suited for an application on vehicle embedded hardware.

The article is structured as follows. Section II describes the
vehicle model and details the spatial reformulation of the
resulting optimal control problem. Section III presents the
proposed algorithm for the real-time solution of the NMPC
problem. Section IV shows simulation results for a passenger
car in an obstacle avoidance scenario on an icy road similar
to the scenario experimentally validated in [11]. Section V
summarizes and concludes the paper.

II. SYSTEM MODEL

In [11] a 6 degrees of freedom (DoF) vehicle model was
used for the obstacle avoidance problem. We extend this
model in the following to account for some of the unmodeled
dynamics, namely wheel dynamics and load transfer. This ex-
tended vehicle model is also presented in [25], where we give
slightly more details. The time-dependent dynamic system is
eventually transformed into a track progress-dependent one
in a similar fashion as presented in [11].

The vehicle chassis is modeled as a rigid body, described
by its global position in the X-Y plane, its global orientation,
and the corresponding velocities in a local x-y-z frame. The
four wheels are modeled as independent bodies with only
spinning inertia. Roll, pitch and heave (vertical displacement)
motions of the car are neglected, but the effect of these mo-
tions on the vehicle load change, assuming a rigid suspension
model, is modeled. We consider a car with front steering and
rear wheel drive. The control inputs are the steering rate δ̇,
the accelerating engine torque T a and four braking torques
T b

fl , T b
fr, T

b
rl , T

b
rr. Throughout this paper we use subscripts

fl, fr, rl, rr to denote quantities corresponding to the front left,
front right, rear left and rear right wheel, respectively. For
clarity of notation we define F := {f, r} and S := {l, r} and
use F × S = {fl, fr, rl, rr}.

A. Chassis Dynamics

We use an orthonormal reference frame in the vehicle’s
center of gravity (CoG) with the z-direction pointing up-
wards. The chassis dynamic equations used in this paper are

mv̇x = mvyψ̇ + F xfr + F xfl + F xrr + F xrl + FD, (1a)

mv̇y = −mvxψ̇ + F yfr + F yfl + F yrr + F yrl , (1b)

Izψ̈ = a(F yfl + F yfr)− b(F
y
rl + F yrr)

+ c(F xfr − F xfl + F xrr − F xrl), (1c)

Ẋ = vx cosψ − vy sinψ, (1d)

Ẏ = vx sinψ + vy cosψ, (1e)

where m denotes the mass and Iz the moment of inertia of
the car. The distances of the tires from the vehicle’s CoG

Fig. 1. Tire forces and slip angles of the 4-wheel vehicle model in inertial
coordinates (cf. [25]). The tires’ directions of movement are indicated by
green vectors.

are characterized by a, b and c, cf. Figure 1. The vehicle’s
yaw angle ψ is obtained by direct integration of ψ̇ as is
the steering angle δ from input δ̇. The drag force due to
air resistance is denoted by FD, while F x·· and F y·· denote
the components of the tire contact forces. These forces are
computed from a combined longitudinal and lateral Pacejka-
type tire slip model. For each tire �? ∈ F × S , the inputs
to this model are the side slip angles α�? (cf. Figure 1), the
slip ratio κ�? = ω�?Re−v�?

v�?
representing the longitudinal slip

during acceleration and deceleration, and the normal load
F z�?. Here, v�? denotes the wheel speed with respect to the
ground, while Re denotes the tire radius. The rotational speed
of the wheel denoted by ω�?. The influence of road friction
is modeled by a parameter µ ∈ [0, 1] that also enters the
tire model. We refer to [25] and [22] for more details on the
tire model; the precise model implementation used for this
paper, including all parameters, can be found at [14].

B. Wheel Dynamics

The wheels’ rotational velocities ω·· are computed from
a first order model in the accelerating torques T a

·· and the
braking torques T b

··, taking the wheel moment of inertia Iw

into account. Note that the consideration of wheel dynamics
enhances the predictive quality of the model but also ren-
ders the underlying ODE system stiff, making its solution
computationally significantly more challenging. The dynamic
equations are given by

ω̇�? =
1

Iw (T a
�? + T b

�? −ReF
l
�?), ∀ � ? ∈ F × S (2)

where Re is taken to be the tire radius. We assume individual
wheel braking and include a differential model for the total
acceleration torque T a (w.l.o.g. assuming a rear-wheel driven
car), yielding

T a
f? = 0 ∀ ? ∈ S,

T a
r? = T a

(
1− ωr?

ωrl + ωrr

)
∀ ? ∈ S.

4137

ṡ

σv

]

σY

σX
[

xvyv ψe

ye

σψ

σρ

σψ̇

Fig. 2. The curvilinear coordinate system. The dynamics are derived about
a curve defining the center-line of a track. The coordinate s defines the arc-
length along the track. The relative spatial coordinates ey and eψ are shown.

C. Vertical Forces

We obtain the vertical loads F z·· acting on each wheel as
the equilibrium of the main body w.r.t. the vertical forces, and
roll and pitch torques. For a height h between the vehicle’s
CoG and its projection onto the wheelbase, equilibrium
longitudinal and lateral load transfer, ∆̃z

lon and ∆̃z
lat, are given

by

2 ∆̃z
lon = (F xfl + F xfr + F xrl + F xrr)

h

a+ b
,

2 ∆̃z
lat = (F yfl + F yfr + F yrl + F yrr)

h

2 c
.

Note that this formulation of the load transfer implies an
algebraic loop through the tire model, which can be relaxed
by introducing first order models with time constant τLT for
the load transfer states ∆z

lon and ∆z
lat,

∆̇z
• =

1

τLT
(∆̃z
• −∆z

•) ∀ • ∈ {lon, lat}. (3)

Denoting the rest normal loads by F̄ z·· , the vertical forces
F z·· are then given by

F zfl = F̄ zfl −∆z
lon −∆z

lat,

F zfr = F̄ zfr −∆z
lon + ∆z

lat,

F zrl = F̄ zrl + ∆z
lon −∆z

lat,

F zrr = F̄ zrr + ∆z
lon + ∆z

lat.

Future work aims at including suspension effects to im-
prove predictive quality of the model. Note that a suspension
model intrinsically avoids the aforementioned algebraic loop.

D. Spatial Reformulation of Dynamics

We propose a model transformation from time-dependent
vehicle dynamics to track-dependent (spatial) dynamics,
similar to [11], [17]. This allows a natural formulation of
obstacles and general road bounds under varying vehicle

State Unit Description

vx m
s

Longitudinal velocity of vehicle

vy m
s

Lateral velocity of vehicle

ψ̇ rad
s

Vehicle’s yaw rate

eψ rad Yaw angle relative to path

ey m Deviation from center-line

δ rad Steering angle

ω··
rad
s

Rotational wheel speeds

∆z
· N Vertical load transfer

Control Range Unit Description

δ̇ [−1, 1] – Normalized front steering rate

Ta [0, 1] – Normalized engine torque

Tb·· [−1, 0] – Normalized brake torques

TABLE I
STATES AND CONTROL INPUTS OF THE SPATIAL VEHICLE MODEL.

speed. Note that similar ideas have been developed in area
of robotics before, see, e.g., [23].

We project the X-Y coordinates on a curve σ which we
take to be the center-line of a road. The ODE model is then
stated w.r.t. the independent variable s, the parametrization
of σ by its arc-length. The states X,Y, ψ are replaced by
ey :=

∥∥∥[X,Y]
T − [Xσ, Y σ]

T
∥∥∥
2

and eψ := ψ − ψσ , where

[Xσ, Y σ]T and ψσ denote the position and orientation of
the current reference point on the path given by s. Figure 2
details the states in the new curvilinear coordinate system.
The full system of states ξ and control inputs ν for this
vehicle model are listed in Table I.

The spatial dynamics of the state vector ξ in relation to
the time dependent dynamics are

ξ′ :=
dξ

ds
=
dξ

dt

dt

ds
.

If ṡ 6= 0 is assumed at any time, by the inverse function
theorem we have dt

ds = 1
ṡ . It therefore holds

ξ′ =
1

ṡ
ξ̇,

where ξ̇ is defined in Equations (1), (2), and (3). For the
computation of ṡ we observe in Figure 2 that

vσ = (ρσ − ey) ψ̇σ and

vσ = vx cos(eψ)− vy sin(eψ)

holds, where ψ̇σ is the rate of change of the path orientation
ψσ and ρσ is the radius of local curvature of σ. The vehicle’s
velocity along σ, ṡ = ds

dt , is then given by

ṡ = ρσ ψ̇s =
ρσ

ρσ − ey
(vx cos(eψ)− vy sin(eψ)) .

Note that ρσ only depends on the parametrization s through

ρσ(s) =
(
d2

ds2σ(s)
)−1

but is independent of system inputs.

4138

If necessary, time information may be recovered by inte-
grating dt

ds along σ:

t(s) =

∫ s

s0

1

ṡ(τ)
dτ .

Inertial coordinates may be recovered by a transformation
from the spatial coordinates to the global coordinates:

X = Xσ − ey sin(ψσ)

Y = Y σ + ey cos(ψσ)

ψ = ψσ + eψ .

E. Optimal Control Problem
Using the spatial dynamics formulation, obstacle and road

boundary constraints are modeled as simple bounds on the
state vector. When considering a variable vehicle speed,
this avoids the speed dependent (and thus implicitly input-
dependent) non-convex path constraints from the generic
time-dependent formulation in the inertial coordinate system.
The decision in navigating to the left or right of an obstacle
is assumed to be made by the obstacle recognition algorithm.

Denoting the right-hand side function of the ODE system
by f and the vectors of state and control input by by ξ and ν,
we yield the following optimal control problem to be solved
repeatedly online for a receding horizon of finite length in
space:

min
ξ(·), ν(·)

∫ sf

s0

‖ξ(τ)− ξref(τ)‖2Q + ‖ν(τ)‖2R dτ

+‖ξ(sf)− ξref(sf)‖2PLQR
(5a)

s.t. ξ′(s) = f (s, ξ(s), ν(s)) (5b)
ey(s) ∈ [eyL(s), eyU (s)] (5c)

ν(s) ∈ [−1, 1]× [0, 1]× [−1, 0]4 (5d)
ξ(s0) = ξ0 , (5e)

where Equations (5b) through (5d) hold for all points of the
current prediction horizon s ∈ [s0, sf]. Here, ‖ ·‖{Q,R,PLQR}
denote the Euclidean norm with weighting matrices Q, R
and PLQR, respectively, while ξ0 ∈ R12 is the current state
measurement and ξref : R → R12 denotes the parametric
reference vector. The terminal weighting matrix PLQR is
obtained as the solution of the Riccati equation, computed
with the chosen weighting matrices Q and R. Lower and
upper road bounds, taking obstacles into account, are denoted
by eyL(·) and eyU (·), respectively.

III. NUMERICAL SOLUTION METHOD

The underlying class of optimal control problems (OCP)
can be generalized to the following form:

min
ξ(·),ν(·)

∫ sf

s0

‖ξ(τ)− ξref(τ)‖2Q + ‖ν(τ)− νref(τ)‖2R dτ

+ E(ξ(sf)) (6a)
s.t. ξ′(s) = f (s, ξ(s), ν(s)) (6b)

ξ(s0) = ξ0 (6c)

ξ(s) ≤ ξ(s) ≤ ξ(s) ∀s ∈ [s0, sf] (6d)

ν ≤ ν(s) ≤ ν ∀s ∈ [s0, sf] . (6e)

As above, the nonlinear right-hand side function f contains
the model equations given w.r.t. the independent variable s,
where E(·) is a Mayer term. The initial condition is denoted
by ξ0 ∈ Rn. ξ, ξ : R → Rn and ν, ν ∈ Rm denote bounds
for the n-dimensional state vector and the m-dimensional
control vector. The least-squares objective function aims at
tracking a state reference trajectory ξref : R→ Rn, taking a
control regularization term into account. Weighting matrices
are given by Q ∈ Rn×n and R ∈ Rm×m.

A. The Direct Multiple Shooting Method

OCPs of this kind can efficiently be treated using Bock’s
multiple shooting method [2], which transforms the opti-
mal control problem into a finite dimensional optimization
problem. The space of feasible control inputs is reduced
to a finite-dimensional one by using basis functions with
local support (see [2], [19]). State and control bounds are
relaxed to a finite time grid. The resulting least-squares
nonlinear programming (NLP) problem is solved by a tai-
lored generalized Gauss-Newton method. This includes an
extensive exploitation of the arising structures. In particular a
condensing technique is applied for a problem size reduction
of the quadratic programming problems (QP), cf. [19].

B. The Real-Time Iteration Scheme for Nonlinear MPC

For the receding horizon nonlinear MPC framework OCP
(6) needs to be solved in each iteration for the current state
measurement ξ0 ∈ Rn, shifting state bounds and reference
functions by the corresponding s-progress of the system, ∆s.

This repeated solution of the OCP can be performed effi-
ciently by the real-time iteration (RTI) scheme which builds
on the direct multiple shooting method and has originally
been proposed in [5]. In contrast to a regular SQP scheme,
the RTI scheme performs only one iteration per sampling
time. Initializations are taken from the previous sampling
time and shifted, if appropriate. Particularly, a large share of
expensive operations like sensitivity generation and matrix-
condensing can be performed in a so called preparation
phase prior to observing the current state measurement ξ0.
The feedback phase between observing ξ0 and providing
process feedback ν(s0) then reduces to a single solution of
the parametric reduced-size QP (see [5] for details). Due to
the possibility of active-set changes in the repeatedly solved
QP, performance is guaranteed to be not worse than that of a
linear least-squares tracking controller, see [5]. Contractivity
as well as nominal stability of the RTI scheme have been
shown [4], [6].

C. Code Generation

In order to provide sufficiently fast feedback for the
real-time implementation of the proposed MPC prob-
lem, we make use of automatic source code genera-
tion, which recently became popular for convex optimiza-
tion problems [20]. These ideas have been extended to
nonlinear dynamic optimization problems in form of the
ACADO Code Generation tool [1], [16]. This open-source
software exports a tailored RTI algorithm that contains only

4139

the absolutely essential algorithmic components. Problem-
specific structure such as fixed dimensions or sparsity pat-
terns is exploited during the code generation process to avoid
irrelevant or redundant computations.

The ACADO Code Generation tool makes use of symbolic
differentiation for generating plain C-code for all function
and derivative evaluations. All problem dimensions are hard
coded allowing static memory allocation. Moreover, inner
loops of linear algebra operations are partially unrolled
for increased performance without a significant increase in
memory consumption. We make use of a tailored constant
step-size Gauss-Legendre integration method of order 2 (as
introduced in [24]) for the solution of the ODE system and
its associated variational differential equations. For solving
the condensed QP problem, an adapted variant of the online
QP solver qpOASES [8], [9] is used. Unlike its original
implementation, the adapted variant has been implemented
in plain C and also avoids any dynamic memory allocation
for an easy deployment on embedded hardware.

More details on the ACADO Code Generation tool can be
found on the ACADO Toolkit Homepage [1].

IV. SIMULATION RESULTS

The performance of the exported NMPC algorithm is
demonstrated in a scenario similar to the experimental setup
considered in [11]. Obstacles of each 6 m length are posi-
tioned at s = 43 m and s = 123 m (cf. Figure 3) on a 200 m
long straight track with a slippery (e.g. snow-covered or icy)
surface of friction coefficient µ = 0.3. The first obstacle has
a width of 2 m and needs to be avoided on the left, while
the second obstacle of width 0.8 m needs to be avoided on
the right. The parameters used for the vehicle model have
been chosen to match those of a Jaguar X-type passenger
car. It has a mass of 2050 kg and a moment of inertia of
3344 kg/m2. More details on the vehicle model parameters
can be found in [11], [14].

The vehicle is traveling at 10 m/s tracking the initial
speed and the road reference while avoiding the obsta-
cles. A prediction horizon of 20 intervals with a total
length 20 m is used. We chose diagonal weighting matrices
Q = diag[1, 1, 10, 10, 10, 10−8, 10−8, 0.1, 0.1, 0.1, 0.1, 1, 1]
and R = diag[10−6, 10−6, 10−6, 10−6, 10−6, 1]. Integration
of the dynamic system and the corresponding variational
differential equations is based on a grid of 40 integrator steps.
We assume full state observation, as well as knowledge of the
road friction coefficient µ in this paper. For a corresponding
moving horizon estimation (MHE) based observation scheme
we refer to [25]. Computational results were obtained on a
standard PC featuring an Intel i7 mobile CPU at 2.7GHz
under Ubuntu 12.04. The generated C code has been com-
piled in a MEX function and all simulations have been run
in Matlab R2011b.

Figure 3 shows the obtained results for the considered
scenario. Dashed vertical lines indicate when the obstacle
becomes visible to the controller. The proposed control
scheme avoids both obstacles and regains its initial speed
after passing the second obstacle.

0 20 40 60 80 100 120 140 160 180 200

9.97

9.98

9.99

10

X [m]

v
x
[m

]

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

X [m]

v
y
[m

/
s]

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

X [m]

ψ̇
[r
a
d
/
s]

0 20 40 60 80 100 120 140 160 180 200
370

380

390

400

X [m]

T
a
[N

m
]

0 20 40 60 80 100 120 140 160 180 200
−10

−5

0

5

X [m]

T
b f
l,
f
r
[N

m
]

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

X [m]

T
b r
l,
r
r
[N

m
]

Fig. 3. Simulation results for an obstacle avoidance scenario using the
model proposed in Section II.

Table II shows average and worst-case computation times
from this scenario. We denote the model presented in Section
II by M12. Note that the obtained worst-case computation
times are still real-time feasible for a 50 ms actuation system
as it was used in [11], while the feedback delay is even
one order of magnitude faster. For comparison, we also
include average computation times obtained using the model
used for path planning in [11], here denoted by M6. Using
the proposed NMPC scheme these are significantly faster
as the model is non-stiff. We also include computation
times using the path planner in the setup from [11] to
give the reader a rough idea of the potential performance
gain by using tailored solution algorithms, even though an

4140

Feedback time Full Iteration

Setup [11] + M6 average 156.9 ms 156.9 ms

ACADO + M6 average 0.06 ms 5.03 ms

ACADO + M12 average 3.1 ms 27.1 ms

ACADO + M12 maximum 6.5 ms 33.4 ms

TABLE II
COMPUTATION TIMES OF ONE MPC ITERATION.

exact comparison is virtually impossible, as the proposed
approaches differ in central algorithmic components like the
used integration method and the number of SQP iterations
performed per MPC step.

As the proposed control scheme is tracking the center-line
reference, it will try to circumnavigate obstacles as tightly
as possible. In the presence of perturbations, hard obstacle
bounds might therefore need to be relaxed using a slack
variable reformulation to avoid infeasible QP subproblems.

V. CONCLUSIONS

In this paper, we presented an approach for autonomous
vehicle guidance using auto-generated NMPC algorithms
tailored for the specific model dynamics. Even for a detailed
vehicle model including wheel dynamics, a state-of-the-
art tire model, and load transfer computation times in the
range of milliseconds and even significantly lower feedback
times were achieved for the obstacle avoidance problem,
thus advancing precise autonomous guidance of vehicles in
extreme conditions. For an efficient treatment of obstacles
even in flexible vehicle speed models we proposed a spatial
transformation of the dynamic system, which maintains the
numerically favorable nature of the problem as a steady-state
reference tracking problem.

Ongoing research includes the addition of a suspension
model to the system dynamics and the utilization of Huber-
type tracking penalties (see [15]) for a smooth controller
performance also for large obstacles. Experimental validation
of the proposed algorithmic scheme is envisaged for the
future.

ACKNOWLEDGMENT
The authors thank Yiqi Gao for his active support in the

research that lead to this paper as well as Florian Kehrle
and Christian Kirches for fruitful discussions on the spatial
model transformation.

REFERENCES

[1] ACADO Toolkit. http://www.acadotoolkit.org, 2009–2013.
[2] H.G. Bock and K.J. Plitt. A Multiple Shooting algorithm for direct

solution of optimal control problems. In Proc. 9th IFAC World
Congress, pages 242–247, 1984. Available at http://www.iwr.uni-
heidelberg.de/groups/agbock/FILES/Bock1984.pdf.

[3] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat. An MPC/hybrid
system approach to traction control. IEEE Trans. Control Systems
Technology, 14(3):541–552, May 2006.

[4] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme
for nonlinear optimization in optimal feedback control. SIAM Journal
on Control and Optimization, 43(5):1714–1736, 2005.

[5] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and
F. Allgöwer. Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations. J.
Proc. Contr., 12(4):577–585, 2002.

[6] M. Diehl, R. Findeisen, and F. Allgöwer. A stabilizing real-time
implementation of nonlinear model predictive control. In L. Biegler,
O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waan-
ders, editors, Real-Time and Online PDE-Constrained Optimization.
SIAM, 2006.

[7] P. Falcone, F. Borrelli, J. Asgari, H.E. Tseng, and D. Hrovat. Low
complexity MPC schemes for integrated vehicle dynamics control
problems. 9th International Symposium on Advanced Vehicle Control,
2008.

[8] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy
to overcome the limitations of explicit MPC. International Journal of
Robust and Nonlinear Control, 18(8):816–830, 2008.

[9] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl.
qpOASES: A parametric active-set algorithm for quadratic program-
ming. Mathematical Programming Computation, 2013. (under
review).

[10] H.J. Ferreau, P. Ortner, P. Langthaler, L. del Re, and M. Diehl.
Predictive control of a real-world diesel engine using an extended
online active set strategy. Annual Reviews in Control, 31(2):293–301,
2007.

[11] Y. Gao, A. Gray, J.V. Frasch, T. Lin, E. Tseng, J.K. Hedrick, and
F. Borrelli. Spatial predictive control for agile semi-autonomous
ground vehicles. In Proceedings of the 11th International Symposium
on Advanced Vehicle Control, 2012.

[12] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat. Predictive control
of autonomous ground vehicles with obstacle avoidance on slippery
roads. Dynamic Systems and Control Conference, 2010, 2010.

[13] A. Gray, Y. Gao, T. Lin, J.K. Hedrick, E. Tseng, and F. Borrelli.
Predictive control for agile semi-autonomous ground vehicles using
motion primitves. Proceedings American Control Conference, 2012.

[14] A. Gray, M. Zanon, and J. Frasch. Parameters for a Jaguar X-Type.
http://www.mathopt.de/RESEARCH/obstacleAvoidance.php, 2012.

[15] S. Gros and M. Diehl. NMPC based on Huber Penalty Functions to
Handle Large Deviations of Quadrature States. In Proc. American
Control Conference, 2013.

[16] B. Houska, H.J. Ferreau, and M. Diehl. An Auto-Generated Real-Time
Iteration Algorithm for Nonlinear MPC in the Microsecond Range.
Automatica, 47(10):2279–2285, 2011.

[17] F. Kehrle, Frasch J.V., C. Kirches, and S. Sager. Optimal control
of formula 1 race cars in a VDrift based virtual environment. In
S. Bittanti, A. Cenedese, and S. Zampieri, editors, Proceedings of the
18th IFAC World Congress, pages 11907–11912, 2011.

[18] T. Keviczky and G.J. Balas. Flight Test of a Receding Horizon
Controller for Autonomous UAV Guidance. In Proceedings of the
American Control Conference 2005, pages 3518–3523, 2005.

[19] D.B. Leineweber, I. Bauer, A.A.S. Schäfer, H.G. Bock, and J.P.
Schlöder. An efficient multiple shooting based reduced SQP strategy
for large-scale dynamic process optimization (Parts I and II). Com-
puters and Chemical Engineering, 27:157–174, 2003.

[20] J. Mattingley and S. Boyd. Real-time convex optimization in signal
processing. IEEE Signal Processing Magazine, 27(3):50–62, 2010.

[21] T. Ohtsuka and A. Kodama. Automatic code generation system for
nonlinear receding horizon control. Transactions of the Society of
Instrument and Control Engineers, 38(7):617–623, 2002.

[22] H.B. Pacejka. Tyre and Vehicle Dynamics. Elsevier Ltd., Oxford
Burlington, 2nd edition, 2006.

[23] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory
planning. IEEE Journal Robotics & Automation, 3(2):115 –123, 1987.

[24] R. Quirynen, M. Vukov, and M. Diehl. Auto generation of implicit
integrators for embedded nmpc with microsecond sampling times.
In M. Lazar and F. Allgöwer, editors, Proceedings of the 4th IFAC
Nonlinear Model Predictive Control Conference, 2012.

[25] M. Zanon, J.V. Frasch, and M. Diehl. Nonlinear Moving Horizon
Estimation for Combined State and Friction Coefficient Estimation
in Autonomous Driving. In Proceedings of the European Control
Conference, 2013.

[26] V.M. Zavala, C.D. Laird, and L.T. Biegler. Fast implementations and
rigorous models: Can both be accommodated in NMPC? International
Journal of Robust and Nonlinear Control, 18(8):800–815, 2008.

4141

