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ABSTRACT 

AN AUTOMATA BASED 

AUTHORSHIP IDENTIFICATION SYSTEM 

by Shangxuan Zhang 

This thesis gives a design and implementation for an authorship 

identification system based on automata modeling. The writing 

samples of an author were collected to build a tree and use the 

ALERGIA algorithm to merge all the compatible states of the tree in 

order to get a stochastic finite automaton. This automaton represents 

the writing style of the author. We can use this automaton to test 

whether an anonymous writing piece belongs to this author. 
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1. INTRODUCTION 

Based on the Kolmogorov complexity K(x) for binary string x, in 

1993, Lin proposed to use the opposite of randomness as the concept 

of patterns [1 ] , namely, a sequence x has pattern if K(x) 

$<$ length(x). Obviously, one can conclude that a sequence is said to 

have pattern if and only if there exists a constant subsequence (Lin 

stated it for infinite sequences). This could be viewed as the 

foundation of frequent item sets (high frequency patterns). In [2 ] , Lin 

ported the idea to numerical world. In [3 ] , the idea was ported to the 

world of finite automata, in which the automata were used to detecting 

(learning the patterns) the sequences of system calls in program. 

Here we switch the applications from the intrusion detection system to 

authorship identification system, in which we use automata to detect 

the string of stop words in a book. 

It is well-known that every author has some particular writing 

style, depending on his or her gender, age, experience, knowledge, etc. 

To illustrate, some people name a few statistic writing characters: 

average word length, average sentence length in words, word 

frequency, etc. Given an anonymous writing piece and possible 
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authors with their writing samples, theoretically, one can investigate 

these writing characters and identify the author of this writing piece 

[4] . 

Life is easy if that is the whole story. In practice, we don't have 

a complete set of quantities to characterize the writing style. Even if 

such a set exists, it must be too huge to incorporate into a program. 

On the other hand, it seems not possible to describe the writing style 

only by using these statistic quantities. There are some hidden 

relations between the contexts. Hidden Markov model has been used 

widely to reveal these relations. 

The aim of this paper is to study authorship identification 

through function words based on the theory of automaton. Function 

words have long ago been used to identify the writing style. Recently, 

some interesting work has been done along this direction. 

This work is inspired by the work of P.Baliga and T.Y.Lin on the 

virus intrusion detection system [3 ] . More precisely, we collect writing 

samples of a prescribed author. From each sample, we keep the 

function words for each sentence and wipe out all other information. 

These sequences of function words are actually the realization of a 
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hidden automaton. Our goal is to use this data and machine learning 

technique to figure out this automaton, which is our representation of 

the normal writing pattern of the author. 

For any other writing sample, our program will test the 

structure of function words sentence by sentence. We record the 

proportion of sentences which pass the test. The higher the proportion, 

the more likely this sample belongs to the author. It is recommended 

to combine this result with other classical methods of authorship 

identification to get a more accurate result. 

The content of this paper is organized as follows. In section 2, 

we review stochastic finite automata. In section 3, we describe the 

ALERGIA algorithm which is used to build an automaton from sample 

data. In section 4, we handle the data of writing samples, and 

describe the application of the algorithm to our specific problem. In 

section 5 we give a briefly description of the implementation of the 

program. In section 6 we introduce the main feature of the software. 

Finally in section 7 we present partial results of the running of our 

program. 
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2. STOCHASTIC FINITE AUTOMATA 

In this section we shall review the notion of finite automata and 

its variation stochastic finite automata [5-11]. In this paper, we shall 

limit ourselves to deterministic automata. In later sections, we are 

primarily interested in stochastic finite automata. The basic 

ingredients are same except the extra information of transition 

probability. 

A deterministic finite automaton (DFA) is a 5-tuple 

(Q, A, 5, q0, F), 

where Q=q0,qi,..., qn is its set of states, A its input symbols, 5 its 

transition function that takes a state and an input symbol as 

arguments and return a state, qo its start state, and F its set of 

accepting states. 

One simplest nontrivial DFA is an on/off switch. This device has 

two states: "on" and "off." The user can press the button to switch 

one state to another state. For general purpose, one can assign "off" 

as start state and "on" as accepting state. 
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In reality, a lot of phenomena are actually random. It 

motivates the following generalization of deterministic finite automata 

to stochastic finite automata. 

A stochastic finite automata (SFA) consists of a DFA (Q, A, 5, q0 , 

F), and a set P of probability matrices pij(a) for each symbol a in A. 

Each pu(a) gives the probability of the a transition from the state qi to 

state qj led by the symbol a. We let pif be the probability that the 

string end at state qj. Then we have the following constraint: 

Intuitively, it means that for each state qi, the sum of the 

probabilities end at qi and the probabilities start at qi should equal to 

one. 

Let A* be the set of all strings on A. For each string w, one can 

define the probability p(w) inductively as usual. The language 

generated by the automaton is defined as: 
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L = {w eA¥ :p(w) ^ 0 } . 

A stochastic regular language (SRL) is defined to be the 

language generated by an SFA. Two SRLs are said to be equivalent if 

they contain the same set of strings with the same corresponding 

probabilities, that is, 

L\ s l 2 ^ pi(w) = p2{w),)iw £ A\ 

where U and L2 are two SRLs, and pi(w) is the probability of the 

transition led by w in language L|. 
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3. ALERGIA ALGORITHM 

In this section we recall the ALERGIA algorithm to deal with the 

following problem: Given a fixed SFA, there will be a SRL defined by 

this SFA. Now suppose the structure of this SFA is not informed, 

instead a large random subset of strings is given as the SRL generated 

by this SFA. The goal is to reconstruct the SFA from this given set of 

strings. For details of the method in this section, please see [6] . 

Now we describe the approach to solve this problem. First of all, 

It is to build a tree from these data. This tree is called a prefix tree 

adapter (PTA). Each node of the PTA represents a state. For each 

node of the tree, we assign the frequency of transition led by each 

symbol. Next, each node of the PTA is compared pairwisely. The 

equivalence of nodes is defined. According to this equivalence, the 

nodes are classified and merged with the equivalent nodes of the PTA. 

At the end, the frequencies are recalculated and we can conclude a 

SFA which is an approximation of the original SFA. 

Let us start with the definition of PTA. Now suppose the set of 

sample data is S = { s i , S2, ..., sm} . We describe the PTA inductively. 
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For each string Sk=aia2...ai<, we begin with the initial node q0 . Suppose 

there is a transition from q0 to one of its child node qi led by a i , we 

follow this transition and move to the node qi. Otherwise, we add a 

new node to this tree, the transition from qo to this new node is thus 

led by a i . Either way, we move to a new node, now we look at symbol 

a2 and continue this process. In the end, we reach a node that 

accepting this string. One example of this procedure is given in the 

next section. 

When we run through all the sample data, we can assign the 

frequency of appearance of each symbol as a transition between nodes, 

and the number of strings entering each node, the number of string 

accepting by each node. We denote by ni the number of strings 

arriving at node q{, fj(a) the number of strings following transition 5i(a) 

and f|(#) the number of strings ending at node qi. Obviously, fi(a)/ni 

and fi(#)/nj gives estimate of the probabilities pi(a) and pif respectively. 

After we obtain the PTA, we introduce the notion of equivalence 

between two nodes. Two nodes are said to be equivalent if for all 

symbols 'a' belongs to A, "the associated transition probabilities from 

the nodes are equal; the termination probabilities for the nodes are 
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equal; and the destination nodes of the two transitions for each 

symbol are equivalent according to a recursive application of the same 

criteria." In symbols, we have 

qi = qj =$• Va £ A, we have Pi(a) = Pj(a) and 8i(a) = Sj(a). 

In the application of this notion, since we seldom have two 

equal frequencies by statistic fluctuations in experimental results, the 

equivalence of two nodes must also be accepted within a confidence 

range. To this end, we call two nodes are compatible if they are 

equivalent within some pre-described confidence range. 

Since for a Bernoulli variable with probability p and frequency f 

out of n tries, the confidence range is given by the Hoeffding bound as 

follows: 

/ 
P 

n 

/ 1 2 
< \/ — log — with probability larger than (1 — a). 

V 2n a 

When the two estimated probabilities differ more than the sum of the 

confidence ranges, the ALERGIA algorithm will reject equivalence. 



/ / ' 
n n' 

>v/R(^+^) 
Finally, when two nodes are merged, we should recalculate 

their frequencies and node numbers in order to ensure that the SFA 

remains deterministic and order-preserving. 
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4. AUTOMATA BASED MODELING 

In this section we shall describe how to model the authorship 

identification problem using automata. 

Our authorship identification approach utilizes function words 

based automata modeling. In this approach, the first step is to choose 

an author and collect as many writing samples as possible for use as 

training data sets that are representative of standard writing style for 

this author. In the sequel, we shall use the following paragraph as 

writing sample to illustrate the idea. This piece is cited from the 

beginning of Harry Potter and the Prisoner of Azkaban. 

"Harry Potter was a highly unusual boy in many ways. For one 

thing, he hated the summer holidays more than any other time of year. 

For another, he really wanted to do his homework but was forced to do 

it in secret, in the dead of night. And he also happened to be a 

wizard" 

After choosing the sample, we fix the basic unit of training data, 

which can be one sentence, one paragraph or one whole article, then 
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cut all writing samples into the predetermined units. In this paper, we 

use one sentence as a unit. The result is finer if the unit is made 

bigger. However, the running time is longer if we choose larger unit 

and we need more sample data to keep the number of units large 

enough to use the ALERGIA algorithms effectively. 

In our example, we have four sentences. So we get four units 

in the sample data. For each unit in the sample, we keep the function 

words and remove all the other content words. This can be done by 

choosing a predetermined function words list. We compare each word 

in the unit according and if the word matches a word in the list, we 

keep it. Applying this to the example, we obtain the following four 

sequences: 

was a in many 

for one he the more than any other of 

for another he to do his but was to do it in in the of 

and he also to be a 

Now since the number of function words is around several 

hundred, to build a tractable automaton, this number is still large as 
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the alphabet of an automaton. The next step is to replace each 

function word with its part of speech. Usually, we have the following 

classes of function words: adverb, auxiliary verb, pronoun, preposition, 

conjunction, interjection and number. 

In the following, we use the digits 0, 1, 2, 3, 4 to represent 

adverb, auxiliary verb, preposition/conjunction, pronoun and number 

respectively. This way, we greatly simplify the data of each unit into a 

sequence of numbers. As an example, we obtain the following 

sequence of digits. 

1 3 2 3 

243332332 

233213212132232 

2 3 0 2 13 

Now from this data we follow the method described in the 

previous section, we can build the following PTA (Fig. 1). 
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FIGURE 1. FIRST EXAMPLE OF PTA 

One can calculate the frequency for the transition from each 

node to it children by virtue of the data recorded in the PTA. 

To illustrate the method, let's take a look at node 5 in our 

example. We have totally four strings in sample data, out of which the 

last 3 strings arriving node 5. By our notation in section 2, we have 

n5=3, where the subscript 5 represents node 5. Notice that node 5 

has two children, one is node 6, and another one is node 14. There is 

only one string follow the transition symbol 4 from node 5 to node 6, 

thusf5(4) = l . 

Likewise we have f5(3)=2 and f5(a)=0 for a*3,4. Since a node 

with a double circle means there is at least one string ending at this 

node, we know there is no string ending at node 5, and obtain f 5 (#)=0. 
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In the above example, we have insufficiently few data, so the 

frequency is not accurate as the approximation of probabilities. Ideally, 

when we go through a large set of sample data, we can get a large 

PTA which approximates the probabilities quite well. From this PTA, 

one can merge the compatible nodes to get an SFA. We regard this 

resulting SFA as a representative of the writing style of the author. A 

string is seemed to be belonged to the same author if it is accepted by 

this SFA. 

As an example, we look at another set of data as sample. 

Suppose we have a set of strings: 

{0,01,01,011,0101,0101,0101,0101,0101,010101,010101}, 

We can build the following PTA (Fig. 2) according to the method 

described earlier: 

FIGURE 2. EXAMPLE OF PTA 
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We calculate the values of rij, fj(#) and fj(a) for a=0 , l and 

0<i<7 in the following table (table 1). 

TABLE 1. STATISTIC DATA OF THE PTA 

Node i 
rii 

fS) 
A(o) 
fdi) 

0 
n 
0 
11 
0 

1 
11 
1 
0 
10 

2 
10 
2 
7 
1 

3 
1 
1 
0 
0 

4 
7 
0 
0 
7 

5 
7 
5 
2 
0 

6 
2 
0 
0 
2 

7 
2 
2 
0 
0 

I t is obvious from the table that node 3 and node 7 are 

equivalent. If we let a=0.7, then one can check that node 5 and node 

7 (or 3) are compatible because 

M) M) 
JlR n7 

/s(0) /T(0) 
«! i 7^7 

2 
- < 
( 

2 
7 < 

2 ° S 0.7 V y ^ +
 v^f J' 

/ T 2~/ 1 1 \ 
' - l o g — — = + — = . 
2 O.JK^fiE yJrvjJ 

Similarly, one can verify that node 4 and node 6 are compatible. 

For other pair of nodes, this inequality does not hold. So we can 

merge nodes 3, 5, 7 and get the following SFA (Fig. 3): 

FIGURE 3. SFA RESULTED FROM MERGING 
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Now for any piece of writing, we form the sequences of digits 

according to the method mention above. Suppose the number of 

sequences is m. For each sequence, we test if it is accepted by the 

SFA. The number of accepting sequences is denoted by ma. Therefore 

we get a quotient ma/m which is called the accepting probability. 

For instance, if we have a set of 4 strings 

{01010101,0111,001,01010} which are all different from our sample 

strings. Applying our test program, we see that only the first string 

01010101 is accepted by this SFA. The accepting probability is then 

equal 0.25. We remark that the accepting probability depends on the 

parameter a in our method. This parameter is used to control the 

accuracy of our merge process. Sometimes it is possible to merge 

non-equivalent states when a is too small. 

17 



5. IMPLEMENTATION 

The code for our program was written by C+ + . We compile the 

code on Windows XP, using MFC. We now describe the major 

structure of the implementation (Fig. 4). 

'• Class View • J? X 

£ , . « • - # • tH '__ 

<Search> 

B R i g l Authorship • H H H H f l H H i 
a = Maps 

'V Global Functions and Variables 
5 Macros and Constants 

a >f$ CAboutDlg 

ffl i$ CAuthorshipApp 

ffl *t$ CAuthorshipDoc 
© -£$ CAuthorshipView 

a ^$ CLevelDlg 
ffl ^ CMainFrame 

ffl <fj CSetTrain 
ffl " f j Train 

_:JLA 

FIGURE 4. CLASS VIEW OF THE PROGRAM 

The main class is the following: 

class Train : public CObject 

{ 

public: 

Train(void); 
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public: 

-Train(void); 

private: 

struct node{ 

long label; 

long par; 

long num_tdata; 

long num_acpstring; 

bool end; 

bool merged; 

long merge_to; 

long child[WordType]; 

long num_appear[WordType]; 

}; 

public: 

static const long StateBound=1000000;//number of state 

static const int WordType=5;//number of stop words 

static const int M=l;//sentence num 

static const int WordLength=100; 

static const int WordNumber=10 0; 

static const int Exceptionl=10; 
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static const int Exception2=20; 

static const int Exception3=30; 

enum {Adv,Aux,Prep,Pron,Number}; 

public: 

long max state,trCounter; 

node state[StateBound]; 

long temp[StateBound]; 

long treeEnd[StateBound]; 

long count; 

double progress; 

double a; 

public: 

long GetFunWord(CString dir,CString in,CString 

out_dir,CString out); 

int CreatePTA(CString dir,CString in); 

int Compatible(long node_i, long node_j); 

int Differ(double n_l,double n_2,double f_l,double 

f _2) ; 

long Delta(long i, int t); 

int MergeAll(CString dir); 

int Combine(void); 

20 



i n t T e s t A u t h o r ( C S t r i n g d i r , C S t r i n g name); 

} ; 

In this class T ra in , we use s t r u c t node to store the data of 

the nodes of the SFA. Precisely, 

l abe l is a long integer represents the index of the nodes; 

par is the parent of the node; 

num_tdata represents the number of all strings pass through this node; 

numacps t r ing is the number of strings that are accepted by this 

node; if this node is not an accepting state, the value of this variable is 

zero; 

end is a bool type variable, it is set to true if the current node is an 

accepting state, otherwise it is set to false; 

merged and merge_to are used when we merge compatible states; 
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child[WordType] is an array that gives children of the node, for each 

string we have a corresponding child, the number of children cannot 

be greater than the number of word types. For each word type, we 

record the number of string pass though by this string by the variable 

num_appear[WordType]. 

The major methods in class Tra in are described as follows: 

The first function is 

long GetFunWord(CString dir,CString in,CString 

out_dir,CString out); 

The arguments of this function are the input directory of the text file 

and the output directory of the resulting files. It reads the text file 

word by word and translates the stop words into its corresponding part 

of speech which is represented by an integer between 0 and 4; it also 

ignores all content words. The result is written to a new file consists 

of numbers. After this step, we abstract the text into a workable 

integer sequence. Finally, we use -1 to mark the end of each sentence 
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and the end of the whole text. As a byproduct, we record some 

statistic data into another text file for possibly later use. 

The second function is 

int CreatePTA(CString dir,CString in); 

It is the first step to create the SFA. When we get a sequence of stop 

words, we want to first construct a PTA by virtue of the given 

sequence. This function starts to create the states of the PTA one by 

one. The arguments of the function are text file directory and file 

names. The result of running this function is the assignment of value 

to the array s ta te [stateBound] which stores the nodes of the PTA. 

The next few functions 

int Compatible (long node_i, long node_j) ; 

int Differ(double n_l,double n_2,double f_l,double f_2); 

long Delta(long i, int t); 

23 



are easy to understand, they calculate the statistic data of the SFA, 

these data are used to merge compatible states. We remark that 

function Delta is basically the transition function of the SFA. 

The process of merging is done by functions 

int MergeAll(CString dir) ; 

int Combine(void) ; 

here combine is a preprocessor for merging, it indices all pairs of 

nodes needed to be merged, the real merging is done by MergeAll 

which changes the value of children and parents. 

We now explain the main idea in these functions. 

The following is the source code of the function Combine(); 

int Train::Combine(void) 

{ 

int 1=0; 

for(long i=0;i<trCounter;i++){ 
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long j=treeEnd[i]; 

int m=0; 

long temp=state[j].par; 

while(temp!=0){ 

bool pass=false; 

while((temp!=0)&& (! (pass=Compatible(j,temp)))){ 

temp=state[temp].par; 

} 

if (pass) { 

state[j].merge_to=temp; 

state[j].merged=true; 

if(state [j] .end==true){ 

state[temp]. end=true; 

} 

j=state[j].par; 

temp=state[temp].par; 

m++; 

} 

} 

if (Km) 

l=m; 

} 

for(long i=l;i<=max_state;i++){ 

long k=state[i].merge_to; 

if(k!=i){ 

while(state[k].merge_to!=k) 

k=state[k].merge_to; 
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s ta te [ i ] .merge_ to=k; 

} 

} 

re turn 0; 

} 

Primarily, this function set the bool value variable merged to be 

true when the corresponding node has been identified to its compatible 

pairs, although the real merge is not done. The long integer value 

variable merged_to is the label of compatible node. 

The essential part of the source code of the function 

MergeAII(CString) is the following: 

int Train::MergeAll(CString dir) 

{ 

//some deleted code here to deal with file operations 

Combine(); 

for (long i=l; i<=max__state; i++) { 

long k=state[i].merge_to; 

26 



if(k!=i){ 

long p=state [i] .par; 

int j=0;//find the transform string 'j' from the 

parent p to the child i; 

while(state [p] .child[j] !=i) 

j++; 

state[p].child[j]=k;//set the child of p as k instead 

of i; 

for(int j=0;j<WordType;j++){ 

if(state [i] .child[j]>=0) { 

if (state[k] .child[j]<0) 

state[k].child[j]=state[state[i].child[j]].merge^to; 

else 

state[k].child[j]=state[state[k].child[j]].merge_to; 

1 

} 

} 

} 

/* write the automaton into the output file automaton.txt */ 

//the code deleted for brievity 

return 0; 

} 
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You may find the process of merging is slightly different from 

the algorithm described in previous section. The reason is that the 

current method we used here is quicker than the one in the theoretical 

part. To deal with a large set of data, we have to sacrifice the relative 

accuracy of the result to make the program running in more realistic 

limited time constraint. For different branches in PTA, the states 

weren't merged since it won't bring out new knowledge by doing it. 

This automaton is still equivalent to the originally proposed automation 

since they can accept the same language. 

As our result is already good enough to distinguish the authors, 

we don't have to improve the program to a limited upper level. It 

doesn't worth waiting for a long time to see a little improved result on 

quantity level. 
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6. USAGE OF SOFTWARE 

In this section we briefly introduce the functions of the software 

Authorship. This program is designed to run in a Windows XP 

operating system. 

After open Authorship, you will see a following simple window 

(Fig. 5). 

r| Authorship - Untitled 

FIGURE 5. THE INTERFACE OF THE PROGRAM 

Before running of the program, we need to get familiar with the 

menu in this window. 
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The most frequently used menus are Run and Tools. One needs 

to first open Tools and click the first item Setting to setup parameters 

needed to run the program. The first important parameter is the 

confidence level, and other parameters include the directory of data 

files. 

When you click Setting item, you will see a window popped up 

as shown in the following (Fig. 6). 

Setting f 

Confidence Level 

The confidence level shou 

Reset Value: ) 0.7 

Directories 

Data Folder; 

Training Data File: 

Test Data File: 

Output Folder: 

[ r<*. i 

d be a number between 0 ; 

data 

sample.txt 
_i 

test.txt 

output 

Cancel 

n d l . 

W\ 

Default 

FIGURE 6. THE TAB OF SETTING 
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The data in this tab are set to default values as above. The 

Confidence Level is a parameter which controls the degree of merging. 

This value should be a number between 0 and 1, the smaller of this 

number; the coarser of the merging process, that is, more states are 

regarded as compatible and merged. The resulting SFA will accept 

more language and actually the confidence of authorship will decline. 

On the other hand, if this value is big and close to 1, few states 

are merged and the standard for a language to be accepted is high. In 

this case, some other writing piece of the same author would probably 

be rejected in the testing due to the difference in writing style. We 

need to adjust this parameter appropriately so that it is practically 

useful and reasonable. For the moment, the author believes that 0.7 

is an ad hoc appropriate value. 

The second data need to be set are the sample text file 

directory and file name, and test file directory and name. The default 

values for these are data/sample.txt and output/test.txt. You can 

change them by hand. After you set the value, you need to create the 

corresponding directories and files. 
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Now it is ready to train the program data, click Run->Train, the 

windows will show 

Training data, please wait... 

This process may take time, so don't close the window during 

training. After the completion of training, you will see the following 

information (Fig. 7): 

:™i Authorship Unt i t led 

New Run Tools Help 

Training data, please wait.. 
Training complete! 

FIGURE 7. THE RESULT AFTER TRAINING 

When you see this message, the SFA represented the writing 

style of the author has been generated. You can then test the writing 
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piece stored in the text file test.txt (or the file specified by you in the 

setting tab). 

To test the data, simply click Run->Test, this process is 

relatively not time-costly. After it is done, you will see the result 

shown on the window. In our example, it reads 

The confidence probability is 99 % 

It means the test data is written by the same author for a 

probability of 99% (Fig. 8). 
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i*3 Authorship - Untitled 

New Run Tools Help 

umm 

Training data, please wait... 
Training completel 

Testing... 

Test done! 

The confidence probability is 99 % 

FIGURE 8. THE RESULT AFTER TEST 

Some other files are created at the same time when running the 

program. These files record the intermediate results during the 

running of the program, or some copy of final results. Some results 

are actually not used, they are primarily created for reference of the 

data, or as a backup data for other possible future generalization. 

The major files include 

sample_data.txt, 

test_data.txt, 

pta 
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log.txt 

automaton.txt 

In these files, only pta is not a text file. I t is usually opened by 

WordPad, because it is generally time-costly for notepad to open it, 

and the format in WordPad is better for browsing it. 

Let me give an example here. 

In the output directory there is a file named automaton.txt (Fig. 

9), 

I I automaton.txt - Notepad 

File Edit Format View Help 

The automaton is the following: 

160 75 1 19 1214 
731 1428 177 2 521 
101 290 3 118 1502 
4739 273 167 4 2738 
4566 581 34 786 5 
13880 51564 25365 6 
- 7 - -
- 50923 8 -
_ g _ _ 

10 
- 11 
- - 12 - -

13 -
- - 14 - -

15 -
- - 16 - -

17 -
- - 18 - -

45 20 265 171 1438 
126 653 21 56 1511 

FIGURE 9. THE FILE AUTOMATON.TXT 
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It gives the automaton in table format which is the way to store 

the SFA. To explain it, let's take a look at the last line 

20: 126 653 21 56 1511 

It represents the node or state labeled by 20. The first number 

126 is a label of the node 126, and it is the first child of node 20, that 

is, transited by string 0. In the same way, by string 1, node 20 goes 

to node 653; by string 2, it goes to node 21 , etc. 

It is easy to guess that the - notation in the table means that 

the node has no corresponding child for that string. So for instance 

you will see node 6 has only one child node 7 led to by string 2, 

because node 7 is in the third position in all five ones (notice that the 

index for position always start with 0, hence the third one gives string 

2). 
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7. RESULTS 

In this section we present the results of the running of our 

program. The author we choose is J.K.Rowling and the writing sample 

is her book Harry Potter and the Order of the Phoenix. The test 

writings are her other three books: 

Book 1: Harry Potter and the Sorcerer's Stone 

Book 2: Harry Potter and the Chamber of Secrets 

Book 3: Harry Potter and the Prisoner of Azkaban 

and one book of Gabriel Garcia Marquez: 

Solitude: One Hundred Years Of Solitude 

In our program, we choose a sentence as a unit. One reason is 

that we already get good results with this choice. Another reason is 

that if we choose larger unit, the program will run longer. Since our 

results are good enough to distinguish authors, we don't bother to 

waste time to get similar results. 
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As we use one sentence as unit, the patterns we catch all have 

size smaller than one sentence. Any larger size pattern can be 

absorbed in the automaton. Now we give an example to illustrate this 

situation. The following paragraph consists of five sentences: 

dabad.caba.baba.cabad.cabacaba. 

One pattern is the repeat of string aba appeared in every 

sentence 

dabad.caba.baba.cabad.cabacaba. 

According to our method, the automaton (Fig. 10) is 

FIGURE 10. AUTOMATON FROM EXAMPLE 

Note that there is another larger pattern abad.caba across 

sentences: 

dabad.caba.baba.cabad.cabacaba. 
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This string can be accepted by the previous automaton. If we 

use two sentences as a unit, we can get a PTA, after merging, we will 

get the same automaton as above. However, it takes more time using 

this algorithm. So it is this technical reason we choose one sentence 

as a unit. 

Next, we present our results. First of all, we use the PTA as our 

SFA, that is, we do not merge the states of the PTA. In this case, the 

PTA accepts exactly the set of strings of the sample data. The 

following table (table 2) gives the result: 

TABLE 2. THE TABLE OF TESTING WITHOUT MERGING 

Book 1 
Book 2 
Book 3 
Solitude 

$ total sentences 
6186 
6360 
8425 
5678 

jj accepted sentences 
3904 
4007 
5554 
1751 

accepting probability 
0.631102 
0.630031 
0.659228 
0.308383 

In this table, one can find a big gap of the accepting 

probabilities between the book of same author and the book of 

different author. 
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Next we fix the parameter a = 0.7. Then after merging we get 

an SFA as the writing pattern of the author. The results of accepting 

probability are given in the following table (table 3). 

TABLE 3. THE RESULT OF TESTING WITH A=0.7 

Book 1 
Book 2 
Book 3 
Solitude 

ft total sentences 
6186 
6360 
8425 
5678 

| accepted sentences 
4285 
4390 
6021 
2079 

accepting probability 
0.692693 
0.690252 
0.714659 
0.36615 

The accepting probabilities in this table are greater than the 

correspondence probabilities in the table before merging. This is 

because after merging, the new SFA can accept more strings than the 

one before merging. These new strings cannot be identified by the 

sample data. 

We remark that if we take the parameter a<= 0.55 in our 

program, then a lot of non-equivalent states will merge due to a large 

error used in the comparison of frequencies. The accepting probability 

is greater than 0.97 in all four books. This phenomenon does not 

imply that our method is not effective. It reminds us to pick the 

parameter appropriately to get the best result. In fact, our first table 
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of accepting probability obtained from the PTA (before merging) has 

already shown the difference between Book 1-3 and Solitude. 



8. CONCLUSION 

We believe that there is tremendous potential generalization of 

this method. For instance, one can change the size of the segment 

from one sentence to several sentences, or one can use a finer 

classification of the set of function words instead of part of speech. 

Even further, one can also include some type of content words into the 

sample data instead of the set of function words. 

Another direction to refine the result is to combine this method 

with the traditional statistic methods. The author is working on this 

direction and obtained partial results. 

The same method can also be applied to Microarray in biology. 

It is an interesting direction to work out various details and generalize 

this method combined with other tools. 
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APPENDIX A: STOP WORD LIST 

The stop word list is important to the program, there are 

different list online. The one we used in our program is downloaded 

from 

http://www.marlodqe.supanet.com/museum/funcword.html 

To store the data into the program, we defined the following 

array 

s t a t i c c o n s t char funword[WordType][WordNumber][WordLength]= 

{ { " a g a i n " , " a g o " , " a l m o s t " , " a l r e a d y " , " a l s o " , " a l w a y s " , " a n y w h e r e " , " b a c k " , "e 

I s e " , " e v e n " , " e v e r " , " e v e r y w h e r e " , " f a r " , " h e n c e " , " h e r e " , " h i t h e r " , " h o w " , " h o 

w e v e r " , " n e a r " , " n e a r b y " , " n e a r l y " , " n e v e r " , " n o t " , " n o w " , " n o w h e r e " , " o f t e n " , " 

o n l y " , " q u i t e " , " r a t h e r " , " s o m e t i m e s " , " s o m e w h e r e " , " s o o n " , " s t i l l " , " t h e n " , " t 

h e n c e " , " t h e r e " , " t h e r e f o r e " , " t h i t h e r " , " t h u s " , " t o d a y " , " t o m o r r o w " , " t o o " , " u 

nderneath","very","when","whence","where","whither","why","yes","yester 

day","yet"}, 

{"am","are","aren't","be","been","being", "can", "can't","could", "couldn' 

t","did","didn't","do","does","doesn't","doing","done","don't","get","g 
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ets","getting","got","had","hadn't","has","hasn't","have","haven't", "ha 

ving","he'd","he'11","he's","i'd","i'11","I'm","is","i've","isn't","it" 

s","may","might","must","mustn't","ought","oughtn't","shall","shan't"," 

she'd","she'll","she's","should","shouldn't","that's","they'd","they'11 

","they're","was","wasn't","we'd","we'll","were","we're","weren't","we" 

ve","will","won't","would","wouldn't","you'd","you'll","you're","you've 

{"about","above", "after","along","although","among","and","around","as" 

,"at","before","below","beneath","beside","between","beyond","but","by" 

,"down","during","except","for","from","if","in","into","near","nor", "o 

f","off","on","or","out","over","round","since","so","than","that","tho 

ugh","through","till","to","towards","under","unless","until","up","whe 

reas","while","with","within","without"},{"a","all","an","another","any 

","anybody","anything","both","each","either","enough","every","everybo 

dy","everyone","everything","few","fewer","he","her","hers","herself"," 

him","himself","his","i","it","its","itself","less","many","me","mine", 

"more","most","much","my","myself","neither", "no","nobody","none", "noon 

e","nothing","other","others","our","ours","ourselves","she","some","so 

mebody","someone","something","such","that","the","their","theirs","the 

m","themselves","these","they","this","those","us","we","what","which", 

"who","whom","whose","you","your","yours","yourself","yourselves"}, 

{"billion","billionth","eight","eighteen","eighteenth","eighth","eighti 

eth","eighty","eleven","eleventh","fifteen","fifteenth","fifth","fiftie 

th","fifty","first","five","fortieth","forty","four","fourteen","fourte 

enth","fourth","hundred","hundredth","last","million","millionth", "next 

","nine","nineteen","nineteenth","ninetieth","ninety","ninth","once" , "o 

ne","second","seven","seventeen","seventeenth","seventh","seventieth"," 
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s e v e n t y " , " s i x " , " s i x t e e n " , " s i x t e e n t h " , " s i x t h " , " s i x t i e t h " , " s i x t y " , " t e n " , " 

t e n t h " , " t h i r d " , " t h i r t e e n " , " t h i r t e e n t h " , " t h i r t i e t h " , " t h i r t y " , " t h o u s a n d " , 

" t h o u s a n d t h " , " t h r e e " , " t h r i c e " , " t w e l f t h " , " t w e l v e " , " t w e n t i e t h " , " t w e n t y " , " 

t w i c e " , " t w o " } } ; 

Notice that the enumerate type 

enum {Adv,Aux,Prep,Pron,Number} 

stores the part of speech we are interested in. 
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APPENDIX B: DETAILS OF HOW THE FUNCTIONS IN 
THE PROGRAM WORK 

In this appendix we give an illuminating example which shows 

how the functions in our program work. 

The sample text file (Fig. 11) is 

File Edit Format View Help 

'the'. ~~ 
the of. 
the of. 
the of of. 
the of the of. 
the of the of. 
the of the of. 
the of the of. 
the of the of. 
the of the of the of. 
the of the of the of. 

FIGURE 11. SAMPLE TXT 

You can think of these are 11 sentences containing the above 

stop words; we just ignore all contents words. 
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Similarly, we have our test file for some unknown author. We 

also ignore all content words to avoid interrupting information. 

The test file (Fig. 12) is the following: 

E test.txt - Notepad 

File Edit Format View Help 

(the of the of the of the of. 
the of of of. 
the the of. 
the of the of the. 

FIGURE 12. TEST.TXT 

Notice that all sentences are different from the sentences in 

sample.txt. We potentially varied each sentence a little bit by adding 

a repetition, or by deleting a word, or partially repeat some part. We 

will see how this merging will give rise to new knowledge to identify 

these new sentences. 
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The following several figures collect the result of running the 

program for different parameter a. You will see the importance of this 

parameter in the influence of the final result. 

We first set a=0.9, we expect to see a low confidence 

probability as a result, because the merge standard is high and few 

states are merged (Figs. 13, 14, 15, 16). 

New Run Tools Help 

Training data, please wait... 
Training complete! 
Testing... 
Test done! 
The confidence probability is 0 % 

FIGURE 13. A=0.9 
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Authorship - Untitled 

New Run Tools Help 

mreipRi 

Training data, please wait-
Training complete! 
Testing... 
Test done! 
The confidence probability is 25 % 

FIGURE 14. A=0.8 

3 Authorship - Untitled 
New Run Tools Help 

Training data, please wait... 
Training complete! 
Testing-
Test done! 
The confidence probability is 50 % 

FIGURE 15. A=0.4 
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f, I Authorship - Untitled 
New Run Tools Help 

Training data, please wait... 
Training complete! 

Testing... 
Test done! 
The confidence probability is 75 % 

FIGURE 16. A=0.3 

To see what is happening, we take a look at the corresponding 

automaton we get stored in the file automaton.txt (Figs. 17, 18, 19, 

20) in each setting of parameter a. 
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0 
1 
2 
3 
4 
5 
6 
7 

1 _ 
_ _ 2 - -
- - 3 4 -

_ _ 5 - -
6 -

_ _ 7 - -

FIGURE 17. AUTOMATON FOR A=0.9 

0 
1 
2 
3 
4 
5 
6 
7 

1 _ 
- - 2 - -
- - 3 4 -

_ _ 5 _ _ 
_ _ _ 4 _ 
=4 
=5 

FIGURE 18. AUTOMATON FOR A=0.8 

- 1 
2 -
2 4 

5 -

=4 
= 5 

FIGURE 19. AUTOMATON FOR A=0.4 
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0 
1 
2 
3 
4 
5 
6 
7 

-
-
-
=2 
=1 
=2 
=1 
-1 

FIGURE 20. AUTOMATON FOR A=0.3 
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APPENDIX C: TEST ENVIRONMENT AND 
PERFORMANCE 

The result is gained by running program on: 

Window XP professional SP2 

2007C4U— LENOVO THINKPAD T60 

Intel CPU CORE DUO T2500 2 GHZ 

2.5GB of RAM 

Sample file: 

<<Harry Potter and the Order of the Phoenix>> 

total sentences: 17,214 

total function words: 133,867 

total words in the articles: 1,223,507 

txt file size: 1,500KB 

states in the automaton: 57741 

total training time: < = 20 seconds 

(I got different running time such as 15 or 16 or 18 or 20 seconds. It 

depends on whether my laptop is responsing to other programs.) 
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The total training time includes reading file, extracting the function 

words, building the PTA and merging(dominating factor).The training 

part dominates the time since the testing part is much quicker. 

Test Time(using confidence value , a=0.7): 

Harry Potter 1(6186 sentences), it takes 2 seconds to test. 

Harry Potter 2(6560 sentences), it takes 2 seconds to test. 

Harry Potter 3(8425 sentences), it takes 2 seconds to test. 

One Hundred Year of Solitude (5678 sentences), it takes 3 seconds to 

test. 

Remark: The running time is not proportional to the number of 

sentences, but proportional to the number of function words. 
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