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Abstract—We present a multi-stage method for solving large
tridiagonal systems on the GPU. Previously large tridiagonal
systems cannot be efficiently solved due to the limitation of on-
chip shared memory size. We tackle this problem by splitting
the systems into smaller ones and then solving them on-chip.
The multi-stage characteristic of our method, together with
various workloads and GPUs of different capabilities, obligates
an auto-tuning strategy to carefully select the switch points
between computation stages. In particular, we show two ways to
effectively prune the tuning space and thus avoid an impractical
exhaustive search: (1) apply algorithmic knowledge to decouple
tuning parameters, and (2) estimate search starting points
based on GPU architecture parameters. We demonstrate that
auto-tuning is a powerful tool that improves the performance
by up to 5x, saves 17% and 32% of execution time on average
respectively over static and dynamic tuning, and enables our
multi-stage solver to outperform the Intel MKL tridiagonal
solver on many parallel tridiagonal systems by 6–11x.

Keywords-GPU Computing, Auto-Tuning Algorithms, Tridi-
agonal systems

I. INTRODUCTION

Tridiagonal linear systems arise in many scientific and
engineering problems such as alternating direction implicit
(ADI) methods [9], spectral Poisson solvers [10], cubic
spline approximations, numerical ocean models [8], and
preconditioners for iterative linear solvers [6]. A typical
application may require solving up to hundreds or thousands
of tridiagonal systems, which takes the majority of the ap-
plication’s total computation time. As the massively parallel
GPU has evolved from a graphics-specific accelerator to a
general-purpose computing device [14], recent studies have
shown that GPU-accelerated tridiagonal solvers outperform
CPU solvers by over an order of magnitude [4, 5, 16, 17].
Göddeke et al. developed a bank-conflict-free GPU im-
plementation of CR, and employed it as a line relaxation
smoother in a multigrid solver [5]. Egloff developed a GPU-
based PCR solver to solve one-dimensional PDEs with finite
difference schemes [4]. Sakharnykh simulated 3D viscid
incompressible fluid on the GPU with the ADI method,
which requires solving thousands of tridiagonal systems in
parallel [16]. Zhang et al. designed a hybrid solver that
combines cyclic reduction and its variant to balance the step
and work efficiency [17].

However, a major problem not addressed by any previous
work is the efficient solution of large tridiagonal systems

that exceed the size of on-chip storage (“shared memory”).
While it is straightforward to simply use global memory
for all memory references in these solvers, the performance
loss over an implementation that effectively uses shared
memory is substantial (Egloff estimates a 60% performance
degradation [4]). In this work, we tackle this problem by
using a multi-stage solver. We first use two splitting stages
to reduce large systems to smaller ones, and then solve
them in shared memory using a two-stage hybrid tridiagonal
algorithm.

One of the key challenges in making such a strategy effi-
cient is choosing the switch points. For any given processor
and particular workload, we can manually select appropriate
switch points. However, the recent proliferation of manycore
processors—several generations of CUDA-capable GPUs
and, perhaps more importantly, a wide range of OpenCL-
capable processors from many vendors—motivates a more
automated and general strategy that will automatically select
switch points for any workload and processor. In this work,
we propose and implement an auto-tuning strategy that
selects these switch points between computation stages.

Several recent studies have autotuned performance by
empirical search [2, 3, 12, 13, 15]. Since various perfor-
mance factors can form a very large optimization space,
an exhaustive search for the optimal configuration is par-
ticularly time-consuming and impractical. Ryoo et al. [15]
developed a technique which effectively prunes the search
space by capturing the first-order performance effects. Liu et
al. [12] use a greedy algorithm (hill climbing) to accelerate
the search. Choi et al. [13] and Meng et al. [3] build a
performance model to guide the tuning process respectively
for sparse matrix-vector multiply and iterative stencil loops
applications. Baskaran et al. [2] also use a model-driven
search to determine the levels of loop unrolling and tiling.
PetaBricks [1] developed by Ansel et al. uses a compiler-
based method where programmers write a parameterized
auto-tuned style program for multi-core CPU code.

Compared to the previous studies, our auto-tuning work
differs in strategy as we combine two tuning-space pruning
strategies. First, our knowledge of the algorithm and stages
allows us to decouple the various tunable parameters from
each other. While tuning all possibilities for both stages
would be prohibitively slow, decoupling the parameters
results in a much faster tuning procedure. Our method also



uses machine query parameters as a starting point in our
search space to help guide our tuning search. However, we
note a fully model-driven tuning strategy is impractical, as
certain necessary device parameters cannot be queried, and
certain parameter tradeoffs are difficult to model.

We make two major contributions with this work. First,
we design a GPU-based multi-stage hybrid tridiagonal solver
that can efficiently solve tridiagonal systems of any size and
number, as long as they fit into global memory, while still
exploiting shared communication when possible. Previous
GPU tridiagonal solvers could only solve systems that fit
directly into shared memory [17]. As workloads (size of sys-
tems, number of systems) and architectures vary, the optimal
parameters and switch points will also change. Therefore,
our second contribution is our self-tuning implementation
of the tridiagonal solver. We believe that the strategy we
advocate in this paper—a multi-stage solver that spans
system sizes from small to large, with stage switch points
determined through auto-tuning—will be applicable not only
for tridiagonal solvers but also for a large class of divide-
and-conquer problems such as fast Fourier Transforms (FFT)
and quicksort.

Our paper is organized as follows: In Section II, we
describe the machine model we use with this work. Sec-
tion III will describe the stages of our tridiagonal solver
and the tradeoffs between them. In Section IV we present
three parameter selection strategies we tested for our solver,
including the self-tuning strategy previously mentioned. Sec-
tion V contains our results, Section VI our discussion, and
Section VII our conclusions.

II. MACHINE MODEL

The GPU delivers high performance because it features
a large number of parallel computing resources. Nickolls
and Dally give a good overview of modern GPUs and their
programming model [14]; for the purposes of this paper, we
assume the following simplified machine model.

The GPU features many parallel processors (also known
as cores or, in NVIDIA’s terminology, “streaming multi-
processors”), each of which has numerous parallel thread
processors that run parallel threads in lockstep. The number
of processors is large enough that it is undesirable to leave
any of them idle; code that runs on only a single processor
is unlikely to be efficient. Each processor has a fixed, small
amount of local shared memory that is shared among its
thread processors. Problems whose data is all stored in
shared memory are substantially faster than problems that
must read data from global memory. When accessing global
memory, a processor that reads contiguous chunks of mem-
ory (a coalesced memory access) will sustain significantly
higher bandwidth than a processor that does not.

Enough
Blocks?

Global PCR

Global PCR
Independent Systems

PCR-Thomas
Hybrid Solver

DecisionWorkload
[m,n]

Y

N

Figure 1: Workflow of our general solver. Depending on
the number of systems and system size (m,n), our method
selects the best algorithm to split up these systems. First
we have an inter-block global split stage (more parallelism,
with the cost of additional overhead) until there are enough
independent systems that it makes sense for each Global
PCR splitting block to work independently. This splitting
continues until each subsystem is small enough to be solved
using our hybrid PCR-Thomas kernel.

III. METHOD DESCRIPTION

Our method is composed of four stages assembled into
three kernels, each of which maps best to a particular work-
load. Since each stage is workload-specific, our method takes
into account differences in machine-specific parameters, and
automatically selects and switches between methods. We
elaborate on these parameters and our selection heuristic in
Sections III-D and IV.

We construct our method with a bottom-up approach,
beginning with an optimized base kernel that can solve
a single small system within shared memory. This base
kernel is a highly-optimized hybrid PCR (parallel cyclic
reduction [11])-Thomas solver (described in Section III-A).
It utilizes shared memory without bank conflicts and can
solve many systems that fit into shared memory quickly and
in parallel. As systems become larger than shared memory,
we turn to a second stage (Stage 2). This kernel assigns each
system to a processor, where we utilize PCR to quickly split
up the system such that each sub-system is small enough to
be solved by the baseline PCR-Thomas kernel. However,
since each processor works independently on a system, if
the workload is only one or a few systems, the machine
will be under-utilized. Therefore, we develop another stage
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Figure 2: Each stage is optimized to handle a type of workload, and then pass the resulting subsystems to the next stage.

on top of this where processors cooperatively split systems
(Stage 1).

In order to implement this system, we must choose switch
points between these stages, and within each stage itself.
The switch points represent a tradeoff between maximizing
parallelism and minimizing total work. We discuss these
switch points and tradeoffs in Section III-D, and how
to select the best alternatives and parameters by using
autotuning in Section IV. Figure 1 shows the workflow
methodology of our tridiagonal implementation, and the
following subsections discuss each of the three kernels in
detail.

A. Base Kernel: A Hybrid Solver for Small Systems

Our base kernel is a hybrid PCR-Thomas solver that
fetches each system into shared memory before solving. In
previous work, Zhang et al. [17] explored three different
parallel algorithms for tridiagonal solvers on GPUs, includ-
ing PCR, and showed that a hybrid solver between cyclic-
reduction (CR) and PCR had the best performance. Inde-
pendently and in parallel with our work, Sakharnykh [16]
recently also proposed a hybrid PCR-Thomas algorithm with
a different formulation. His implementation first splits the
systems to smaller ones, and then solves each system with
a CUDA thread. However, there are two drawbacks of this
implementation: (1) It cannot use shared memory since each
thread handles an independent system and thus all systems
within a processor exceed the shared memory capacity, and
(2) this method is only good at solving a large number of
small systems, because the major parallelism exploited is at
the thread level. We use a multi-stage method to overcome
these two drawbacks. We first split the systems small enough
to fit into shared memory, then instead of mapping each split
system to a thread, we map it to a processor and solve it
using a PCR-Thomas solver. This multi-stage method allows
us to use shared memory and solve large systems as well as
small ones.

Figure 3 illustrates the communication pattern and paral-

lelism for a direct PCR solver and a PCR-Thomas solver
(with no strided access). PCR requires only log(n) stages
to solve n equations, but each stage requires O(n) work.
The Thomas algorithm is serial, requiring only O(n) total
work, but with O(n) steps. Our hybrid algorithm uses
PCR to divide the system into smaller parallel subsystems
and then uses the Thomas algorithm to solve each smaller
system serially within a single thread. Compared to Zhang et
al.’s best (CR-PCR) hybrid algorithm, our work has similar
performance for single-precision systems and better perfor-
mance for double-precision systems; our primary advantage
is leveraging the superior work efficiency of the Thomas
algorithm. We use our hybrid solver to solve small systems.

Adapting this method to solve subsystems of a larger
system requires more complex memory accesses. We can
do so in one of two ways. First, we could specify a stride
size to directly load such subsystems into shared memory.
This strided load causes an initial penalty due to non-
coalesced read accesses. However, since we store this initial
load in shared memory, we are able to re-use this memory
and quickly reach a solution. Alternatively, we could create
another variation of this kernel that maintains coalesced
read access, yet loses some shared memory communication
within a processor. When a thread needs to access shared
memory outside the range of loaded data, it must go to global
memory for that data. Since all subsystems being solved are
independent, we can guarantee no global-memory hazards.
Choosing the highest-performing alternative is workload-
dependent, so we make this decision automatically with the
aid of our self-tuner.

B. Stage 2: Splitting Systems Up

Our PCR-Thomas baseline stage only solves systems
that can fit within shared memory. For larger systems, our
strategy is to split them into smaller systems that can then
be solved with our baseline solver. PCR is well suited for
this, as each stage splits work in half. Therefore if an input
workload (system) is n times larger than the largest chunk
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Figure 3: PCR and PCR-Thomas algorithms for solving an 8-equation system.

that can fit into shared memory, we require at least log(n)
PCR stages in order for each subsystem to fit into memory.

C. Stage 1: Cooperative Splitting

The previous stage uses one processor to create smaller
systems that can be distributed to multiple processors. How-
ever, when solving a small number of large systems, we may
have insufficient independent systems to keep all processors
busy. For these cases, we create a cooperative PCR-based
splitting system that uses many processors to split a single
system. Invoking this method only performs one split at a
time, due to dependencies, and therefore incurs an extra
penalty per split due to this synchronization. However, if
there are only a few systems and we can split them enough
such that Stage 2 can fully occupy the global memory
bandwidth, we can obtain a significant speedup. The tradeoff
here is the waste in leaving processors idle vs. the additional
cost of the synchronization. We thus conclude that we only
want to use this method until we spawn enough systems
to fill the machine. An example of this type of tradeoff is
illustrated in Figure 2. Again, Section III-D and IV will
discuss our parameter selection strategy to find this switch
point.

D. Summary & Switch Points

The solver we have just described has four stages, which
we now describe from the top down. (1) If there are too few
systems to keep all processors and memory controllers busy,
we split each system into smaller systems, using multiple
processors per system in order to utilize all processors. (2)
After we have sufficient systems to keep all processors busy,
we continue to split the systems until they fit into shared
memory. In this stage, since we already have sufficient
system-level parallelism, we are able to split each system
independently with different processors, requiring only one
kernel call and much less communication overhead. (3)
Once subsystems fit into shared memory, we load each

system from global memory into shared memory and solve
it within a single processor. We continue to split these
systems using parallel threads within a processor until we
have sufficient parallel systems to allow each thread to solve
a subsystem using the Thomas algorithm. (4) Finally, we
solve all systems in parallel using the Thomas algorithm.

There are various tradeoffs when switching between
stages. We want to enter stage 2 as early as possible, because
the splitting in stage 2 is parallel across processors and
requires little communication. However, at the same time,
we need stage 1 to run long enough to generate sufficient
systems to keep all processors and memory controllers busy.
Between stage 2 and stage 3, we see similar tradeoffs
between parallelism and splitting cost. On one hand, we
want to enter stage 3 as early as possible so that we can
start solving each systems in shared memory; on the other
hand, we prefer that stages 1 and 2 split systems until
they are small enough so that multiple systems can fit
onto a single processor, which helps increase the latency
tolerance and hence throughput on that processor. Between
stages 3 and 4, switching earlier is beneficial due to the
lower complexity of the Thomas algorithm, but has the
cost of reduced parallelism and thus poor vector hardware
utilization and latency-hiding.

Choosing the optimal switch points between stages is
a difficult problem, since the decisions involve multiple
factors including global/shared memory bandwidth, mem-
ory coalescing efficiency, thread occupancy, and algorithm
complexity. We compare three solutions for switch point
selection, which are respectively non-tuned, statically tuned,
and dynamically tuned. The non-tuned solution uses default
switch points that work for all GPUs. The static tuner
guesses switch points based on the device information of a
particular GPU. The dynamic tuner searches the best switch
points at runtime using the static tuner’s guess as a starting
point. These methods will be described in the next section.
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IV. AUTOMATIC SELF-TUNING

The machine- and workload-dependent switch point pa-
rameters discussed in Section III-D are complex and difficult
to optimize. To evaluate different ways of setting these
parameters, we evaluate three different methods:

• A baseline parameter selection method, which chooses
default parameters without any knowledge of the archi-
tecture. Using the same parameters for all architectures
and workloads is a common approach taken by many
codes and libraries.

• A machine-aware selection method. This method
queries static machine characteristics and uses them to
determine the optimum switch point.

• A self-tuning selection method. This method uses static
machine characteristics when available, but also uses
micro-benchmarks and searches a tuning space to iden-
tify the best choice of parameter switch points between
all kernels.

Performance comparisons of these three methods will then
reveal the usefulness of a self-tuner with respect to the other
two methods.

Later in this section we will discuss in further detail
our implementation of each of these parameter selection
strategies, but first we will describe our target GPUs, their
capabilities, and range of hardware resources.

A. GPU Targets

We tested our tridiagonal solvers and parameter selection
methods on three different GPU architectures. All of these
architectures are CUDA-capable GPUs chosen from the
previous three generations of NVIDIA cards. Therefore
our tests cover a wide spectrum of hardware capabilities.
Table I lists the devices used in our tests, and some of their
differences in capabilities.

Some of the information in Table I can be queried
at runtime; however, most released CUDA programs use
default parameters, or at best very simple device queries
for sanity checks. Our results show that to ensure maximum
performance on new hardware, these parameters must be
reevaluated after every major architectural change.

B. Default Parameters

Since the default parameters are machine-oblivious, the
default parameters must at least return correct answers (i.e.
not crash) for all architectures. For parameters such as the
PCR-Thomas switch point within the base kernel, this is not
as vital as all devices will perform decently as long as the
switch point is large enough that each warp has systems to
solve. Though this parameter’s performance difference is not
the most vital, it will still be sub-optimal as the best switch
point is machine-dependent.

A severe disadvantage of default parameters are that they
must work on all machines. Therefore we must select a
maximum number of systems to solve with PCR-Thomas
that can fit on the lowest performing card. This limitation is
due to the shared memory size differences between CUDA
architectures. With the weakest architecture only able to fit
256 elements at a time, we select this as our switch point to
our base kernel. This assumes that a kernel wishes to switch
to PCR-Thomas as soon as each block can fit into shared
memory, which is not always the optimal strategy.

Next we must decide default parameters for the last switch
point (between Stages 1 and 2). The top-level kernel will
only be selected for workloads containing a few systems (as
discussed in Section III-D). The default parameters wishes
to balance two tradeoffs as best as possible. First, we need
enough independent systems so that Stage 2 can run at
full occupancy, but we also note each call of Stage 1 is
more expensive per-split than that of Stage 2. Our default
parameter is sixteen systems; Stage 1 does not complete until
it has split its input into sixteen independent systems. We
chose this default selection as most devices have between
four and twenty-four processors. Though this parameter is
only partially related to the number of processors, we believe



Name Global Memory Bandwidth Shared Memory Size Number of Processors Thread Processors per Processor

8800 GTX 57.6 GB/s 16 KB 14 8
GTX 280 141.7 GB/s 16 KB 30 8
GTX 470 133.9 GB/s 48 KB 14 32

Table I: GPU devices used in our tests and benchmarks, from the last three generations of hardware. Each generation span
introduces a change not only in the essential compute capabilities, but the memory and processor organization.

it to be a reasonable guess given no knowledge of the target
architecture.

C. Machine Query Tuning

Our next parameter selection method relies on device
information that can be queried using CUDA’s deviceProp-
erties class. Some of the information that this class can
supply is contained in Table II. With some hardware specific
information, we can make better parameter decisions than
the default baseline method.

However, the range of information is somewhat limited.
For example, the PCR splitting stage, as described in Sec-
tion III, is not limited only by the number of processors,
but is also heavily reliant on the global memory bandwidth.
When there are enough independent systems to fully saturate
this metric, we wish to switch directly to our Stage 2 kernel.
However, information on this bandwidth (which is dependent
on the number of memory controllers and the bus width to
the global memory) can’t be queried, and therefore we must
estimate based only on the number of available processors.

Likewise, the switch-point tradeoffs within the hybrid
PCR-Thomas algorithm are difficult to model using only
machine-queried parameters. We know the number of thread
processors per processor and the size of the shared memory,
and can also calculate the number of accesses per step and
the total number of steps to solve the system. However, we
have no knowledge of (1) the number of shared memory
banks and (2) the shared memory bandwidth per bank.
Without this information, we can only make a reasonable
guess given the shared memory size. Therefore we make a
guess based on the warp size1 instead, which is constant
across all devices. Therefore when there are 64 independent
subsystems per block, we switch to the Thomas method.

D. Self-Tuned Method

Our major contribution in this work is an automatically-
tuned optimization method that uses device-queried param-
eters as starting guide points, and then performs a search on
parameters that it identifies as independent. This strategy
has two large advantages. First, since we identify ahead
of time the parameter switch points that are independent,
we reduce the search-space tremendously. As an example,
if a parameter P1 had 16 possibilities, and P2 has 32

1The warp size in an NVIDIA GPU is the granularity of work run in
lockstep; on all NVIDIA GPUs a warp is 32 threads that are run in parallel.

possibilities, and we identify P1 and P2 as independent of
each other, then we must test only 16+32=48 possibilities
instead of 16×32=512.

In our case we can identify the switch point between stage
1 and stage 2, and the switch point between stage 3 and stage
4 in the PCR-Thomas kernel as independent. The reason we
can decouple these is as follows:

• The goal of the switch point between stage one and
stage two is to split systems until there is enough
parallel work for stage two.

• The goal of the switch point between stage three and
stage four is dependent on small systems in shared
memory and the size of each small system.

• These dependencies do not interfere with each other,
and therefore we can decouple them.

The second advantage of our method is our use of machine
queried parameters as a guess point also helps us reduce
our tuning space. For most of our parameters, there lies a
parameter set that provides a local minimum in a hyperbolic
search space. Therefore, by using machine queries to help
guide our search, we usually get very close to this local
minimum, reducing the time to locate this minimum.

We illustrate this through a parameter we wish to tune.
When do we switch to the PCR-Thomas kernel? Recall
that the machine-query strategy switches as soon as each
subsystem can fit into shared memory. In order to improve
upon this, we perform the following series of tests:

• Begin with the machine-query parameter selection for
a workload guaranteed to fill the machine (number of
systems much greater than the number of processors).

• Benchmark this selection vs. two times the number
of systems at half the size. We must tune for the
ideal stage-3 to stage-4 switch point for each of these
settings, and for the two base PCR-Thomas kernels we
coded (uncoalesced with better shared memory access
and coalesced with worse shared memory access).

• Continue until you have found the local minimum, and
save those results for future runs.

• Repeat this stage increasing the stride count for the
two base PCR-Thomas kernels (this simulates solving
larger systems), until we know how large systems must
be until the uncoalesced version is preferred.

Now we have the selection parameters for stage-3-to-
stage-4 and stage-2-to-stage-3 independent of the switch
point between stage 1 and stage 2. The final parameter we



Query Parameter Description

Global Mem Total amount of global memory available
Processors Total number of processors available; each processor has n thread processors where n depends on the architecture
Constant Memory Total amount of constant memory per block; each constant loaded can be broadcast across MPs
Shared Memory Total amount of shared memory per processor, which limits both the number of systems being processed concurrently in

a processor and the maximum size our PCR-Thomas kernel can solve
Register Memory The limited number of registers available per block often yields a trade-off between the total number of threads and the

number of registers per thread
Grid Dimensions The API imposes a limit on the software layout of work (specifically the number of blocks per grid)

Table II: A list of queryable CUDA device properties. Our machine-tuning method uses these parameters and the
characteristics of the workload to make a best guess on the optimum parameters.
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Figure 5: Performance comparison at various switch points
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must tune we is the total number of independent systems
we need to keep stage 2 busy. First, we select a sizable
workload for each machine that requires a large amount of
splitting (e.g. one system that takes all of global memory).
Since we know the splitting endpoint (the stage-2-to-stage-3
switch point), we can start at the machine-guess parameter
and iterate over its neighbors until we find a local minimum.
We then save this switch point parameter for future runs.

A typical self-tuning run for a particular system and GPU
takes less than one minute.

V. EXPERIMENTAL RESULTS

Our test platform uses the NVIDIA CUDA 3.1 GPU pro-
gramming environment running on Microsoft Windows XP,
a 3.4 GHz Intel Core i5 dual-core CPU, and three NVIDIA
GPUs of different generations: GeForce 8800, 280, and 470.
At a high level, static tuning is almost always better than
non-tuning and delivers an average 17% runtime improve-
ment over non-tuning; dynamic self-tuning is always better
than either static or no tuning and shows a 32% improvement
in runtime over no tuning.
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Figure 6: Performance of the PCR-Thomas solver at various
switch points. The numbers are normalized to the best
performance at an optimal switch point.

Figure 5 compares our performance at various switch
points from stage 2 (global splitting) to stage 3 (solving in
shared memory). The switching involves a tradeoff between
the cost of global memory splitting, shared memory solving,
and the amount of parallelism that can hide memory latency.
Depending on the register and shared memory resources,
the largest systems that can be solved locally on-chip are of
sizes 256, 512, and 1024 respectively for the GeForce 8800,
280, and 470. For the GeForce 470, our self-tuning revealed
that it is beneficial to split the system one step further from
size 1024 to 512 even though 1024 can already fit in shared
memory. This is because the GeForce 470 features more
thread processors per processor and requires more resident
threads on a processor to keep a high occupancy for latency
hiding; processors on the 470 can work on two subsystems
of size 512 locally at the same time. For the GeForce 280,
switching at system sizes 256 and 512 have comparable
performance. The GeForce 8800 requires the fewest threads
to maintain high occupancy, and therefore prefers a larger
system size of 256 instead of 128.

Figure 6 shows the performance of the stage-3 PCR-
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Figure 7: Comparison of non-tuned, statically tuned, and
dynamically tuned performance for various workloads and
GPUs. 1K×1K stands for 1024 1024-equation systems and
1×2M stands for 1 system of 2 million equations. The tim-
ings are normalized to the untuned (or default parameters)
execution time. The numbers on top of the columns indicate
the non-tuned execution time in milliseconds.

Thomas solver at various switch points. At stage 3, each
split system is loaded into shared memory and solved by
the PCR-Thomas solver. The PCR algorithm splits the single
system into many subsystems, then passes these subsystems
to the Thomas algorithm that uses a single thread per subsys-
tem. Switching from PCR to the Thomas algorithm earlier
means a reduced algorithmic complexity from O(n log n)
to O(n), but at the cost of less parallelism to hide memory
latency. Tuning shows that for the GeForce 280 and 470,
the best switch point is 128 subsystems, while for the
GeForce 8800, the best switch point is 64 subsystems.
Because our static tuner will always choose 64 subsystems
as the switch point, this result means dynamic tuning will
improve the performance further.

Figure 7 summarizes the non-tuned, statically-tuned, and
dynamically-tuned performance for various workloads and
GPUs. The static tuning outperforms the non-tuned solver
by up to 60% with an average runtime decrease of 17%,
primarily because it can use machine-specific parameters to
allow larger systems to fit into a single GPU processor. In
contrast, the non-tuned solver must use a safe third-stage
system of size 256 to ensure it runs on all GPUs. Because it
is hard to estimate the costs and benefits of various tradeoffs
between parallelism, splitting cost, and coalescing efficiency,
the static tuner is unable to make the best decision on
switch points. For example, switching early from global
splitting to stage 3 (solving in shared memory) reduces the
splitting work in global memory and enjoys more shared
memory communication, but results in a lower processor
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Figure 8: Performance comparison for various workloads
between GPU and CPU. The CPU solver is a highly-
optimized tridiagonal solver from the Intel MKL library
(version 10.2.5.035). When solving many systems, we use a
two-threaded implementation on two CPU cores with each
thread executing a MKL solver. For solving a single system
of 2 million equations, we use a single thread, since the
MKL solver is sequential.

occupancy at the same time. As previously discussed in
Figure 5, dynamic tuning is able to find a better stage-3
system size than the default size chosen by static tuning.
As another example, in the stage-3 PCR-Thomas solver,
switching early from PCR to Thomas reduces the amount of
total work, but may lead to insufficient parallelism to utilize
all thread processors. Dynamic tuning is able to choose
a better subsystem size for the PCR-Thomas solver than
static tuning’s default size. The dynamic tuning achieves a
maximum of a 5x speedup and an average of 32% against
the non-tuned performance, with the largest speedups on the
largest systems.

VI. DISCUSSION

In this section we will discuss the implications from our
results. We will first discuss the results from each of our
parameter selection strategies: default, machine-queried, and
self-tuning. Following that we will discuss the scalability of
our method by comparing it to a CPU MKL implementation.
Finally, we will discuss how our method can be applied on
a broader scale for algorithms with similar computational
patterns.

A. Parameter Selection

Tuning has a significant impact on performance. De-
fault parameters behave very poorly across systems, be-
cause the default parameters are designed for a baseline
(least-common-denominator) architecture (in this case the
8800 GTX). This realization has of course motivated tuning



strategies across many areas of GPU computing and beyond,
and machine-query tuning can give significant speedups.
However, the assumptions made by such a tuning strategy
are not optimal, and can even sometimes be detrimental.

For example, Figure 7 shows that using the default pa-
rameters outperforms the statically-tuned parameters for a
4096×4096 system. This specific result is because our static
tuning assumes the PCR-Thomas kernel should be launched
as soon as each system can fit into shared memory, while
the default parameters yield more splitting stages that result
in higher occupancy per processor and in this case, better
performance.

Dynamic self-tuning, on the other hand, does not suffer
from these problems. By first identifying the optimal param-
eters for our two PCR-Thomas base kernel implementations,
and the size of each subsystem (stage-2-to-stage-3 switch
point), our self-tuned method is better able to balance the
tradeoff between processor occupancy and shared memory
communication. Self-tuning also does a much better job
than machine-query tuning for solving a single large system.
Since the machine-query tuning strategy is unable to obtain
specific information regarding the memory controllers and
bus width, it has little information to tune with and therefore
selects poorly. The result is roughly a 2x difference in
performance on each card, sometimes electing to switch too
early and sometimes too late.

In general, tuning is necessary for these algorithms to
scale in performance across machines. Though guesses
through machine queries can help in this regard, we ad-
vocate some form of self-tuning. Our self-tuning strategy is
powerful because it (1) prunes the tuning space such that
these tuning runs are not prohibitively expensive and (2) it
can account for more situations than a static query.

B. CPU vs. GPU Timings

We tested a wide range of systems on a GPU with our
algorithm. The NVIDIA GTX 470 significantly outperforms
the CPU Intel MKL implementation for large numbers
of parallel tridiagonal systems. The MKL solver uses a
sequential LU decomposition algorithm. For solving many
systems, we use OpenMP to parallelize the program at the
system level with each system solved by a single CPU
thread. Figure 8 shows that increasing the size and count
of systems results in a slightly decreasing advantage for the
GPU over the CPU. Our speedups range from 6x (4096
parallel systems of 4096 equations) to 11x (1024 parallel
systems of 1024 equations).

If we consider the extreme case of 1 enormous system
(a single system with 2 million elements), the CPU outper-
forms the GPU. As PCR is not a work-efficient algorithm,
when the workload becomes PCR-dominated (a 2-million-
element system must perform 11 stages of PCR splitting
in global memory before fitting into shared memory), the

speedups of our GPU hybrid method versus the CPU MKL
implementation deteriorate.

C. Our Work on a Broader Scale

Our work here concentrates on solving tridiagonal systems
that vary in size, all the way from many small systems
to one large system. In particular, our strategy of solving
one large (or many large) system(s) by breaking them into
smaller systems is one of the contributions of this paper.
More broadly, we believe this strategy computation is useful
beyond tridiagonal systems.

Consider the problem of bottom-up merge sorting, where
small chunks of the input are sorted and then these sorted
chunks are recursively merged in a tree structure. Hagerup
and Rüb’s parallel merge algorithm represents this style of
sort [7]. An implementation of this algorithm on the GPU
faces the same issues as our tridiagonal solver: a shift from
solving many independent chunks within a single processor’s
shared memory to solving many independent chunks that
do not fit within shared memory, and a second shift from
solving enough chunks to fill the machine to solving fewer,
larger chunks that do not fill the machine. In general we be-
lieve many divide-and-conquer algorithms (e.g. FFT, dense
matrix multiplication, median finding), which often overlap
with recursively-specified cache-oblivious algorithms, will
benefit from this strategy.

VII. CONCLUSION

In this work, we presented a tridiagonal solver that can
solve a variety of workloads on the GPU. This solver had
multiple stages that were best suited for different workloads.
This allowed us to efficiently solve much larger systems than
previous GPU tridiagonal solvers. Each stage in our system
processed subsystems, passing its results on to the next stage
until all systems were solved. In order to know when to
switch to the next stage, we created three parameter selection
techniques: default, static machine-query, and dynamic self-
tuned. For this workloads, static tuning noticeably outper-
forms default tuning, and dynamic self-tuning outperforms
both. We also note that on one case, the CPU outperforms
the GPU.

We believe these results motivate future use of self-
tuning techniques, particularly for multi-stage algorithms
that involve multiple switch points (e.g. quicksort on the
GPU). However, we note that trade-off penalties and tuning
dependencies between algorithms vary widely, so to achieve
similar speedups on other algorithms, we feel that designers
of these implementations must have a good understanding of
their parameter space and how it affects the algorithm. Given
the trends in the manycore market, the potential benefits
of such implementations will only grow: more generations
of GPUs with different performance characteristics coupled
with the larger diversity of manycore devices (particularly



OpenCL-capable devices) make performance tuning an in-
creasingly difficult problem that we hope will be addressed
with auto-tuning techniques.

The next challenge in this specific application domain is
high-performance blocked tridiagonal solvers and optimized
banded solvers. More broadly, we would like to extend this
auto-tuning strategy to more algorithms in the divide-and-
conquer space and extend our techniques to also explore the
boundary between GPU and CPU.
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