
An Auto-Tuning Framework

for Parallel Multicore Stencil Computations

Shoaib Kamil†‡, Cy Chan†�, Leonid Oliker†, John Shalf†, Samuel Williams†

†CRD/NERSC, Lawrence Berkeley National Laboratory Berkeley, CA 94720
‡EECS Department, University of California at Berkeley, Berkeley, CA 94720

�CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Although stencil auto-tuning has shown tremendous

potential in effectively utilizing architectural resources,

it has hitherto been limited to single kernel instantia-

tions; in addition, the large variety of stencil kernels

used in practice makes this computation pattern dif-

ficult to assemble into a library. This work presents

a stencil auto-tuning framework that significantly ad-

vances programmer productivity by automatically con-

verting a straightforward sequential Fortran 95 stencil

expression into tuned parallel implementations in For-

tran, C, or CUDA, thus allowing performance portabil-

ity across diverse computer architectures, including the

AMD Barcelona, Intel Nehalem, Sun Victoria Falls, and

the latest NVIDIA GPUs. Results show that our gen-

eralized methodology delivers significant performance

gains of up to 22× speedup over the reference se-

rial implementation. Overall we demonstrate that such

domain-specific auto-tuners hold enormous promise

for architectural efficiency, programmer productivity,

performance portability, and algorithmic adaptability

on existing and emerging multicore systems.

I. Introduction

Petascale systems are becoming available to the

computational science community with an increas-

ing diversity of architectural models. These high-end

systems, like all computing platforms, will increas-

ingly rely on software-controlled on-chip parallelism

to manage the trade-offs between performance, energy-

efficiency and reliability [1]. This results in a daunting

problem for performance-oriented programmers. Sci-

entific progress will be substantially slowed without

productive programming models and tools that allow

programmers to efficiently utilize massive on-chip con-

currency. The challenge of our decade is to create new

programming models and tools that enable concise pro-

gram expression while exposing fine-grained, explicit

parallelism to the hardware across a diversity of chip

multiprocessors (CMPs). Exotic programming models

and domain-specific languages have been proposed to

meet this challenge but run counter to the desire to

preserve the enormous investment in existing software

infrastructure.

This work presents a novel approach for addressing

these conflicting requirements for stencil-based com-

putations using a generalized auto-tuning framework.

Our framework takes as input a straightforward sequen-

tial Fortran 95 stencil expression and automatically

generates tuned parallel implementations in Fortran,

C, or CUDA, thus providing performance portability

across diverse architectures that range from conven-

tional multicore processors to some of the latest graph-

ics processing units (GPUs). This approach enables

a viable migration path from existing applications to

codes that provide scalable intra-socket parallelism

across a diversity of emerging chip multiprocessors —

preserving portability and allowing for productive code

design and evolution.

Our work addresses the performance and portability

of stencil (nearest-neighbor) computations, a class of

algorithms at the heart of many calculations involving

structured (rectangular) grids, including both implicit

and explicit partial differential equation (PDE) solvers.

These solvers constitute a large fraction of scientific

applications in such diverse areas as heat diffusion,

climate science, electromagnetics, and fluid dynamics.

Previous efforts have successfully developed stencil-

specific auto-tuners [3], [15], [22], which search over

a set of optimizations and their parameters to minimize

runtime and provide performance portability across a

variety of architectural designs. Unfortunately, the sten-

cil auto-tuning work to date has been limited to static

kernel instantiations with pre-specified data structures.

As such, they are not suitable for encapsulation into

libraries usable by most real-world applications.

The focus of our study is to examine the potential

of a generalized stencil auto-parallelization and auto-

tuning framework, which can effectively optimize a

broad range of stencil computations with varying data

structures, dimensionalities, and topologies. Our novel

methodology first builds an abstract representation

from a straightforward user-provided Fortran stencil

problem specification. We then use this intermediate

representation to explore numerous auto-tuning trans-

formations. Finally, our infrastructure is capable of

generating a variety of shared-memory parallel (SMP)

backend code instantiations, allowing optimized perfor-

mance across a broad range of architectures.

To demonstrate the flexibility of our framework,

we examine three stencil computations with a variety

of different computational characteristics, arising from

the 3D Laplacian, Divergence, and Gradient differen-

tial operators. Auto-parallelized and auto-tuned per-

formance is then shown on several leading multicore

platforms, including the AMD Barcelona, Sun Victoria

Falls, NVIDIA GTX280, and the recently released Intel

Nehalem. Results show that our generalized method-

ology can deliver significant performance gains of up

to 22× speedup compared with the reference serial

version, while allowing portability across diverse CMP

technologies. Furthermore, while our framework only

requires a few minutes of human effort to instru-

ment each stencil code, the resulting code achieves

performance comparable to previous hand-optimized

code that required several months of tedious work to

produce.

Overall we show that such domain-specific auto-

tuners hold enormous promise for architectural effi-

ciency, programmer productivity, performance portabil-

ity, and algorithmic adaptability on existing and future

multicore systems.

II. Related Work

Auto-tuning has been applied to a number of sci-

entific kernels, most successfully to dense and sparse

linear algebra. ATLAS [25] is a system that implements

BLAS (basic linear algebra subroutines) and some

LAPACK [16] kernels using compile-time auto-tuning.

Similarly, OSKI [24] applies auto-tuning techniques

to sparse linear algebra kernels, using a combination

of compile-time and run-time tuning. FFTW [9] is a

similar system for producing auto-tuned efficient signal

processing kernels.

Unlike the systems above, SPIRAL [20] is a recent

auto-tuning framework that implements a compiler for

a specific class of kernels, producing high-performance

tuned signal processing kernels. While previous auto-

tuners relied on simple string manipulation, SPIRAL’s

designers defined an algebra suitable for describing a

class of kernels, and built a tuning system for that class.

Our work’s goal is to create a similar system for stencil

auto-tuning.

Optimizing stencil calculations have primarily fo-

cused on on tiling optimizations [17], [21], [22] that

attempt to exploit locality by performing operations

on cache-sized blocks of data before moving on to

the next block. A study of stencil optimization [5] on

(single-core) cache-based platforms found that tiling

optimizations were primarily effective when the prob-

lem size exceeded the on-chip cache’s ability to exploit

temporal recurrences. Previous work in stencil auto-

tuning for multicore and GPUs [3], [5] demonstrated

the potential for greatly speeding up stencil kernels,

but concentrated on a single kernel (the 7-pt Laplacian

in 3D). Because the tuning system was hand-coded

for that particular kernel, it cannot easily be ported

to other stencils instantiations. In addition, it does not

allow easy composition of different optimizations, or

the integration of different search strategies such as

hill-climbing.

Compiler optimizations for stencils concentrate on

the polyhedral model [2] for improving performance

by altering traversals to minimize (modeled) memory

overhead. Auto-parallelization of stencil kernels is also

possible using the polyhedral model [7]. Future work

will combine/compare the polyhedral model with our

auto-tuning system to explore the tradeoffs of simple

models and comprehensive auto-tuning. Some planned

optimizations (particularly those that alter the data

structures of the grid) are currently not handled by the

polyhedral model.

The goal of our framework is not just to automati-

cally generate parallel stencil codes and tune the asso-

ciated parallelization parameters, but also to tune the

parallelization parameters in tandem with lower-level

serial optimizations. Doing so will find the globally

optimal combination for a given parallel machine.

Previous work also includes the ParAgent [19] tool,

which uses static analysis to help minimize com-

munication between compute nodes in a distributed

memory system. In contrast, our framework addresses

both locality and parallelization parameters on a shared

memory system. Like our framework, the PLuTo sys-

tem [7], which uses the polyhedral model, strives to

simultaneously optimize parameters for both data lo-

cality and parallelization. Their approach determines a

parameterization through the minimization of a unified

cost function that incorporates aspects of both intra-tile

locality and inter-tile communication. Our work differs

from these methods primarily in that we leverage auto-

tuning to find optimal solutions, which may provide

better results in cases where machine characteristics

are difficult to model effectively using static analysis.

This work presents a novel advancement in auto-

tuning stencil kernels by building a framework that

incorporates experience gained from building kernel-

specific tuners. In particular, the framework has the

applicability of a general domain-specific compiler like

SPIRAL, while supporting multiple backend architec-

tures. In addition, modularity allows the framework to,

in the future, support data structure transformations

and additional front- and backends using a simple

plugin architecture. A preliminary overview of our

methodology was presented at a recent Cray User’s

Group Workshop [14]; our current work extends this

framework for a wider spectrum of optimizations and

architectures including Victoria Falls and GPUs, as well

as incorporating performance model expectations and

analysis.

III. Stencils & Architectures

Stencil computations on regular grids are at the core

of a wide range of scientific codes. These applications

are often implemented using iterative finite-difference

techniques that sweep over a spatial grid, performing

nearest neighbor computations called stencils. In a

stencil operation, each point in a multidimensional grid

is updated with weighted contributions from a subset of

its neighbors within a fixed distance in both time and

space, locally solving a discretized version of the PDE

for that data element. These operations are then used to

build solvers that range from simple Jacobi iterations

to complex multigrid and adaptive mesh refinement

methods.

Stencil calculations perform repeated sweeps

through data structures that are typically much larger

than the data caches of modern microprocessors.

As a result, these computations generally produce

high memory traffic for relatively little computation,

causing performance to be bound by memory

throughput rather than floating-point operations.

Reorganizing these stencil calculations to take full

advantage of memory hierarchies has therefore been

the subject of much investigation over the years.

Although these recent studies have successfully

shown auto-tuning’s ability to achieve performance

portability across the breadth of existing multicore

processors, they have been constrained to a single

stencil instantiation, thus failing to provide broad appli-

cability to general stencil kernels due to the immense

effort required to hand-write auto-tuners. In this work,

we rectify this limitation by evolving the auto-tuning

methodology into a generalized code generation frame-

work, allowing significant flexibility compared to pre-

vious approaches that use prepackaged sets of limited-

functionality library routines. Our approach comple-

ments existing compiler technology and accommodates

new architecture-specific languages such as CUDA.

Implementation of these kernels using existing lan-

guages and compilers destroys domain-specific knowl-

edge. As such, compilers have difficulty proving that

code transformations are safe, and even more difficulty

transforming data layout in memory. The framework

side-steps the complex task of analysis and presents a

simple, uniform, and familiar interface for expressing

stencil kernels as a conventional Fortran expression —

while presenting a proof-of-concept for other potential

classes of domain-specific generalized auto-tuners.

A. Benchmark Kernels

To show the broad utility of our framework, we

select three conceptually easy-to-understand, yet decep-

tively difficult to optimize stencil kernels arising from

the application of the finite difference method to the

Laplacian (unext ← ∇
2
u), Divergence (u ← ∇ · F)

and Gradient (F ← ∇u) differential operators. Details

of these kernels are shown in Figure 1 and Table I.

All three operators are implemented using central-

difference on a 3D rectahedral block-structured grid via

Jacobi’s method (out-of-place), and benchmarked on a

2563 grid. The Laplacian operator uses a single input

and a single output grid, while the Divergence operator

utilizes multiple input grids (structure of arrays for

Cartesian grids) and the Gradient operator uses multiple

output grids. Note that although the code generator

has no restrictions on data structure, for brevity, we

only explore the use of structure of arrays for vector

fields. As described below, these kernels have such

low arithmetic intensity that they are expected to be

memory-bandwidth bound, and thus deliver perfor-

mance approximately equal to the product of their

arithmetic intensity — defined as the ratio of arithmetic

operations to memory traffic — and the system stream

bandwidth.

Table I presents the characteristics of the three sten-

cil operators and sets performance expectations. Like

the 3C’s cache model [13], we break memory traffic

into compulsory read, write back, write allocate, and

capacity misses. A naı̈ve implementation will produce

memory traffic equal to the sum of these components,

and will therefore result in the shown arithmetic in-

tensity (totalflops
totalbytes

), ranging from 0.20–0.08. The auto-

tuning effort explored in this work attempts to improve

performance by eliminating capacity misses; thus it

is possible to bound the resultant arithmetic intensity

based only on compulsory read, write back, and write

allocate memory traffic. For the three examined ker-

nels, capacity misses account for dramatically different

Cache Flops Compulsory Write Capacity Naı̈ve Tuned Expected

References per Read
Writeback

Allocate Miss Arithmetic Arithmetic Auto-tuning

Stencil (doubles) Stencil Traffic
Traffic

Traffic Traffic Intensity Intensity Benefit

Laplacian 8 8 8 Bytes 8 Bytes 8 Bytes 16 Bytes 0.20 0.33 1.66×

Divergence 7 8 24 Bytes 8 Bytes 8 Bytes 16 Bytes 0.14 0.20 1.40×

Gradient 9 6 8 Bytes 24 Bytes 24 Bytes 16 Bytes 0.08 0.11 1.28×

TABLE I. Average stencil characteristics. Arithmetic Intensity is defined as the Total Flops / Total DRAM bytes.

Capacity misses represent a reasonable estimate for cache-based superscalar processors. Auto-tuning benefit is a

reasonable estimate based on the improvement in arithmetic intensity assuming a memory bound kernel without

conflict misses.

x

y

z

x

y

z

x

y

z

do k=2,nz-1,1

do j=2,ny-1,1
do i=2,nx-1,1

 uNext(i,j,k)=

 alpha*u(i,j,k)+

 beta*(u(i+1,j,k)+u(i-1,j,k)+
 u(i,j+1,k)+u(i,j-1,k)+

 u(i,j,k+1)+u(i,j,k-1)
)

enddo

enddo
enddo

do k=2,nz-1,1

do j=2,ny-1,1
do i=2,nx-1,1

 u(i,j,k)=

 alpha*(x(i+1,j,k)-x(i-1,j,k))+

 beta*(y(i,j+1,k)-y(i,j-1,k))+
 gamma*(z(i,j,k+1)-z(i,j,k-1))

enddo

enddo

enddo

do k=2,nz-1,1

do j=2,ny-1,1
do i=2,nx-1,1

 x(i,j,k)=alpha*(u(i+1,j,k)-u(i-1,j,k))

 y(i,j,k)= beta*(u(i,j+1,k)-u(i,j-1,k))

 z(i,j,k)=gamma*(u(i,j,k+1)-u(i,j,k-1))

enddo
enddo

enddo

xy product

read_array[][] x dimension

write_array[]

xy product write_array[][]

x dimension read_array[]

xy product

write_array[]

x dimension read_array[]

x

y

z

u

x

y

z

u

u’

u

(a) (b) (c)

Fig. 1. (a) Laplacian, (b) Divergence, and (c) Gradient stencils. Top: 3D visualization of the nearest neighbor
stencil operator. Middle: code as passed to the parser. Bottom: memory access pattern as the stencil sweeps from
left to right. Note: the color represents cartesian component of the vector fields (scalar fields are gray).

fractions of the total memory traffic. Thus, we can also

bound the resultant potential performance boost from

auto-tuning per kernel — 1.66×, 1.40×, and 1.28× for

the Laplacian, Divergence, and Gradient respectively.

Moreover, note that the kernel’s auto-tuned arithmetic

intensity will vary substantially from each other, rang-

ing from 0.33–0.11. As such, performance is expected

to vary proportionally, as predicted by the Roofline

model [26].

B. Experimental Platforms

To evaluate our stencil auto-tuning framework, we

examine a broad range of leading multicore designs:

AMD Barcelona, Intel Nehalem, Sun Victoria Falls,

and NVIDIA GTX 280. A summary of key archi-

tectural features of the evaluated systems appears in

Table II; space limitations restrict detailed descriptions

of the systems. As all architectures have Flop:DRAM

byte ratios significantly greater than the arithmetic

intensities described in Section III-A, we expect all

architectures to be memory bound. Note that the sus-

tained system power data was obtained using an in-line

digital power meter while the node was under a full

computational load, while chip and GPU card power is

based on the maximum Thermal Design Power (TDP),

extrapolated from manufacturer datasheets. Although

the node architectures are diverse, most accurately

represent building-blocks of current and future ultra-

scale supercomputing systems.

Core AMD Intel Sun NVIDIA

Architecture Barcelona Nehalem Niagara2 GT200 SM

superscalar superscalar HW multithread HW multithreadType
out of order out of order dual issue SIMD

Clock (GHz) 2.30 2.66 1.16 1.3

DP GFlop/s 9.2 10.7 1.16 2.6

Local-Store — — — 16KB∗∗

L1 Data Cache 64KB 32KB 8KB —

private L2 cache 512KB 256KB — —

System Opteron 2356 Xeon X5550 UltraSparc T5140 GeForce

Architecture (Barcelona) (Gainestown) (Victoria Falls) GTX280

Sockets 2 2 2 1

Cores per Socket 4 4 8 30

Threads per Socket‡ 4 8 64 240

primary memory Multithreading
parallelism paradigm

HW prefetch HW prefetch Multithreading
with coalescing

2×2MB 2×8MB 2×4MBshared L3 cache
(shared by 4 cores) (shared by 4 cores) (shared by 8 cores)

—

1GB (device)DRAM Capacity 16GB 12GB 32GB
4GB (host)

DRAM Pin 42.66(read) 141 (device)
Bandwidth (GB/s)

21.33 51.2
21.33(write) 4 (PCIe)

DP GFlop/s 73.6 85.3 18.7 78

DP Flop:Byte Ratio 3.45 1.66 0.29 0.55

Threading Pthreads Pthreads Pthreads CUDA 2.0

Compiler gcc 4.1.2 gcc 4.3.2 gcc 4.2.0 nvcc 0.2.1221

TABLE II. Architectural summary of evaluated platforms. †Each of 2 thread groups may issue up to 1 instruction.
‡A CUDA thread block is considered 1 thread, and 8 may execute concurrently on a SM. ∗∗16 KB local-store

shared by all concurrent CUDA thread blocks on the SM.

IV. Auto-tuning Framework

Stencil applications use a wide variety of data struc-

tures in their implementations, representing grids of

multiple dimensionalities and topologies. Furthermore,

the details of the underlying stencil applications call for

a myriad of numerical kernel operations. Thus, building

a static auto-tuning library in the spirit of ATLAS [25]

or OSKI [24] to implement the many different stencil

kernels is infeasible.

This work presents a proof-of-concept of a gen-

eralized auto-tuning approach, which uses a domain-

specific transformation and code-generation framework

combined with a fully-automated search to replace

stencil kernels with their optimized versions. The inter-

action with the application program begins with sim-

ple annotation of the loops targeted for optimization.

The search system then extracts each designated loop

and builds a test harness for that particular kernel

instantiation; the test harness simply calls the kernel

with random data populating the grids and measures

performance. Next, the search system uses the trans-

formation and generation framework to apply our suite

of auto-tuning optimizations, running the test harness

for each candidate implementation to determine its

optimal performance. After the search is complete, the

optimized implementation is built into an application-

specific library that is called in place of the original.

The overall flow through the auto-tuning system is

shown in Figure 2.

A. Front-End Parsing

The front-end to the tranformation engine parses

a description of the stencil in a domain-specific lan-

guage. For simplicity, we use a subset of Fortran 95,

since many stencil applications are already written

in some flavor of Fortran. Due to the modularity

of the transformation engine, a variety of front-end

implementations are possible. The result of parsing in

our preliminary implementation is an Abstract Syntax

Tree (AST) representation of the stencil, on which

subsequent transformations are performed.

B. Stencil Kernel Breadth

Currently, the auto-tuning system handles a specific

class of stencil kernels of certain dimensionality and

code structure. In particular, the auto-tuning system

assumes a 2D or 3D rectahedral grid, and a sten-

cil based on arithmetic operations and table lookups

(array accesses). Future work will further extend the

generality to allow grids of arbitrary dimensionality.

Although this proof-of-concept framework does auto-

.f95 .cu .f95 .h

Reference
Implementation

Myriad of equivalent,
optimized, implementations

(plus test harness)

.c

Best performing
implementation

and configuration
parameters

.c

P
a
rs

e

Internal Abstract
Syntax Tree

Representation

Code
Generators

C with

pthreads

CUDA

FORTRAN

Strategy
Engines

Parallel

Serial

GTX280

Victoria Falls

Search
Engines

in context

of specific
problem

Strategy Engines!

GPU!
Parallel

x86!
Serial
x86!

Transformation!
Engine!

Fig. 2. Stencil auto-tuning framework flow. Readable domain-specific code is parsed into an abstract represen-
tation, transformations are applied, code is generated using specific target backends, and the optimal auto-tuned
implementation is determined via search.

tune serial kernels with imperfect loop nests, the par-

allel tuning relies on perfect nesting in order to deter-

mine legal domain decompositions and NUMA (non-

uniform memory access) page mapping initialization

— future framework extensions will incorporate im-

perfectly nested loops. Additionally, we currently treat

boundary calculations as a separate stencil, although

future versions may integrate stencils with overlapping

traversals into a single stencil. Overall, our auto-tuning

system can target and accelerate a large group of stencil

kernels currently in use, while active research continues

to extend the generality of the framework.

V. Optimization & Codegen

The heart of the auto-tuning framework is the

transformation engine and the backend code genera-

tion for both serial and parallel implementations. The

transformation engine is in many respects similar to

a source-to-source translator, but it exploits domain-

specific knowledge of the problem space to implement

transformations that would otherwise be difficult to

implement as a fully generalized loop optimization

within a conventional compiler. Serial backend targets

generate portable C and Fortran code, while parallel

targets include pthreads C code designed to run on

a variety of cache-based multicore processor nodes as

well as CUDA versions specifically for the massively

parallel NVIDIA GPGPUs.

Once the intermediate form is created from the

front-end description, it is manipulated by the transfor-

mation engine across our spectrum of auto-tuned opti-

mizations. The intermediate form and transformations

are expressed in Common Lisp using the portable and

lightweight ECL compiler [6], making it simple to in-

terface with the parsing front-ends (written in Flex and

YACC) and preserving portability across a wide variety

of architectures. Potential future alternatives include

implemention of affine scaling transformations or more

complex AST representations, such as the one used

by LLVM [18], or more sophisticated transformation

engines such as the one provided by the Sketch [23]

compiler.

Because optimizations are expressed as transfor-

mations on the AST, it is possible to combine them

in ways that would otherwise be difficult using sim-

ple string substitution. For example, it is straightfor-

ward to apply register blocking either before or after

cache-blocking the loop, allowing for a comprehen-

sive exploration of optimization configurations. In the

rest of this section, we discuss serial transformations

and code generation; auto-parallelization and parallel-

specific transformations and generators are explored in

Section V-B.

A. Serial Optimizations

Several common optimizations have been imple-

mented in the framework as AST transformations,

including loop unrolling/register blocking (to improve

innermost loop efficiency), cache blocking (to expose

temporal locality and increase cache reuse), and arith-

metic simplification/constant propagation. These opti-

mizations are implemented to take advantage of the

specific domain of interest: Jacobi-like stencil kernels

of arbitrary dimensionality. Future transformations will

include those shown in previous work [3]: better utiliza-

tion of SIMD instructions and common subexpression

elimination (to improve arithmetic efficiency), cache

bypass (to eliminate cache fills), and explicit software

prefetching. Additionally, future work will support ag-

gressive memory and code structure transformations.

We also note that, although the current set of opti-

mizations may seem identical to existing compiler op-

timizations, future strategies such as memory structure

transformations will be beyond the scope of compil-

ers, since such optimizations are specific to stencil-

based computations. Our restricted domain allows us

to make certain assumptions about aliasing and de-

pendencies. Additionally, the fact that our framework’s

transformations yield code that outperforms compiler-

only optimized versions shows compiler algorithms

cannot always prove that these (safe) optimizations are

allowed. Thus, a domain-specific code generator run by

the user has the freedom to implement transformations

that a compiler may not.

B. Parallelization & Code Generation

Given the stencil transformation framework, we

now present parallelization optimizations, as well as

cache- and GPU-specific optimizations. The shared-

memory parallel code generators leverage the serial

code generation routines to produce the version run

by each individual thread. Because the parallelization

mechanisms are specific to each architecture, both the

strategy engines and code generators must be tailored

to the desired targets. For the cache-based systems

(Intel, AMD, Sun) we use pthreads for lightweight

parallelization; on the NVIDIA GPU, the only paral-

lelization option is CUDA thread blocks that execute

in a SPMD (single program multiple data) fashion.

Since the parallelization strategy influences code

structure, the AST — which represents code run on

each individual thread — must be modified to reflect

the chosen parallelization strategy. The parallel code

generators make the necessary modifications to the

AST before passing it to the serial code generator.

1) Multicore-specific Optimizations and Code Gen-

eration: Following the effective blocking strategy pre-

sented in previous studies [3], we decompose the

problem space into core blocks, as shown in Figure 3.

The size of these core blocks can be tuned to avoid

capacity misses in the last level cache. Each core block

is further divided into thread blocks such that threads

sharing a common cache can cooperate on a core block.

Though our code generator is capable of using variable-

sized thread blocks, we set the size of the thread blocks

equal to the size of the core blocks to help reduce the

size of the auto-tuning search space. The threads of a

thread block are then assigned chunks of contiguous

core blocks in a round robin fashion until the entire

problem space has been accounted for. Finally each

thread’s stencil loop is register blocked to best utilize

registers and functional units. The core block size,

thread block size, chunk size, and register block size

are all tunable by the framework.

The code generator creates a new set of loops for

each thread to iterate over its assigned set of thread

blocks. Register blocking is accomplished through strip

mining and loop unrolling via the serial code generator.

NUMA-aware memory allocation is implemented by

pinning threads to the hardware and taking advantage

of first-touch page mapping policy during data initial-

ization. The code generator analyzes the decomposition

and has the appropriate processor touch the memory

during initialization.

2) CUDA-specific Optimizations and Code Genera-

tion: CUDA programming is oriented around CUDA

thread blocks, which differ from the thread blocks

used in the previous section. CUDA thread blocks are

vector elements mapped to the scalar cores (lanes)

of a streaming multiprocessor. The vector conceptu-

alization facilitates debugging of performance issues

on GPUs. Moreover, CUDA thread blocks are anal-

ogous to threads running SIMD code on superscalar

processors. Thus, parallelization on the GTX280 is a

straightforward SPMD domain decomposition among

CUDA thread blocks; within each CUDA thread block,

work is parallelized in a SIMD manner.

To effectively exploit cache-based systems, code

optimizations attempt to employ unit-stride memory

access patterns and maintain small cache working sets

through cache blocking — thereby leveraging spatial

and temporal locality. In contrast, the GPGPU model

forces programmers to write a program for each CUDA

thread. Thus, spatial locality may only be achieved by

ensuring that memory accesses of adjacent threads (in a

CUDA thread block) reference contiguous segments of

memory to exploit hardware coalescing. Consequently,

our GPU implementation ensures spatial locality for

each stencil point by tasking adjacent threads of a

CUDA thread block to perform stencil operations on

adjacent grid locations. Some performance will be lost

as not all coalesced memory references are aligned to

128-byte boundaries.

The CUDA code generator is capable of exploring

the myriad different ways of dividing the problem

among CUDA thread blocks, as well as tuning both

the number of threads in a CUDA thread block and

the access pattern of the threads. For example, in a

single time step, a CUDA thread block of 256 CUDA

threads may access a tile of 32 x 4 x 2 contiguous

data elements; the thread block would then iterate this

tile shape over its assigned core block. In many ways,

this exploration is analogous to register blocking within

each core block on cache-based architectures.

Our code generator currently only supports the use

of global “device” memory, and so does not take

advantage of the low-latency local-store style “shared”

memory present on the GPU. As such, the generated

code does not take advantage of the temporal locality of

memory accesses that the use of GPU shared memory

provides. Future work will incorporate support for

exploitation of CUDA shared memory.

VI. Auto-Tuning Strategy Engine

In this section, we describe how the auto-tuner

searches the enormous parameter space of serial and

parallel optimizations described in previous sections.

+Y

+Z

(b)

Decomposition into

Thread Blocks

(c)

Decomposition into

Register Blocks

(a)

Decomposition of a Node Block

into a Chunk of Core Blocks

RY
RX

RZ

CY

C
Z

CX

TYTX

NY

N
Z

NX

+X
(unit stride)

TY

C
Z

TX

Fig. 3. Four-level problem decomposition: In (a), a node block (the full grid) is broken into smaller chunks. All
core blocks in a chunk are processed by the same subset of threads. One core block from the chunk in (a) is
magnified in (b). A single thread block from the core block in (b) is then magnified in (c). A thread block should
exploit common resources among threads. Finally, the magnified thread block in (c) is decomposed into register
blocks, which exploit data level parallelism.

Because the combined parameter space of the preced-

ing optimizations is so large, it is clearly infeasible to

try all possible strategies. In order to reduce the number

of code instantiations the auto-tuner must compile and

evaluate, we used strategy engines to enumerate an

appropriate subset of the parameter space for each

platform.

The strategy engines enumerate only those param-

eter combinations (strategies) in the subregion of the

full search space that best utilize the underlying ar-

chitecture. For example, cache blocking in the unit

stride dimension could be practical on the Victoria

Falls architecture, while on Barcelona or Nehalem,

the presence of hardware prefetchers makes such a

transformation non-beneficial [5].

Further, the strategy engines keep track of parameter

interactions to ensure that only legal strategies are enu-

merated. For example, since the parallel decomposition

changes the size and shape of the data block assigned

to each thread, the space of legal serial optimization

parameters dependends on the values of the parallel

parameters. The strategy engines ensure all such con-

straints (in addition to other hardware restrictions such

as maximum number of threads per processor) are

satisfied during enumeration.

For each parameter combination enumerated by the

strategy engine, the auto-tuner’s search engine then

directs the parallel and serial code generator compo-

nents to produce the code instantiation corresponding

to that strategy. The auto-tuner runs each instantiation

and records the time taken on the target machine. After

all enumerated strategies have been timed, the fastest

parameter combination is reported to the user, who can

then link the optimized version of the stencil into their

existing code.

Table III shows the attempted optimizations and the

associated parameter subspace explored by the strategy

engines corresponding to each of our tested platforms.

While the search engine currently does a comprehen-

sive search over the parameter subspace dictated by

the strategy engine, future work will include more

intelligent search mechanisms such as hill-climbing or

machine learning techniques [10], where the search

engine can use timing feedback to dynamically direct

the search.

VII. Performance Evaluation

In this section, we examine the performance quality

and expectations of our auto-parallelizing and auto-

tuning framework across the four evaluated architec-

tural platforms. The impact of our framework on each

of the three kernels is compared in Figure 4, showing

performance of: the original serial kernel (gray), auto-

parallelization (blue), auto-parallelization with NUMA-

aware initialization (purple), and auto-tuning (red). The

GTX280 reference performance (blue) is based on a

straightforward implementation that maximizes CUDA

thread parallelism. We do not consider the impact of

host transfer overhead; previous work [3] examined

this potentially significant bottleneck in detail. Overall,

results are ordered such that threads first exploit multi-

threading within a core, then multiple cores on a socket,

and finally multiple sockets. Thus, on Nehalem, the two

thread case represents one fully-packed core; similarly,

the GTX280 requires at least 30 CUDA thread blocks

to utilize the 30 cores (streaming multiprocessors).

A. Auto-Parallelization Performance

The auto-parallelization scheme specifies a straight-

forward domain decomposition over threads in the least

Optimization Parameter Tuning Range by Architecture
Category Parameter Name Barcelona/Nehalem Victoria Falls GTX280

Data Allocation NUMA Aware � � N/A

CX NX {8...NX} {16†..NX}
Core Block Size CY {8...NY} {8...NY} {16†..NY}

CZ {128...NZ} {128...NZ} {16†..NZ}

Domain TX CX CX {1.. CX

16
}‡

Decomposition Thread Block Size TY CY CY {CY

16
..CY}‡

TZ CZ CZ {CZ

16
..CZ}‡

Chunk Size {1...

NX×NY ×NZ

CX×CY ×CZ×NThreads
} N/A

Array Indexing � � �

Low RX {1...8} {1...8} 1
Level Register Block Size RY {1...2} {1...2} 1∗

RZ {1...2} {1...2} 1∗

TABLE III. Attempted optimizations and the associated parameter spaces explored by the auto-tuner for a 256
3

stencil problem (NX, NY, NZ = 256). All numbers are in terms of doubles. † Actual values for minimum core

block dimensions for GTX280 dependent on problem size. ‡ Thread block size constrained by a maximum of 256

threads in a CUDA thread block with at least 16 threads coalescing memory accesses in the unit-stride dimension.
∗The CUDA code generator is capable of register blocking the Y and Z dimensions, but due to a confirmed bug

in the NVIDIA nvcc compiler, register blocking was not explored in our auto-tuned results.

unit-stride dimension, with no core, thread, or register

blocking. To examine the quality of the framework’s

auto-parallelization capabilities, we compare perfor-

mance with a parallelized version using OpenMP [8],

which ensures proper NUMA memory decomposition

via first-touch pinning policy. Results, shown as yellow

diamonds in Figure 4, show that performance is well

correlated with our framework’s NUMA-aware auto-

parallelization. Furthermore, our approach slightly im-

proves Barcelona’s performance, while Nehalem and

Victoria Falls see up to a 17% and 25% speedup

(respectively) compared to the OpenMP version, in-

dicating the effectiveness of our auto-parallelization

methodology even before auto-tuning.

B. Performance Expectations

When tuning any application, it is important to

know when you have reached the architectural peak

performance, and have little to gain from continued

optimization. We make use of a simple empirical per-

formance model to establish this point of diminishing

returns and use it to evaluate how close our automated

approach can come to machine limits. We now examine

achieved performance in the context of this simple

model based on the hardware’s characteristics. Assum-

ing all kernels are memory bound and do not suffer

from an abundance of capacity misses, we approximate

the performance bound as the product of streaming

bandwidth and each stencil’s arithmetic intensity (0.33,

0.20 and 0.11 — as shown in Table I). Using an

optimized version of the Stream benchmark [4], which

we modified to reflect the number of read and write

streams for each kernel, we obtain expected peak per-

formance based on memory bandwidth for the CPUs.

For the GPU, we use two versions of Stream: one that

consists of exclusively read traffic, and another that is

half read and half write.

Our model’s expected performance range is repre-

sented as a green line (for the CPUs) and a green

region (for the GPUs) in Figure 4. For Barcelona and

Nehalem, our optimized kernels obtain performance

essentially equivalent to peak memory bandwidth.

For Victoria Falls, the obtained bandwidth is around

20% less than peak for each of the kernels, because

our framework does not currently implement software

prefetching and array padding, which are critical for

performance on this architecture. Finally, the GTX280

results were also below our performance model bound,

likely due to no array padding [3]. Overall, our fully

tuned performance closely matches our model’s expec-

tations, while highlighting areas which could benefit

from additional optimizations.

C. Performance Portability

The auto-tuning framework takes a serial speci-

fication of the stencil kernel and achieves a sub-

stantial performance improvement, due to both auto-

parallelization and auto-tuning. Overall, Barcelona and

Nehalem see between 1.7× to 4× improvement for

both the one and two socket cases over the conventional

parallelized case, and up to 10 times improvement over

the serial code. The results also show that auto-tuning

is essential on Victoria Falls, enabling much better

scalability and increasing performance by 2.5× and

1.4× on 64 and 128 threads respectively in comparison

to the conventional parallelized case, but a full 22×

LAPLACIAN

 0

 1

 2

 3

 4

 5

1 2 4 8

G
F
lo
p
/s

Threads

Barcelona

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16
G
F
lo
p
/s

Threads

Nehalem

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

8 16 32 64 128

G
F

lo
p

/s

Threads

Victoria Falls

 0

 2

 4

 6

 8

 10

 12

 14

 16

Ref 1 2 4 8 16 32 64 128256512 1K

G
F

lo
p

/s

CUDA Thread Blocks

GTX280

DIVERGENCE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8

G
F
lo
p
/s

Threads

Barcelona

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16

G
F
lo
p
/s

Threads

Nehalem

 0

 1

 2

 3

 4

 5

 6

8 16 32 64 128

G
F

lo
p

/s

Threads

Victoria Falls

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Ref 1 2 4 8 16 32 64 128256512 1K

G
F

lo
p

/s

CUDA Thread Blocks

GTX280

GRADIENT

 0

 0.5

 1

 1.5

 2

1 2 4 8

G
F
lo
p
/s

Threads

Barcelona

 0

 1

 2

 3

 4

 5

1 2 4 8 16

G
F
lo
p
/s

Threads

Nehalem

 0

 0.5

 1

 1.5

 2

 2.5

8 16 32 64 128

G
F

lo
p

/s

Threads

Victoria Falls

 0

 2

 4

 6

 8

 10

Ref 1 2 4 8 16 32 64 128256512 1K

G
F

lo
p

/s

CUDA Thread Blocks

GTX280

baseline auto-parallel +NUMA +auto-tuning OpenMP

Fig. 4. Laplacian (top row), Divergence (middle row), and Gradient (bottom row) performance as a function of
auto-parallelization and auto-tuning — on the four evaluated platforms. Note: the green region marks performance
extrapolated from Stream bandwidth. For comparison, the yellow diamond shows performance achieved using
the original stencil kernel with OpenMP pragmas and NUMA-aware initialization.

improvement over an unparallelized example. Finally,

auto-tuning on the GTX280 boosted performance by

1.5× to 2× across the full range of kernels — a

substantial improvement over the baseline CUDA code,

which is implicitly parallel. This clearly demonstrates

the performance portability of this framework across

the sample kernels.

Overall, we achieve substantial performance im-

provements across a diversity of architectures – from

GPU’s to multi-socket multicore x86 systems. The

auto-tuner is able to achieve results that are extremely

close to the architectural peak performance of the sys-

tem, which is limited ultimately by memory bandwidth.

This level of performance portability using a common

specification of kernel requirements is unprecedented

for stencil codes, and speaks to the robustness of the

generalized framework.

 0

 2

 4

 6

 8

 10

 12

 14

G
F
lo
p
/s

Laplacian

 0

 2

 4

 6

 8

 10

 12

 14

 16

G
F
lo
p
/s

Divergence

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

G
F
lo
p
/s

Gradient

 0

 10

 20

 30

 40

 50

 60

M
F

lo
p

/s
/W

a
tt

Avg Pwr Efficiency

barcelona nehalem VF GTX280 GTX280(card only)

Fig. 5. Peak performance and power efficiency after auto-tuning and parallelization. GTX280 power efficiency
is shown based on system power as well as the card alone.

D. Programmer Productivity Benefits

We now compare our framework’s performance in

the context of programming productivity. Our previous

work [3] presented the results of Laplacian kernel

optimization using a hand-written auto-tuning code

generator, which required months of Perl script imple-

mentation, and was inherently limited to a single ker-

nel instantiation. In contrast, utilizing our framework

across a broad range of possible stencils only requires

a few minutes to annotate a given kernel region, and

pass it through our auto-parallelization and auto-tuning

infrastructure, thus tremendously improving productiv-

ity as well as kernel extensibility.

Currently our framework does not implement sev-

eral hand-tuned optimizations [3], including SIMDiza-

tion, padding, or the employment of cache bypass

(movntpd). However, comparing results over the same

set of optimizations, we find that our framework attains

excellent performance that is comparable to the hand-

written version. We obtain near identical results on the

Barcelona and even higher results on the Victoria Falls

platform (6 GFlop/s versus 5.3 GFlop/s). A significant

disparity is seen on the GTX280, where previous hand-

tuned Laplacian results attained 36 GFlop/s, compared

with our framework’s 13 GFlop/s. For the CUDA

implementations, our automated version only utilizes

optimizations and code structures applicable to general

stencils, while the hand-tuned version explicitly discov-

ered and exploited the temporal locality specific to the

Laplacian kernel — thus maximizing performance, but

limiting the method’s applicability. Future work will

continue incorporating additional optimization schemes

into our automated framework.

E. Architectural Comparison

Figure 5 shows a comparative summary of the fully

tuned performance on each architecture. The GTX280

consistently attains the highest performance, due to its

massive parallelism at high clock rates, but transfer

times from system DRAM to board memory through

the PCI Express bus are not included and could signif-

icantly impact performance [3]. The recently-released

Intel Nehalem system offers a substantial improve-

ment over the previous generation Intel Clovertown

by eliminating the front-side bus in favor of on-chip

memory controllers. The Nehalem obtains the best

overall performance of the cache-based systems, due

to the combination of high memory bandwidth per

socket and hardware multithreading to fully utilize

the available bandwidth. Additionally, Victoria Falls

obtains high performance, especially given its low

clock speed, thanks to massive parallelism combined

with an aggregate memory bandwidth of 64 GB/s.

Power efficiency, measured in (average stencil)

MFlop/s/Watt, is also shown in Figure 5. For the

GTX280 measurements we show the power efficiencies

both with (red) and without the host system (pink). The

GTX280 shows impressive gains over the cache-based

architecture if considered as a standalone device, but if

system power is included, the GTX280’s advantage is

diminished and the Nehalem becomes the most power

efficient architecture evaluated in this study.

VIII. Summary and Conclusions

Performance programmers are faced with the enor-

mous challenge of productively designing applications

that effectively leverage the computational resources

of leading multicore designs, while allowing for per-

formance portability across the myriad of current and

future CMP instantiations. In this work, we introduce

a fully generalized framework for stencil auto-tuning

that takes the first steps towards making complex

chip multiprocessors and GPUs accessible to domain-

scientists, in a productive and performance portable

fashion — demonstrating up to 22× speedup compared

with the default serial version.

Overall we make a number of important contribu-

tions that include the (i) introduction of a high per-

formance, multi-target framework for auto-parallelizing

and auto-tuning multidimensional stencil loops; (ii)

presentation of a novel tool chain based on an ab-

stract syntax tree (AST) for processing, transforming,

and generating stencil loops; (iii) description of an

automated parallelization process for targeting multidi-

mensional stencil codes on both cache-based multicore

architectures as well as GPGPUs; (iv) achievement of

excellent performance on our evaluation suite using

three important stencil access patterns; (v) utilization

of simple performance model that effectively predicts

the expected performance range for a given kernel

and architecture; and (vi) demonstration that automated

frameworks such as these can enable greater program-

mer productivity by reducing the need for individual,

hand-coded auto-tuners.

The modular architecture of our framework enables

it to be extended through the development of additional

parser, strategy engine, and code generator modules.

Future work will concentrate on extending the scope

of optimizations (see Section VII-D), including cache

bypass, padding, and prefetching. Additionally, we plan

to extend the CUDA backend for a general local

store implementation, thus leveraging temporal locality

to improve performance and allowing extensibility to

other local-store architectures such as the Cell proces-

sor. We also plan to expand our framework to broaden

the range of allowable stencil computation classes (see

Section IV-B), including in-place and multigrid meth-

ods. Finally, we plan to demonstrate our framework’s

applicability by investigating its impact on large-scale

scientific applications, including a forthcoming opti-

mization study of an icosahedral atmospheric climate

simulation [11], [12].

IX. Acknowledgments

We would like to express our gratitude to Sun and NVIDIA
for their hardware donations. This work was supported by Mi-
crosoft (Award #024263), Intel (Award #024894), by match-
ing funding by U.C. Discovery (Award #DIG07-10227), and
by the ASCR Office in the DOE Office of Science under
contract number DE-AC02-05CH11231.

References

[1] K. Asanovic, R. Bodik, B. Catanzaro, et al. The landscape of
parallel computing research: A view from Berkeley. Technical
Report UCB/EECS-2006-183, EECS, University of California,
Berkeley, 2006.

[2] Cedric Bastoul. Code generation in the polyhedral model is
easier than you think. In PACT ’04:Parallel Architectures and

Compilation Techniques, Washington, DC, 2004.
[3] K. Datta, M. Murphy, V. Volkov, et al. Stencil Computation

Optimization and Auto-Tuning on State-of-the-art Multicore
Architectures. In Proceedings of SC ’08, Austin, Texas, 2008.

[4] Kaushik Datta. Auto-tuning Stencil Codes for Cache-Based

Multicore Platforms. PhD thesis, EECS Department, University
of California, Berkeley, Dec 2009.

[5] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker,
John Shalf, and Katherine Yelick. Optimization and perfor-
mance modeling of stencil computations on modern micropro-
cessors. SIAM Review, 51(1):129–159, 2009.

[6] Embeddable Common Lisp. http://ecls.sourceforge.net/.
[7] Bondhugula et al. A practical automatic polyhedral parallelizer

and locality optimizer. SIGPLAN Not., 43(6):101–113, 2008.
[8] OpenMP API Specification for Parallel Programming. http:

//openmp.org.
[9] Matteo Frigo. A fast fourier transform compiler. SIGPLAN

Not., 34(5):169–180, 1999.
[10] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. A case

for machine learning to optimize multicore performance. In
Workshop on Hot Topics in Parallelism, March 2009.

[11] GreenFlash. http://www.lbl.gov/CS/html/greenflash.html.
[12] R. Heikes and D.A. Randall. Numerical integration of the

shallow-water equations of a twisted icosahedral grid. part i:
basic design and results of tests. Mon. Wea. Rev., 123:1862–
1880, 1995.

[13] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU
Caches. IEEE Trans. Comput., 38(12):1612–1630, 1989.

[14] S. Kamil, C. Chan, S. Williams, et al. A generalized framework
for auto-tuning stencil computations. In Cray User Group,
2009.

[15] S. Kamil, K. Datta, S. Williams, et al. Implicit and explicit
optimizations for stencil computations. In Workshop Memory

Systems Performance and Correctness, San Jose, CA, 2006.
[16] LAPACK: Linear Algebra PACKage. http://www.netlib.org/

lapack/.
[17] A. Lim, S. Liao, and M. Lam. Blocking and array contraction

across arbitrarily nested loops using affine partitioning. In ACM

Symposium on Principles and Practice of Parallel Program-

ming, June 2001.
[18] LLVM Homepage. http://llvm.org/.
[19] S. Mitra, S. C. Kothari, J. Cho, and A. Krishnaswamy. ParA-

gent: A Domain-Specific Semi-automatic Parallelization Tool,
pages 141–148. Springer, 2000.

[20] M. Püschel, J. Moura, J. Johnson, et al. SPIRAL: Code gen-
eration for DSP transforms. Proceedings of the IEEE, special

issue on “Program Generation, Optimization, and Adaptation”,
93(2):232– 275, 2005.

[21] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific
computations. In Proceedings of SC’00, Dallas, TX, November
2000.

[22] S. Sellappa and S. Chatterjee. Cache-efficient multigrid algo-
rithms. International Journal of High Performance Computing

Applications, 18(1):115–133, 2004.
[23] Armando Solar-Lezama, Gilad Arnold, Liviu, et al. Sketching

stencils. In International Conference on Programming Lan-

guages Design and Implementation (PLDI), June 2007.
[24] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of

automatically tuned sparse matrix kernels. In Proc. of SciDAC

2005, J. of Physics: Conference Series, June 2005.
[25] R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical

Optimization of Software and the ATLAS project. Parallel

Computing, 27(1-2):3–35, 2001.
[26] S. Williams, A. Watterman, and D. Patterson. Roofline: An

insightful visual performance model for floating-point programs
and multicore architectures. Communications of the ACM, April
2009.

