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An Autofocus Technique for High-resolution

Inverse Synthetic Aperture Radar Imagery
Lifan Zhao, Lu Wang, Guoan Bi, Senior Member, IEEE, Lei Yang

Abstract—For inverse synthetic aperture radar imagery, the
inherent sparsity of the scatterers in range-Doppler domain has
been exploited to achieve high-resolution range profile or Doppler
spectrum. Prior to applying the sparse recovery technique,
preprocessing procedures are performed for minimization of
the translational motion induced Doppler effects. Due to the
imperfection of coarse motion compensation, autofocus technique
is further required to eliminate the residual phase errors. This
paper considers the phase error correction problem in the context
of sparse signal recovery technique. In order to encode spar-
sity, a multi-task Bayesian model is utilized to probabilistically
formulate this problem in a hierarchical manner. In this novel
method, focused high-resolution radar image is obtained by
estimating the sparse scattering coefficients and phase errors in
individual and global stages, respectively, to statistically make
use of the sparsity. The superiority of this algorithm is that
the uncertainty information of the estimation can be properly
incorporated to obtain enhanced estimation accuracy. Moreover,
the proposed algorithm achieves guaranteed convergence and
avoids tedious parameter tuning procedure. Experimental results
based on synthetic and practical data have demonstrated that our
method has a desirable de-noising capability and can produce
a relatively well-focused image of the target, particularly in
low signal-to-noise ratio (SNR) and high under-sampling ratio
scenarios, compared to other recently reported methods.

Index Terms—Inverse synthetic aperture radar imagery, com-
pressive sensing, high-resolution, sparse Bayesian learning, aut-
ofocus technique

I. INTRODUCTION

INVERSE synthetic aperture radar (ISAR) has been widely

used for imaging moving targets in both civilian and

military applications due to its superiority of operating in

all-weather and dim light conditions. Many techniques have

been developed to obtain high-resolution ISAR image [1]–[5].

Range resolution is generally determined by the bandwidth of

the emitted signal, while cross-range resolution depends on

the coherent processing time of radar echoes and the motion

characteristics of the target. To achieve a desirable radar im-

age, linear frequency modulated (LFM) signal is often used for

high range resolution and a long coherent processing interval

(CPI) is required for high cross-range resolution. However,

long CPI will inevitably introduce undesirable higher order

Doppler effects, which would in turn, lead to smeared Doppler

spectrum.

To ameliorate this issue, compressive sensing (CS) [6]–[9]

has emerged as a promising technique. The theory of CS
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indicates that a high dimensional signal can be recovered from

its low dimensional projection if the signal is parsimonious.

This technique has been successfully applied to SAR/ISAR

imagery to achieve high cross-range resolution with a limited

number of pulses [2], [4], [10]–[13]. The superiority of the

CS based approach is that the target motion is not compli-

cated within the short CPI, where range alignment can be

done more easily. However, these algorithms generally rely

on the assumption that the preprocessing procedures have

been perfectly conducted and no residual phase error remains

in the processed data, which unfortunately is not true in

practical scenarios. Because the motion of the target cannot

be precisely compensated by coarse pre-processing in practical

applications, phase errors induced by the translational motion

of the target often inevitably exist in the processed data [14],

[15]. If these errors are not properly corrected or compensated,

the target image obtained by the CS based algorithms would

be substantially blurred.

Conventional techniques, including phase gradient autofo-

cus (PGA) [16], [17] and minimum entropy method (MEM)

[18]–[20], have been developed to compensate for the re-

maining phase errors. The PGA method generally assumes

the existence of prominent scatterers in a range cell and

requires tuning of several parameters such as the width of

the data window and the number of range cells for phase

error compensation. In MEM, a minimum entropy based

metric is defined, where the focused image can be obtained

by iteratively evaluating the image quality until a minimum

entropy criteria is achieved. Empirical results have demon-

strated the effectiveness of these algorithms in ISAR imagery

applications. Unfortunately, in the context of obtaining high

cross-range resolution, these conventional approaches cannot

be properly integrated into a compressive sensing framework

to recover the high-resolution target image and estimate phase

error simultaneously.

Phase error correction has been also considered by the

recently reported sparse recovery technique. Alternating reg-

ularized approaches [15], [21], [22] are proposed to obtain

focused images. A sparsity based autofocus technique has

been reported in [21], where a sparse metric is defined to

iteratively estimate the sparse scatterer coefficients and phase

errors. However, this approach is developed to cope with

autofocus problem only and cannot be adjusted to obtain high-

resolution image simultaneously. In [15], [22], a similar idea

exploiting sparsity is introduced by a regularized l1 alternating

scheme, which could also be used for simultaneously achiev-

ing high resolution and autofocus applications. Although these

algorithms vary in formulations, the main idea is to obtain
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sparse scattering coefficients and phase errors via a convex

optimization based framework, which will be summarized as

l1 based alternating method in the latter sections of this paper.

Despite the empirical success of these methods, these convex

optimization based methods generally suffer from a paradigm

that the algorithm might be stuck in a shallow local minimum

of the solution during the alternating process. Inevitably, the

estimation error propagation phenomenon exists, since these

methods are used alternately between the point estimates of the

sparse scattering coefficient and phase error. To be more con-

crete, the estimation error of the sparse signal would degrade

the estimation accuracy of phase error during iterations. This

error propagation phenomenon is particularly non-negligible

with under-sampled data and in low SNR conditions. It is also

noted that the parameter tuning process is vital to the robust

performance of these methods, however, optimal regularization

parameter selection is still an open problem.

To tackle these problems, both high-resolution imagery

and phase error correction are considered based on a sparse

Bayesian model in this paper. In our method, a hierarchical

probabilistic model is imposed on the signal to facilitate conve-

nient inference. Subsequent parameter estimation is conducted

within a multi-task learning framework [23], where variational

Bayesian expectation maximization technique is used. The

sparse signal as well as its hyper-parameters are estimated

in the individual task level, while the phase error and noise

precision are updated in the global task level. In this multi-task

learning framework, phase error and noise level can be more

accurately estimated in global learning stage, which also leads

to better estimation of the sparse coefficients. A remarkable

advantage of the proposed algorithm is that it can properly

utilize uncertainty information during iterations to ameliorate

the error propagation problem. Due to the utilization of

Bayesian inference technique, the possibility of converging to

a shallow local minimum is reduced while the convergence of

the method is also guaranteed. The proposed algorithm does

not require the time-consuming parameter tuning procedures

to obtain the improved performances as those done in l1 based

alternating methods.

The rest of this paper is organized as follows. In Section II,

the CS based ISAR imagery model is introduced. In Section

III, the high-resolution and autofocus problem is formulated

by a Bayesian model, where the subsequent Bayesian infer-

ence technique is derived based on the multi-task learning

framework. Further analysis and discussion of the proposed

algorithm are given in the latter of this section. Synthetic and

practical data experimental results are given in Section IV

to demonstrate the effectiveness of the proposed algorithms.

Finally, conclusions are presented in Section V.

The following mathematical notations are used throughout

the paper. Scalars, vectors, and matrices are denoted by lower-

case letter, bold lower-case letter and bold upper-case letter,

respectively. For a given matrix A, A−1, AT and A
H denote

the inverse, transpose and conjugate transpose of A. The (i, j)-
th entry of a matrix A is represented by Aij . ∥·∥p is the lp
norm of the vector or matrix.
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Fig. 1. ISAR geometry for data collection

II. BACKGROUND

The emitted LFM signal is defined as

s(t) = rect

(

t

T

)

· exp
[

j2π
(

fct+
γ

2
t2
)]

(1)

where rect( t
T
) represents the rectangular function of width T ,

fc is the centroid frequency and γ is the chirp rate. The LFM

signal is utilized to achieve high range resolution after range

compression. To obtain high cross-range resolution, multiple

pulses are to be emitted with interval time Tr.

Assuming there exist K scatterers centers in an imagery

scene, the received radar echo can be expressed as

sr(t, tn) =
K
∑

k=1

σk · s

[

t−
2Rk(tn)

c

]

where σk is the amplitude of the k-th scatterer, c is the speed

of light, t is fast time, tn = nTr is slow time of pulse n and

Rk(tn) represents the range from scatterer k to radar in slow

time tn.

Let us define ∆θ(tn) as the angle variation between radar

line of sight and target position. Consider an appropriate

dwelling time with a small ∆θ(tn) = ωtn, the range Rk(tn)
can be approximated as

Rk(tn) = R0 + yk cos∆θ(tn) + xksin∆θ(tn)

≈ R0 + yk + xk∆θ(tn). (2)

Figure 1 shows the ISAR geometry for data collection,

where the target rotates with angular velocity ω. It is ob-

served from (2) that only the rotational motion of the target

contributes to the formation of Doppler spectrum and the

undesirable translational motion is required to be compensated

[24]. In the dwelling time, it is assumed that the target rotates

uniformly. Under this assumption, only translational motion

requires to be compensated. However, due to the imprecision

of the coarse compensation for the translational motion, image

obtained either by range Doppler (RD) or CS based algorithm

would degrade. In the following, the mathematical model for

high-resolution ISAR imagery with phase error is formulated.

The received data Sr(t, tn) is arranged according to Fig. 2,

where t axis and tn axis represent fast time and slow time,

respectively. In this paper, Sr is denoted by Y for notational

brevity. Since the phase error in ISAR imagery often exhibits
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Fig. 2. The obtained data arrangement

range invariant property [15], [18], the mathematical model

can therefore be given as

Y = EAX+N (3)

where Y ∈ C
P×M is the received data, X ∈ C

N×M is the

sparse scattering coefficient and N ∈ C
P×M is zero mean

Gaussian noise. The phase error matrix is denoted by E =
diag(ejϕ1 , ..., ejϕP ), which is a diagonal matrix representing

slow time variant errors. Furthermore, A = [a(f1), ..., a(fN )]
is a partial Fourier dictionary, where each atom a(fi) is de-

fined as [e−j2πfi t̃1 , ..., e−j2πfi t̃P ]T . In particular, {t̃1, ..., t̃P }
is sampled from nTr, n ∈ N. In CS based high-resolution

ISAR imagery, the number of pulses P is set to be less than

the number of reconstructed Doppler cell N , i.e. P ≪ N , to

achieve high cross-range resolution.

In general, the noise N is modeled as an independent

circularly-symmetric complex Gaussian distribution. It is obvi-

ous to see that the received signal Y obeys a complex Gaussian

distribution1 and the likelihood function of the observation can

be formulated as

p(Y|X;E) =
M
∏

i=1

CN (Y·i|EAX·i, α
−1
0 I) (4)

where α0 is the noise precision or reciprocal of the variance.

III. MULTI-TASK SPARSE BAYESIAN LEARNING

AUTOFOCUS TECHNIQUE

A. Mathematical Model

Laplace distribution is a popular choice as a sparse prior

[8], where the maximum a posterior (MAP) technique is

utilized for parameter estimation. It can be shown that the basis

pursuit de-noising (BPDN) method corresponds to the MAP

estimation with a Gaussian likelihood and Laplace prior. Due

to the non-conjugacy of the likelihood and prior, however, this

strategy can only provide point estimation without any higher

order statistical information. In order to obtain the uncertainty

information during estimation, sparse Bayesian method has

been introduced and developed in [25]–[28], where the signal

is hierarchically modeled to impose a prior that promotes

sparsity.

1The complex Gaussian distribution is defined as p(ξ|µξ,Σξ) =
1

πN |Σξ|
exp

[

−(ξ − µξ)
H
Σξ

−1(ξ − µξ)
]

, where ξ ∈ CN .

In the ISAR imagery problem, X is hierarchically modeled

to achieve sparse prior as well as convenient inference, since

the number of scattering centers exhibits sparsity with respect

to the complete imaging scene. Let us start by modeling each

entry in X by following a complex Gaussian distribution,

p(X|α) =

M
∏

i=1

CN (X·i|0,Λi) (5)

where Λi denotes diag(α·i) and αji is the variance of Xji.

It is noted that when αji approaches zero, its corresponding

element in X will approach zero and be pruned away from

the model.

Furthermore, the variance α of the scatterer coefficient X,

also known as hyper-parameter, obeys an independent Gamma

distribution2 for convenient inference since it is the conjugate

prior of Gaussian distribution [29],

p(α·i|λ) =
N
∏

k=1

Γ(αki|η, λi), i = 1, ...,M (6)

where αki is the k-th element in αi. It can be proved that given

η = 3/2, the marginalized distribution of X·i is a complex

Laplace distribution, where the parameter λ determines the

sparsity of the distribution.

In order to automatically infer λ controlling the sparsity of

the prior during the learning process, a Gamma distribution is

imposed,

p(λ|v1, v2) =
M
∏

i=1

Γ(λi|v1, v2). (7)

Finally, the noise precision is modeled as a Gamma distri-

bution,

p(α0|v3, v4) = Γ(α0|v3, v4). (8)

In this way, the noise level estimation can be incorporated into

the learning procedures.

The main difference between the above-mentioned model-

ing and the ones for ISAR imagery previously reported in [15],

[22] is the hierarchical modeling procedure to encode signal

sparsity. In [15], a sparsity-inducing Laplace prior is directly

imposed on the signal, where the sparse solution corresponds

to the MAP estimation. Rather than merely seeking the mode

of posterior, the approximate posterior distribution is obtained

in the above hierarchical modeling. Because the probabilistic

distribution can be obtained, it is regarded as a full Bayesian

method. It is proved that this hierarchical modeling can be

used to achieve better sparse solutions [26]. More importantly,

higher order statistical information, including the estimation

covariance matrix, can be naturally obtained with such a full

Bayesian framework.

Thus, the posterior distribution can be expressed as

p(X,α,λ, α0|Y)=
p(Y|X, α0)p(X|α)p(α|λ)p(λ)p(α0)

p(Y)
.

(9)

However, the calculation of p(Y) demands a multi-

dimensional integral, which is often intractable. In this sce-

nario, one needs to perform either Monte Carlo Markov Chain

2The Gamma distribution is defined as p(ξ|a, b) =
ba

Γ(a)
ξa−1e−bξ .
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(MCMC) [30] or variational Bayesian (VB) approximation

method in [31], [32] to obtain the sampled or approxi-

mated posterior. Because the expensive sampling procedure in

MCMC often requires an inhibitive computational complexity.

The inference is carried out based on the VB method in this

paper due to its computational efficiency.

B. Multi-task Variational Sparse Bayesian Learning

In this framework, the estimation of X, α and λ is obtained

individually since they are treated as task-specific parameters.

The estimation of α0 and E is performed in a global manner

due to the task-invariant property. The key idea of the proposed

method is statistically learning of the parameters to jointly

achieve sparsity within a multi-task learning framework. Ac-

cording to the graphic model, X, α, λ and α0 can be treated as

latent variables and E is the parameter. Since the marginalized

distribution, p(Y), is intractable, the direct expectation maxi-

mization technique is not applicable, whereby either sampling

or approximation method is required for inference. In order

to obtain efficient inference, a variational Bayesian method is

utilized.

In this method, to calculate the intractable posterior

p(X,α,λ, α0|Y), a distribution is defined to approximated

this posterior. With the mean-field assumption that the ap-

proximated posterior is factorisable, we have

p(X,α,λ, α0|Y) ≈ q(X)q(α)q(λ)q(α0). (10)

The VB procedure can be obtained by minimizing the KL

divergence3 between the true posterior and the approximated

one, expressed as

q∗(Θ) = argmin
q(Θ)

DKL(q(Θ)||p(Θ|Y))

where Θ is {X,α,λ, α0}. With some derivations, it is shown

that the posterior for the variables can be updated in a round-

robin manner [29], [31],

q∗(Θi) = exp
{

⟨ln p(Θ,Y)⟩q(Θ\Θi)

}

(11)

where ⟨·⟩q(·) represents the expectation with respect to q(·).
Subsequently, since no prior for phase error matrix E is

available, the inference of E can be obtained by maximizing

the expected log likelihood function.

1) Individual Learning Stage: In this stage, the variables

are updated individually since they are specific in each task

and do not share any common information.

i). Updating rule for X: The approximated posterior can be

expressed as

q∗(X) = exp







⟨

ln

M
∏

i=1

p(Y·i|X·i;E)p(X·i|α·i)

⟩

q(α)

+ c0







(12)

3The KullbackLeibler (KL) divergence between distribution p(x) and q(x)

is defined as
∫

p(x) ln
p(x)
q(x)

dx

where c0 is a constant with respect to X. Let us substitute (4)

and (5) into (12). It can be obtained that each X·i obeys a

complex Gaussian distribution as

q∗(X·i) ∝ exp
[

−(X·i − µ·i)
H
Σ

−1
i (X·i − µ·i)

]

(13)

where µ·i and Σi are given by

µ·i = ⟨α0⟩ΣiA
H
Ê

H
Y·i (14)

Σi = ( ⟨α0⟩A
H
Ê

H
ÊA+diag ⟨1./α·i⟩ )

−1
. (15)

From the matrix inverse lemma [26], the above covari-

ance matrix could be expressed as Σi = diag ⟨α·i⟩ −
diag ⟨α·i⟩A

H
Ê

H [1/ ⟨α0⟩ I+ ÊAdiag ⟨α·i⟩A
H
Ê

H ]−1
ÊA ·

diag ⟨1./α·i⟩. Therefore, computational complexity can be

decreased. It is noted that when αij becomes very small, its

corresponding entry in X approaches zero and will be pruned

away.

ii). Updating rule for α: The approximated posterior is

given by

q∗(α) = (16)

exp











⟨

ln
M
∏

i=1

p(X·i|α·i)p(α·i|λi)

⟩

M∏

i=1
q(X

·i)q(λi)

+ c0











.

Substituting (5) and (6) into (16), it is seen that each αji

obeys a generalized inverse Gaussian (GIG) distribution as,

q∗(αji) ∝ αji
η−1 exp

[

−⟨2λi⟩αji −
⟨

2|xji|
2
⟩

α−1
ji

]

.
(17)

Therefore, the k-th moment of the GIG distribution [33] is

given as,

⟨

αk
ji

⟩

=

(

⟨

2|Xji|
2
⟩

⟨2λi⟩

)
k
2

·
κη−1+k(

√

⟨2λi⟩ ⟨2|Xji|2⟩)

κη−1(
√

⟨2λi⟩ ⟨2|Xji|2⟩)
(18)

where κa is the modified Bessel function of the second kind.

The updating rule for ⟨αji⟩ and
⟨

α−1
ji

⟩

is given in (18) with

k = 1 and k = −1, which will be further used to update X

and λ, respectively.

iii). Updating rule for λ: The approximated posterior of λ

can be obtained by

q∗(λ) = exp











⟨

ln
M
∏

i=1

p(α·i|λi)p(λi|v1, v2)

⟩

M∏

i=1
q(α

·i)

+ c0











.

(19)

Substituting (6) and (7) into (19), it is seen that the approxi-

mated posterior for λi obeys a Gamma distribution due to the

prior conjugacy,

q(λi) ∝ ληN+v1−1
i exp

[

−(
N
∑

k=1

αki + v2)λi

]

. (20)

The mean of the λi, i ∈ {1, · · · ,M} is therefore given by

⟨λi⟩ =
ηN + v1

N
∑

k=1

αki + v2

. (21)
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2) Global Learning Stage: In the global learning stage, the

noise precision parameter, α0, and phase error matrix, E, are

derived since they are shared among tasks. Now let us derive

the updating rules for α0 and E, respectively.

i). Updating rule for noise precision α0 : The approximated

posterior is

q∗(α0) = exp
{

⟨ln p(Y|X, α0)p(α0|v3, v4)⟩q(X) + c0

}

.

(22)

The update of α0 is thus given by the mean of Gamma

distribution

q∗(α0) ∝ αMP+v3−1
0 exp

{

−

[

∥

∥

∥
Y − ÊAµ

∥

∥

∥

2

F
+

N
∑

i=1

trace(AH
Ê

H
ÊAΣi) + v4

]

α0

}

.

(23)

From (23), we can obtain the estimate for α0 as,

⟨α0⟩ =
MP + v3

∥

∥

∥
Y − ÊAµ

∥

∥

∥

2

F
+

M
∑

i=1

trace(AHÊHÊAΣi) + v4

.

(24)

ii). Updating rule for E: The solution to E can be for-

mulated by minimizing the negative expected log-likelihood

function as,

Ê = argmin
E

⟨−ln p(Y,X,α,λ;E)⟩q(X)q(α)q(λ)

= argmin
E

⟨

∥Y −EAX∥22

⟩

q(X)
. (25)

It is noted that the above problem is a convex opti-

mization having a closed-form solution [34]. By solving
∂⟨ln p(Y,X,α,λ;E)⟩q(X)q(α)q(λ)

∂E
= 0, as shown in Appendix A.1,

we can obtain

ϕ̂i = arctan







−
Re
[

Yi·(Ai·µ)
H
]

Im
[

Yi·(Ai·µ)
H
]







. (26)

where i = 1, ..., P . The corresponding E(i, i) can be up-

dated by Ei,i = exp(jϕi) accordingly. This rule is denoted

as updating rule I, which is also used in the regularized

based methods. However, it should be noted that the obtained

uncertainty information Σ of estimation X in (15) does not

appear in this updating rule. More concretely, updating rule

I only exploits the point estimation of X to estimate E. In

order to properly utilize the uncertainty information, let us pro-

pose another method incorporating Σ to enhance estimation

accuracy. Towards this end, rather than explicitly modeling

the phase error as ejϕi , the real and imaginary parts of the

error are modeled as ai and bi, respectively. By introducing

these two parameters instead of the angle ϕi, the uncertainty

information can be naturally incorporated into the estimation

process to achieve enhanced estimation of E in each iteration.

The detailed derivations, shown in Appendix A.2, lead to

Êi,i =
[Yi·(Ai·µ)

H
]

trace(µHAH
i·Ai·µ) +

M
∑

k=1

trace(AH
i·Ai·Σk)

(27)

where i = 1, ..., P . Thus, (27) is denoted as updating rule II.

The corresponding algorithms are further denoted by AFSBL1

and AFSBL2, respectively.

Remark. Although the normalization information seems to

be lost with this modification, the empirical results validate

that this scarification does not degrade the performance. Our

experimental results also validate that AFSBL2, which exploits

the uncertainty information of the estimation, can achieve

better recovery results. Further results and discussions can be

found in Section IV. It is worthwhile to point out that AFSBL2

algorithm is quite different from the l1 alternating method.

In addition to performing alternately point estimation, the

proposed method uses the statistical information to enhance

the estimation performance and avoid converging to a shallow

local minimum.

In summary, the proposed autofocus sparse Bayesian learning

method is given in Algorithm 1.

C. Algorithm Initialization

Proper initialization is required for this algorithm to obtain

desirable results. A reasonable initialization of Algorithm 1

can be set as follows.

1). Each column in α·i is initiated by 1/abs(AH
Y·i), which

is known as projection of Y onto the space spanned by the

columns of A.

2). The phase error matrix E is initiated as I since no prior

information is available. It is possible to be initialized with

other value when the prior distribution is available.

3). The noise precision α0 is initiated as 1/var(Y).
4). The hyper-parameters are set to v1 = v2 = v3 = v4 =

10−6 as suggested in [35].

Algorithm 1 Autofocus Sparse Bayesian Learning

1: Input: Y, A, E, α, v1, v2, v3, v4.

2: while ∼ Converge do

3: I. Individual Learning Stage

4: for i = 1 : M do

5: Update µ·i and Σi by (14) and (15).

6: Update α·i by (18)

7: Update λi by (21)

8: end for

9: II. Global Learning Stage

10: Update noise precision α0 by (24)

11: for i = 1 : P do

12: Update E(i, i) by rule I (26) or rule II (27).

13: end for

14: end while

15: Output: X, E.

D. Convergence Analysis

The hidden variables are defined as Θ = {X,α, λ}. We

prove that under certain conditions X and E will monoton-

ically decrease the KL divergence and the negative expected

log likelihood function, respectively, until reaching to a con-

vergence point.
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Noiseless Phase Error RD AFSBL1 AFSBL2

Fig. 3. ISAR imaging with 25 pulses (50% of the measurement and SNR=20dB). (a) Low-order phase error, AFSBL1 (NMSEX = −8.0730dB, MSEϕ =
0.1042), AFSBL2 (NMSEX = −14.5165dB, MSEϕ = 0.0301), (b) High-order phase error, AFSBL1 (NMSEX = −7.4258dB, MSEϕ = −0.0952),
AFSBL2 (NMSEX = −12.9717dB, MSEϕ = −0.0848), (c) random phase error, AFSBL1 (NMSEX = −4.0294dB, MSEϕ = 0.4019), AFSBL2
(NMSEX = −12.4399dB, MSEϕ = 0.0059).

Theorem 1: Let {Xn
·i} and {En

ii} denote the estimation

sequence for the sparse scatterer coefficient and phase error,

respectively. The sequence X
n
·i and E

n
ii are guaranteed to

converge to a convergence point.

Proof: The proof is given in Appendix B.

As indicated in Theorem 1, the convergence of the proposed

algorithm can be guaranteed. The experimental results also

validate that the algorithm will converge within tens of itera-

tions in Section IV. Compared to the convex based alternating

strategy, our alternating scheme exploits Bayesian estimation

rather than point estimation. It is noteworthy that our proposed

algorithm has a smaller probability that the convergence point

is a shallow minimum due to the utilization of higher order

estimation information compared to other ones.

E. Discussion

Autofocus technique based on sparse signal processing

has been also considered in the literature. In [15], [21],

the reported algorithm is shown to achieve desirable im-

provements on auto-focusing. However, it cannot be properly

modified to achieve high-resolution imagery. The proposed

method, however, is formulated in the sparse Bayesian learning

framework to specify the corresponding parameters for both

high-resolution imagery scene and phase errors, respectively.

Furthermore, all the required parameters in this method are

learned from the data directly, avoiding the time-consuming

tuning procedures for validating parameters. At the same time,

more information including estimation variance is exploited to

achieve better estimation.

TABLE I
ISAR SYSTEM PARAMETERS FOR SYNTHETIC DATA

Centroid frequency fc 10 GHz

Chirp rate γ 3 Hz/s

Repetition frequency fr 25 Hz

Rotational angular velocity ω 0.1 rad/s

Scatterer center range R0 5 km

Number of Range cell M 50

Number of pulse N 50

Although this paper only considers the cross-range variant

phase error in the context of ISAR imagery, the framework

presented above can also be flexibly modified to other types

of phase errors encountered in SAR imagery [22], such as

range variant phase error. In this case, phase error estimation

is required to be updated in the individual learning stage.

IV. EXPERIMENTAL RESULTS

In this section, experimental results by using synthetic and

practical data are presented, respectively, to evaluate the per-

formances achieved by the proposed algorithm. Comparisons

with other popular methods are also presented.

A. Synthetic Data Experiments

To qualitatively and quantitatively evaluate the performance,

the synthetic data are generated with a radar system whose

parameters are given in Table I. The imagery size is 50× 50
and the number of scatterers is 11. The magnitude of each

scatterer obeys CN (0, 1). The under-sampled data is obtained
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Fig. 4. ISAR imaging with full measurement and SNR=0dB. (a) The true
target scene, (b) Image obtained by RD, (c) True phase error, (d) Image
obtained by PGA, (e) Image obtained by MEM, (f) Image obtained by l1 based
method, (g) Image obtained by AFSBL1, (h) Image obtained by AFSBL2.

by randomly selecting the number of pulses from the full aper-

ture data. The noiseless RD imagery with full measurement

data is shown in Fig. 3.

The normalized mean square error (NMSE) of the scatterer

coefficient estimation is defined as,

NMSEX = 10 log10

∥

∥

∥
X̂/|X̂|max −X/|X|max

∥

∥

∥

2

F
(28)

and the mean square error (MSE) of phase error estimation is

defined as,

MSEϕ =
∥

∥

∥
angle(Ê)− angle(E)

∥

∥

∥

2

F

/

P . (29)

In the following experiments, 50 iterations are used by MEM

[18], l1 [22], AFSBL1 and AFSBL2 for performance evalu-

TABLE II
NMSEX AND MSEϕ

SNR PGA MEM l1 AFSBL1 AFSBL2

10db
NMSEX −2.8294 −4.1886 −4.6554 −4.2565 −10.7487

MSEϕ 1.1290 0.0380 0.7855 0.6925 0.0365

5db
NMSEX 4.6718 0.3128 −4.0954 −4.1024 −9.9212

MSEϕ 2.1928 0.0710 0.8398 1.1825 0.0590

0db
NMSEX 8.8631 5.5049 −1.3158 1.0843 −5.1497

MSEϕ 2.8042 0.0894 0.9149 1.2149 0.0665

ation, where the l1 based method is implemented with CVX

toolbox [36].

In Fig. 3, an illustrative example is given to evaluate the

high-resolution and autofocus performances of updating rule

I and rule II as discussed in Section III-B in terms of different

types of phase errors. In Fig. 3(a)-(c), low-order, high-order

and random phase errors are tested by the proposed algorithms,

AFSBL1 and AFSBL2, respectively. From these figures, it is

seen that AFSBL2 can obtain a well focused image, while

AFSBL1 achieves less focused image due to the undesirable

side-lobe effects. It is also observed from Fig. 3(a) to (c)

that the imagery results obtained by both AFSBL1 and RD

degrade. However, the images obtained by AFSBL2 are well

focused in all these scenarios. It is particularly interesting to

observe that in the random phase error scenario, AFSBL2

can give more concentrated image by exploiting estimation

covariance. Therefore, despite the form of the phase errors, the

AFSBL2 can provide lower NMSEX as well as MSEϕ due

to its inherent ability of utilizing the uncertainty information

of estimation X. Since the random phase errors representing

the most general case with the worst imaging quality, let us

consider the following experiments with the random phase

errors.

The proposed algorithm is compared with other conven-

tional algorithms with full measurement data. Figure 4 shows

the performance comparison of the proposed algorithm and

other popular ones with SNR = 0dB. In this experiment, the

SNR is so low that some of the scatterers are covered by

the noise, which can be observed from Fig. 4(b). In Fig.

4(d) and (e), it is observed that the image cannot be properly

focused by PGA and MEM due to the low SNR. In contrast,

as demonstrated in Fig. 4 (f), (g) and (h), the sparsity based

methods can obtain the focused image and exhibit a desirable

de-noising effect. In Fig. 4 (f), some of the undesirable artifacts

are not properly removed by the l1 based method and almost

one half of true scatterers are lost in Fig. 4 (g) by AFSBL1.

Among all the imagery results, it is shown that the proposed

AFSBL2 can obtain the most focused and concentrated image,

though two scatterers are lost.

In Table II, quantitative results, including NMSEX and

MSEϕ, are given to evaluate the performance when SNR =

10, 5 and 0 dB, respectively. We conduct 50 Monte Carlo

trails to test the algorithms. The PGA algorithm gives the

worst NMSEX as well as MSEϕ, particularly in low SNR

conditions. Although the MEM algorithm gives lower MSEϕ

than those obtained by l1 and AFSBL1 methods, the ob-

tained NMSEX is much higher than those achieved by these
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Fig. 5. ISAR imaging results in SNR=10dB. (a) 75% of the measurement, (b) 50% of the measurement, (c) 25% of the measurement.
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Fig. 6. The convergence of the algorithms in terms of under-sampling ratio.
The convergence of the sparse coefficient X and the corresponding phase error
E with 75%, 50% and 25% are in (a), (c), (e) and (b), (d), (f), respectively.

two algorithms due to the inability of de-noising. For all

the tested SNRs, it is seen that the proposed AFSBL2 can

obtain lowest NMSEX and MSEϕ. The difference between

the results obtained by AFSBL1 and AFSBL2 also validates

that improved estimation has been obtained by exploiting

uncertainty information. It is concluded that the proposed

AFSBL2 algorithm can obtain more focused image with

full measurement compared to other algorithms in various

scenarios.

Let us consider how the proposed algorithm deals with

under-sampled data for high-resolution and autofocus. In Fig.

5, the proposed algorithm is compared to other algorithms in

terms of number of measurements. PGA and MEM are not

included in the comparison because they cannot be properly

modified to achieve high-resolution imagery. From Fig. 5 (a)

to (c), we can observe that the performances degrade as the

number of measurements decreases. When 75% or 50% of

the measurements are used, all these algorithms can obtain

reasonable results although undesirable points are still visible

in the image obtained by l1 and AFSBL1. However, when

25% of the measurement is used, Fig. 5 (c) shows that the

image is not properly focused no matter which method is

used. However, AFSBL2 can achieve relatively better image

with fewer artifact points. In summary, the proposed AFSBL2

algorithm can outperform other methods in various under-

sampling scenarios.

Finally, the convergence of the l1, AFSBL1 and AFSBL2 is

compared with SNR=5dB in Fig. 6. As seen from these figures,
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Fig. 8. ISAR imagery results with one half of the measurement with (a) SNR = 15dB, (b) SNR = 10dB, and (c) SNR = 5dB.

Cross−range Cell

R
an

ge
 C

el
l

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 7. The noiseless RD imagery of the Yak-42 dataset

the NMSEX of the sparse coefficient X and MSEϕ of phase

error show that all the algorithms have degraded performances

with less measurement. In particular, the convergence of the

l1 regularized method and AFSBL1 suffer from oscillations,

which is also indicated in [21]. In contrast, AFSBL2 can lead

to smooth convergence without obvious oscillations, which

is obtained by utilizing the uncertainty information. In this

experiment, it not only demonstrates the convergence of the

algorithm, but also empirically shows that the AFSBL2 can

obtain enhanced estimation when the algorithm converges.

Therefore, it is concluded that the utilization of the estimation

TABLE III
ISAR SYSTEM PARAMETERS FOR YAK-42 DATASET

Centroid frequency fc 10 GHz

Band width B 400 MHz

Repetition frequency fr 25 Hz

Number of Range cell M 128

Number of Pulse N 128

uncertainty information by our particular modeling can greatly

benefit the estimation accuracy.

B. Practical Data Experiments

The Yak-42 dataset is tested with the proposed and other

popular algorithms in various scenarios. The radar system

parameters of this dataset are given in Table III. In these

experiments, we particularly demonstrate both high-resolution

and autofocus results achieved by the proposed algorithm

compared with those obtained by l1 based method. The image

size is 128×128 and the noiseless RD imagery result with full

measurement is shown in Fig. 7. In this subsection, we will

highlight the performances achieved by the proposed AFSBL2

and l1 methods.

In Fig. 8, the performances are evaluated in terms of various

SNR levels. In these figures, the phase error is generated

according to a complex Gaussian distribution CN (0, 1) and

the under-sampling ratio is 50%. As observed from Fig.

8(a) and (b), the images obtained by l1 method show a
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Fig. 9. ISAR imagery results with SNR=8 dB using (a) 25%, (b) 50%, (c) 75%, of the measurements.

relatively reasonable profile of the airplane while the image

blurring effects still exist in these images and some of the

true scattering points are not recovered. In contrast, AFSBL2

removes most of the undesirable artifacts and obtains better

concentration results. When heavier noise is added, the RD

image in Fig. 8(c) is almost covered by the noise and the l1
method can hardly obtain an airplane profile with a limited

number of true scatterers. In contrast, the AFSBL2 algorithm

can achieve better results by recovering more true scattering

points. With these comparisons, it can be concluded that the

proposed AFSBL2 algorithm is able to obtain superior imagery

results from different SNR scenarios.

In Fig. 9, the performances are compared in terms of

different under-sampling ratios. It is quite obvious that more

measurement data generally lead to better imagery results. It

is reasonable to conclude that both l1 and AFSBL2 algorithms

can effectively estimate the phase errors with large number of

measurements. When the number of measurements decreases,

however, the l1 method cannot obtain a good concentration

of the target images since they are blurred and out-focused.

More importantly, it can be observed that the images obtained

by AFSBL2 are much more focused and concentrated in the

target region. Remarkably, the results obtained by AFSBL2 do

not require any tedious tuning of parameters.

Finally, the computational time is compared. When the num-

ber of iterations is set to T , the computational complexities of

the proposed and the l1 based algorithms are in the orders

of O(TMP 3) and O(TMP 2N) [37], respectively. In the

application of high-resolution imagery, where P < N , the

proposed method has lower computational complexity. The

computational time is measured based on the Matlab code

(unoptimized) run on Intel 3.40GHz CPU. In this experi-

ment, the l1 regularized based method is implemented with

the CVX toolbox. However, there are other more efficient

ways of handling l1 optimization such as proximal operator

to reduce the computational costs, which is not discussed

further. The computational time is compared with different

number of measurements. In Fig. 10, it is easy to observe

that the proposed algorithm can achieve desirable results with

relatively less computational time.

V. CONCLUSION

In this paper, an autofocus technique for high-resolution

ISAR imagery is proposed based on sparse Bayesian method.

In the proposed algorithm, a multi-task learning framework

is formulated, where sparse scattering coefficients and phase

error are updated iteratively in a variational Bayesian inference

framework. Benefiting from such hierarchical modeling, the

proposed ASFBL2 is able to incorporate uncertainty informa-

tion in parameter learning. The ASFBL2 approach can not

only decrease the possibility of converging to shallow local

minimal, but also learn the parameters automatically without

labor intensive parameter selection procedures.
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APPENDIX

A. Derivation of Updating Rule I and II

The derivations of (26) and (27) are presented in this

appendix.

1) Proof of (26): The i-th diagonal entry in E is defined

as ejϕi . Substituting it into (25), the minimization problem is

equivalent to

ϕi = argmin
ϕi

⟨

∥

∥Yi· − ejϕiAi·X
∥

∥

2

2

⟩

q(X)

= argmin
ϕi

[

−e−jϕiYi·µ
H
A

H
i· − ejϕiAi·µY

H
i·

]

.

(30)

Taking the derivative with respect to ϕi and setting it to zero,

we can obtain,

ϕi = arctan







−
Re
[

Yi·(Ai·µ)
H
]

Im
[

Yi·(Ai·µ)
H
]







. (31)

The updating rule I is obtained by E(i, i) = exp(jϕi).
2) Proof of (27): Let us now define the i-th diagonal entry

in E as ai + jbi. Substituting it into (25), the minimization

problem is equivalent to

E(i, i) = argmin
ai+jbi

⟨

∥Yi· − (ai + jbi)Ai·X∥22

⟩

q(X)

= argmin
E(i,i)

−(ai + jbi)Yi·µ
H
A

H
i· − (ai − jbi)

·Ai·µY
H
i· + (a2i + b2i ) · trace(µ

H
A

H
i· Ai·µ)

+(a2i + b2i ) ·
M
∑

k=1

trace(AH
i· Ai·Σk). (32)

Taking the derivative with respect to ai and bi and setting them

to zeros, we can obtain

ai =
Re[Yi·(Ai·µ)

H
]

trace(µHAH
i·Ai·µ) +

M
∑

k=1

trace(AH
i·Ai·Σk)

(33)

bi =
Im[Yi·(Ai·µ)

H
]

trace(µHAH
i·Ai·µ) +

M
∑

k=1

trace(AH
i·Ai·Σk)

. (34)

The updating rule II is obtained by E(i, i) = ai + jbi.

B. Proof of Theorem 1

Firstly, the convergence of {Xn
·i} is proved. It can mono-

tonically decrease the KL divergence of the approximate and

the true joint distribution. It can be proved that the new

approximated posterior q(X·i) will necessarily decrease the

KL divergence of DKL

[

q(X·i)||p(Y,X·i, α·i, Ê)
]

[29].

Secondly, let us prove that the phase error sequence {En}
increases the lower bound of log-likelihood function. Define

the log-likelihood function as L(En) = ln p(Y;En), where

E is the phase error matrix. The convergence of the sequence

{En} is proved as follows. The expected log-likelihood func-

tion of En+1 can be expressed as

E
n+1 = argmax

E

∫

q(X) ln (p(Y|X;E))dX. (35)

Maximizing (35) is equivalent to maximize the following one

by introducing some constant terms with respect to E
n+1,

∫

q(X) ln (p(Y|X;E)) dX− ln p(Y;En). (36)

Due to the non-negativity of the KL divergence, the above

equation is upper bounded by

ln

∫

p(Y,X;En+1)p(X)dX− ln p(Y;En)

= ln p(Y;En+1)− ln p(Y;En)

= L(En+1)− L(En). (37)

From (1), it is seen that the maximization of the expected log-

likelihood function in the global stage does not decrease the

lower bound of the expected log-likelihood function. In other

words, the sequence E
n
ii is guaranteed to increase the lower

bound of log-likelihood, thus resulting in non-decreasing log-

likelihood.

In summary, the sequence {Xn
·i} decreases the KL diver-

gence and {En
ii} decreases the negative expected likelihood

until convergence.
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