
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2008

An automata based authorship identification system An automata based authorship identification system

Shangxuan Zhang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Zhang, Shangxuan, "An automata based authorship identification system" (2008). Master's Theses. 3516.
DOI: https://doi.org/10.31979/etd.fewh-t45k
https://scholarworks.sjsu.edu/etd_theses/3516

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3516?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3516&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AN AUTOMATA BASED

AUTHORSHIP IDENTIFICATION SYSTEM

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Shangxuan Zhang

August 2008

UMI Number: 1459705

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1459705

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

© 2008

Shangxuan Zhang

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

^ ^ < ,S c ^ - L -
Dr. Tsau Young Lin

Dr. Robert Chun

M>
Dr. Howard(Ching-Tien) Ho
Vi>N\ ALMADtf/ AEStARCH Ct/VTL/^

APPROVED FOR THE UNIVERSITY

j/jUi i |U (

ABSTRACT

AN AUTOMATA BASED

AUTHORSHIP IDENTIFICATION SYSTEM

by Shangxuan Zhang

This thesis gives a design and implementation for an authorship

identification system based on automata modeling. The writing

samples of an author were collected to build a tree and use the

ALERGIA algorithm to merge all the compatible states of the tree in

order to get a stochastic finite automaton. This automaton represents

the writing style of the author. We can use this automaton to test

whether an anonymous writing piece belongs to this author.

ACKNOWLEDGMENTS

Foremost, I would like to thank my advisor Tsau Young Lin for

his invaluable insight and inspiring guidance, without which I would

have lost my direction and never come to the end of my research.

Moreover, I offer my deepest appreciation to Dr. Robert Chun

and Dr. Howard Ho for participating in my thesis committee.

My special thanks go to Dr. Cay Horstmann for his help in the

past two years. Without his email, I would not know my application

material wasn't delivered correctly and who I should talk with about

this issue.

I have been very lucky to have many supportive and loving

family members. The person who deserves my gratitude the most is

my husband, Baosen Wu. I thank my parents, Chengji Zhang and

Tingting Hong, for giving me the freedom to explore my interests.

Finally, I would like to express my sincere thanks to the

Department of Computer Science at San Jose State University.

Without two years study here, I might not be able to be admitted to

v

Applied Mathematics and Statistics Department of Stony Brook

University for 2008 fall and get Wise2008 Fellowship from Cornell

University.

I made many friends and earned a bright future from SJSU.

Thank you all!

VI

TABLE OF CONTENTS

1. INTRODUCTION 1

2. STOCHASTIC FINITE AUTOMATA 4

3. ALERGIA ALGORITHM 7

4. AUTOMATA BASED MODELING 11

5. IMPLEMENTATION 18

6. USAGE OF SOFTWARE 29

7. RESULTS 37

8. CONCLUSION 42

REFERENCES 43

APPENDIX A: STOP WORD LIST 46

APPENDIX B: DETAILS OF HOW THE FUNCTIONS IN THE PROGRAM WORK 49

APPENDIX C: TEST ENVIRONMENT AND PERFORMANCE 56

vn

LIST OF TABLES

Table 1. STATISTIC DATA OF THE PTA 16

Table 2. THE TABLE OF TESTING WITHOUT MERGING 39

Table 3. THE RESULT OF TESTING WITH A=0.7 40

via

LIST OF FIGURES

FIGURE 1. FIRST EXAMPLE OF PTA 14

FIGURE 2. EXAMPLE OF PTA 15

FIGURE 3. SFA RESULTED FROM MERGING 16

FIGURE 4. CLASS VIEW OF THE PROGRAM 18

FIGURE 5. THE INTERFACE OF THE PROGRAM 29

FIGURE 6. THE TAB OF SETTING 30

FIGURE 7. THE RESULT AFTER TRAINING 32

FIGURE 8. THE RESULT AFTER TEST 34

FIGURE 9. THE FILE AUTOMATON.TXT , 35

FIGURE 10. AUTOMATON FROM EXAMPLE 38

FIGURE 11. SAMPLE .TXT 49

FIGURE 12.TEST.TXT 50

FIGURE 13. A=0.9 51

FIGURE 14. A=0.8 52

FIGURE 15. A=0.4 52

FIGURE 16. A=0.3 53

FIGURE 17. AUTOMATON FOR A=0.9 54

FIGURE 18. AUTOMATON FORA=0.8 54

FIGURE 19. AUTOMATON FOR A=0.4 54

FIGURE 20. AUTOMATON FOR A=0.3 55

IX

1. INTRODUCTION

Based on the Kolmogorov complexity K(x) for binary string x, in

1993, Lin proposed to use the opposite of randomness as the concept

of patterns [1] , namely, a sequence x has pattern if K(x)

$<$ length(x). Obviously, one can conclude that a sequence is said to

have pattern if and only if there exists a constant subsequence (Lin

stated it for infinite sequences). This could be viewed as the

foundation of frequent item sets (high frequency patterns). In [2] , Lin

ported the idea to numerical world. In [3] , the idea was ported to the

world of finite automata, in which the automata were used to detecting

(learning the patterns) the sequences of system calls in program.

Here we switch the applications from the intrusion detection system to

authorship identification system, in which we use automata to detect

the string of stop words in a book.

It is well-known that every author has some particular writing

style, depending on his or her gender, age, experience, knowledge, etc.

To illustrate, some people name a few statistic writing characters:

average word length, average sentence length in words, word

frequency, etc. Given an anonymous writing piece and possible

1

authors with their writing samples, theoretically, one can investigate

these writing characters and identify the author of this writing piece

[4] .

Life is easy if that is the whole story. In practice, we don't have

a complete set of quantities to characterize the writing style. Even if

such a set exists, it must be too huge to incorporate into a program.

On the other hand, it seems not possible to describe the writing style

only by using these statistic quantities. There are some hidden

relations between the contexts. Hidden Markov model has been used

widely to reveal these relations.

The aim of this paper is to study authorship identification

through function words based on the theory of automaton. Function

words have long ago been used to identify the writing style. Recently,

some interesting work has been done along this direction.

This work is inspired by the work of P.Baliga and T.Y.Lin on the

virus intrusion detection system [3] . More precisely, we collect writing

samples of a prescribed author. From each sample, we keep the

function words for each sentence and wipe out all other information.

These sequences of function words are actually the realization of a

2

hidden automaton. Our goal is to use this data and machine learning

technique to figure out this automaton, which is our representation of

the normal writing pattern of the author.

For any other writing sample, our program will test the

structure of function words sentence by sentence. We record the

proportion of sentences which pass the test. The higher the proportion,

the more likely this sample belongs to the author. It is recommended

to combine this result with other classical methods of authorship

identification to get a more accurate result.

The content of this paper is organized as follows. In section 2,

we review stochastic finite automata. In section 3, we describe the

ALERGIA algorithm which is used to build an automaton from sample

data. In section 4, we handle the data of writing samples, and

describe the application of the algorithm to our specific problem. In

section 5 we give a briefly description of the implementation of the

program. In section 6 we introduce the main feature of the software.

Finally in section 7 we present partial results of the running of our

program.

3

2. STOCHASTIC FINITE AUTOMATA

In this section we shall review the notion of finite automata and

its variation stochastic finite automata [5-11]. In this paper, we shall

limit ourselves to deterministic automata. In later sections, we are

primarily interested in stochastic finite automata. The basic

ingredients are same except the extra information of transition

probability.

A deterministic finite automaton (DFA) is a 5-tuple

(Q, A, 5, q0, F),

where Q=q0,qi,..., qn is its set of states, A its input symbols, 5 its

transition function that takes a state and an input symbol as

arguments and return a state, qo its start state, and F its set of

accepting states.

One simplest nontrivial DFA is an on/off switch. This device has

two states: "on" and "off." The user can press the button to switch

one state to another state. For general purpose, one can assign "off"

as start state and "on" as accepting state.

4

In reality, a lot of phenomena are actually random. It

motivates the following generalization of deterministic finite automata

to stochastic finite automata.

A stochastic finite automata (SFA) consists of a DFA (Q, A, 5, q0 ,

F), and a set P of probability matrices pij(a) for each symbol a in A.

Each pu(a) gives the probability of the a transition from the state qi to

state qj led by the symbol a. We let pif be the probability that the

string end at state qj. Then we have the following constraint:

Intuitively, it means that for each state qi, the sum of the

probabilities end at qi and the probabilities start at qi should equal to

one.

Let A* be the set of all strings on A. For each string w, one can

define the probability p(w) inductively as usual. The language

generated by the automaton is defined as:

5

L = {w eA¥ :p(w) ^ 0 } .

A stochastic regular language (SRL) is defined to be the

language generated by an SFA. Two SRLs are said to be equivalent if

they contain the same set of strings with the same corresponding

probabilities, that is,

L\ s l 2 ^ pi(w) = p2{w),)iw £ A\

where U and L2 are two SRLs, and pi(w) is the probability of the

transition led by w in language L|.

6

3. ALERGIA ALGORITHM

In this section we recall the ALERGIA algorithm to deal with the

following problem: Given a fixed SFA, there will be a SRL defined by

this SFA. Now suppose the structure of this SFA is not informed,

instead a large random subset of strings is given as the SRL generated

by this SFA. The goal is to reconstruct the SFA from this given set of

strings. For details of the method in this section, please see [6] .

Now we describe the approach to solve this problem. First of all,

It is to build a tree from these data. This tree is called a prefix tree

adapter (PTA). Each node of the PTA represents a state. For each

node of the tree, we assign the frequency of transition led by each

symbol. Next, each node of the PTA is compared pairwisely. The

equivalence of nodes is defined. According to this equivalence, the

nodes are classified and merged with the equivalent nodes of the PTA.

At the end, the frequencies are recalculated and we can conclude a

SFA which is an approximation of the original SFA.

Let us start with the definition of PTA. Now suppose the set of

sample data is S = { s i , S2, ..., sm} . We describe the PTA inductively.

7

For each string Sk=aia2...ai<, we begin with the initial node q0 . Suppose

there is a transition from q0 to one of its child node qi led by a i , we

follow this transition and move to the node qi. Otherwise, we add a

new node to this tree, the transition from qo to this new node is thus

led by a i . Either way, we move to a new node, now we look at symbol

a2 and continue this process. In the end, we reach a node that

accepting this string. One example of this procedure is given in the

next section.

When we run through all the sample data, we can assign the

frequency of appearance of each symbol as a transition between nodes,

and the number of strings entering each node, the number of string

accepting by each node. We denote by ni the number of strings

arriving at node q{, fj(a) the number of strings following transition 5i(a)

and f|(#) the number of strings ending at node qi. Obviously, fi(a)/ni

and fi(#)/nj gives estimate of the probabilities pi(a) and pif respectively.

After we obtain the PTA, we introduce the notion of equivalence

between two nodes. Two nodes are said to be equivalent if for all

symbols 'a' belongs to A, "the associated transition probabilities from

the nodes are equal; the termination probabilities for the nodes are

8

equal; and the destination nodes of the two transitions for each

symbol are equivalent according to a recursive application of the same

criteria." In symbols, we have

qi = qj =$• Va £ A, we have Pi(a) = Pj(a) and 8i(a) = Sj(a).

In the application of this notion, since we seldom have two

equal frequencies by statistic fluctuations in experimental results, the

equivalence of two nodes must also be accepted within a confidence

range. To this end, we call two nodes are compatible if they are

equivalent within some pre-described confidence range.

Since for a Bernoulli variable with probability p and frequency f

out of n tries, the confidence range is given by the Hoeffding bound as

follows:

/
P

n

/ 1 2
< \/ — log — with probability larger than (1 — a).

V 2n a

When the two estimated probabilities differ more than the sum of the

confidence ranges, the ALERGIA algorithm will reject equivalence.

/ / '
n n'

>v/R(^+^)
Finally, when two nodes are merged, we should recalculate

their frequencies and node numbers in order to ensure that the SFA

remains deterministic and order-preserving.

10

4. AUTOMATA BASED MODELING

In this section we shall describe how to model the authorship

identification problem using automata.

Our authorship identification approach utilizes function words

based automata modeling. In this approach, the first step is to choose

an author and collect as many writing samples as possible for use as

training data sets that are representative of standard writing style for

this author. In the sequel, we shall use the following paragraph as

writing sample to illustrate the idea. This piece is cited from the

beginning of Harry Potter and the Prisoner of Azkaban.

"Harry Potter was a highly unusual boy in many ways. For one

thing, he hated the summer holidays more than any other time of year.

For another, he really wanted to do his homework but was forced to do

it in secret, in the dead of night. And he also happened to be a

wizard"

After choosing the sample, we fix the basic unit of training data,

which can be one sentence, one paragraph or one whole article, then

11

cut all writing samples into the predetermined units. In this paper, we

use one sentence as a unit. The result is finer if the unit is made

bigger. However, the running time is longer if we choose larger unit

and we need more sample data to keep the number of units large

enough to use the ALERGIA algorithms effectively.

In our example, we have four sentences. So we get four units

in the sample data. For each unit in the sample, we keep the function

words and remove all the other content words. This can be done by

choosing a predetermined function words list. We compare each word

in the unit according and if the word matches a word in the list, we

keep it. Applying this to the example, we obtain the following four

sequences:

was a in many

for one he the more than any other of

for another he to do his but was to do it in in the of

and he also to be a

Now since the number of function words is around several

hundred, to build a tractable automaton, this number is still large as

12

the alphabet of an automaton. The next step is to replace each

function word with its part of speech. Usually, we have the following

classes of function words: adverb, auxiliary verb, pronoun, preposition,

conjunction, interjection and number.

In the following, we use the digits 0, 1, 2, 3, 4 to represent

adverb, auxiliary verb, preposition/conjunction, pronoun and number

respectively. This way, we greatly simplify the data of each unit into a

sequence of numbers. As an example, we obtain the following

sequence of digits.

1 3 2 3

243332332

233213212132232

2 3 0 2 13

Now from this data we follow the method described in the

previous section, we can build the following PTA (Fig. 1).

13

FIGURE 1. FIRST EXAMPLE OF PTA

One can calculate the frequency for the transition from each

node to it children by virtue of the data recorded in the PTA.

To illustrate the method, let's take a look at node 5 in our

example. We have totally four strings in sample data, out of which the

last 3 strings arriving node 5. By our notation in section 2, we have

n5=3, where the subscript 5 represents node 5. Notice that node 5

has two children, one is node 6, and another one is node 14. There is

only one string follow the transition symbol 4 from node 5 to node 6,

thusf5(4) = l .

Likewise we have f5(3)=2 and f5(a)=0 for a*3,4. Since a node

with a double circle means there is at least one string ending at this

node, we know there is no string ending at node 5, and obtain f 5 (#)=0.

14

In the above example, we have insufficiently few data, so the

frequency is not accurate as the approximation of probabilities. Ideally,

when we go through a large set of sample data, we can get a large

PTA which approximates the probabilities quite well. From this PTA,

one can merge the compatible nodes to get an SFA. We regard this

resulting SFA as a representative of the writing style of the author. A

string is seemed to be belonged to the same author if it is accepted by

this SFA.

As an example, we look at another set of data as sample.

Suppose we have a set of strings:

{0,01,01,011,0101,0101,0101,0101,0101,010101,010101},

We can build the following PTA (Fig. 2) according to the method

described earlier:

FIGURE 2. EXAMPLE OF PTA

15

We calculate the values of rij, fj(#) and fj(a) for a=0 , l and

0<i<7 in the following table (table 1).

TABLE 1. STATISTIC DATA OF THE PTA

Node i
rii

fS)
A(o)
fdi)

0
n
0
11
0

1
11
1
0
10

2
10
2
7
1

3
1
1
0
0

4
7
0
0
7

5
7
5
2
0

6
2
0
0
2

7
2
2
0
0

I t is obvious from the table that node 3 and node 7 are

equivalent. If we let a=0.7, then one can check that node 5 and node

7 (or 3) are compatible because

M) M)
JlR n7

/s(0) /T(0)
«! i 7^7

2
- <
(

2
7 <

2 ° S 0.7 V y ^ +
 v^f J'

/ T 2~/ 1 1 \
' - l o g — — = + — = .
2 O.JK^fiE yJrvjJ

Similarly, one can verify that node 4 and node 6 are compatible.

For other pair of nodes, this inequality does not hold. So we can

merge nodes 3, 5, 7 and get the following SFA (Fig. 3):

FIGURE 3. SFA RESULTED FROM MERGING

16

Now for any piece of writing, we form the sequences of digits

according to the method mention above. Suppose the number of

sequences is m. For each sequence, we test if it is accepted by the

SFA. The number of accepting sequences is denoted by ma. Therefore

we get a quotient ma/m which is called the accepting probability.

For instance, if we have a set of 4 strings

{01010101,0111,001,01010} which are all different from our sample

strings. Applying our test program, we see that only the first string

01010101 is accepted by this SFA. The accepting probability is then

equal 0.25. We remark that the accepting probability depends on the

parameter a in our method. This parameter is used to control the

accuracy of our merge process. Sometimes it is possible to merge

non-equivalent states when a is too small.

17

5. IMPLEMENTATION

The code for our program was written by C+ + . We compile the

code on Windows XP, using MFC. We now describe the major

structure of the implementation (Fig. 4).

'• Class View • J? X

£ , . « • - # • tH '__

<Search>

B R i g l Authorship • H H H H f l H H i
a = Maps

'V Global Functions and Variables
5 Macros and Constants

a >f$ CAboutDlg

ffl i$ CAuthorshipApp

ffl *t$ CAuthorshipDoc
© -£$ CAuthorshipView

a ^$ CLevelDlg
ffl ^ CMainFrame

ffl <fj CSetTrain
ffl " f j Train

_:JLA

FIGURE 4. CLASS VIEW OF THE PROGRAM

The main class is the following:

class Train : public CObject

{

public:

Train(void);

18

public:

-Train(void);

private:

struct node{

long label;

long par;

long num_tdata;

long num_acpstring;

bool end;

bool merged;

long merge_to;

long child[WordType];

long num_appear[WordType];

};

public:

static const long StateBound=1000000;//number of state

static const int WordType=5;//number of stop words

static const int M=l;//sentence num

static const int WordLength=100;

static const int WordNumber=10 0;

static const int Exceptionl=10;

19

static const int Exception2=20;

static const int Exception3=30;

enum {Adv,Aux,Prep,Pron,Number};

public:

long max state,trCounter;

node state[StateBound];

long temp[StateBound];

long treeEnd[StateBound];

long count;

double progress;

double a;

public:

long GetFunWord(CString dir,CString in,CString

out_dir,CString out);

int CreatePTA(CString dir,CString in);

int Compatible(long node_i, long node_j);

int Differ(double n_l,double n_2,double f_l,double

f _2) ;

long Delta(long i, int t);

int MergeAll(CString dir);

int Combine(void);

20

i n t T e s t A u t h o r (C S t r i n g d i r , C S t r i n g name);

} ;

In this class T ra in , we use s t r u c t node to store the data of

the nodes of the SFA. Precisely,

l abe l is a long integer represents the index of the nodes;

par is the parent of the node;

num_tdata represents the number of all strings pass through this node;

numacps t r ing is the number of strings that are accepted by this

node; if this node is not an accepting state, the value of this variable is

zero;

end is a bool type variable, it is set to true if the current node is an

accepting state, otherwise it is set to false;

merged and merge_to are used when we merge compatible states;

21

child[WordType] is an array that gives children of the node, for each

string we have a corresponding child, the number of children cannot

be greater than the number of word types. For each word type, we

record the number of string pass though by this string by the variable

num_appear[WordType].

The major methods in class Tra in are described as follows:

The first function is

long GetFunWord(CString dir,CString in,CString

out_dir,CString out);

The arguments of this function are the input directory of the text file

and the output directory of the resulting files. It reads the text file

word by word and translates the stop words into its corresponding part

of speech which is represented by an integer between 0 and 4; it also

ignores all content words. The result is written to a new file consists

of numbers. After this step, we abstract the text into a workable

integer sequence. Finally, we use -1 to mark the end of each sentence

22

and the end of the whole text. As a byproduct, we record some

statistic data into another text file for possibly later use.

The second function is

int CreatePTA(CString dir,CString in);

It is the first step to create the SFA. When we get a sequence of stop

words, we want to first construct a PTA by virtue of the given

sequence. This function starts to create the states of the PTA one by

one. The arguments of the function are text file directory and file

names. The result of running this function is the assignment of value

to the array s ta te [stateBound] which stores the nodes of the PTA.

The next few functions

int Compatible (long node_i, long node_j) ;

int Differ(double n_l,double n_2,double f_l,double f_2);

long Delta(long i, int t);

23

are easy to understand, they calculate the statistic data of the SFA,

these data are used to merge compatible states. We remark that

function Delta is basically the transition function of the SFA.

The process of merging is done by functions

int MergeAll(CString dir) ;

int Combine(void) ;

here combine is a preprocessor for merging, it indices all pairs of

nodes needed to be merged, the real merging is done by MergeAll

which changes the value of children and parents.

We now explain the main idea in these functions.

The following is the source code of the function Combine();

int Train::Combine(void)

{

int 1=0;

for(long i=0;i<trCounter;i++){

24

long j=treeEnd[i];

int m=0;

long temp=state[j].par;

while(temp!=0){

bool pass=false;

while((temp!=0)&& (! (pass=Compatible(j,temp)))){

temp=state[temp].par;

}

if (pass) {

state[j].merge_to=temp;

state[j].merged=true;

if(state [j] .end==true){

state[temp]. end=true;

}

j=state[j].par;

temp=state[temp].par;

m++;

}

}

if (Km)

l=m;

}

for(long i=l;i<=max_state;i++){

long k=state[i].merge_to;

if(k!=i){

while(state[k].merge_to!=k)

k=state[k].merge_to;

25

s ta te [i] .merge_ to=k;

}

}

re turn 0;

}

Primarily, this function set the bool value variable merged to be

true when the corresponding node has been identified to its compatible

pairs, although the real merge is not done. The long integer value

variable merged_to is the label of compatible node.

The essential part of the source code of the function

MergeAII(CString) is the following:

int Train::MergeAll(CString dir)

{

//some deleted code here to deal with file operations

Combine();

for (long i=l; i<=max__state; i++) {

long k=state[i].merge_to;

26

if(k!=i){

long p=state [i] .par;

int j=0;//find the transform string 'j' from the

parent p to the child i;

while(state [p] .child[j] !=i)

j++;

state[p].child[j]=k;//set the child of p as k instead

of i;

for(int j=0;j<WordType;j++){

if(state [i] .child[j]>=0) {

if (state[k] .child[j]<0)

state[k].child[j]=state[state[i].child[j]].merge^to;

else

state[k].child[j]=state[state[k].child[j]].merge_to;

1

}

}

}

/* write the automaton into the output file automaton.txt */

//the code deleted for brievity

return 0;

}

27

You may find the process of merging is slightly different from

the algorithm described in previous section. The reason is that the

current method we used here is quicker than the one in the theoretical

part. To deal with a large set of data, we have to sacrifice the relative

accuracy of the result to make the program running in more realistic

limited time constraint. For different branches in PTA, the states

weren't merged since it won't bring out new knowledge by doing it.

This automaton is still equivalent to the originally proposed automation

since they can accept the same language.

As our result is already good enough to distinguish the authors,

we don't have to improve the program to a limited upper level. It

doesn't worth waiting for a long time to see a little improved result on

quantity level.

28

6. USAGE OF SOFTWARE

In this section we briefly introduce the functions of the software

Authorship. This program is designed to run in a Windows XP

operating system.

After open Authorship, you will see a following simple window

(Fig. 5).

r| Authorship - Untitled

FIGURE 5. THE INTERFACE OF THE PROGRAM

Before running of the program, we need to get familiar with the

menu in this window.

29

The most frequently used menus are Run and Tools. One needs

to first open Tools and click the first item Setting to setup parameters

needed to run the program. The first important parameter is the

confidence level, and other parameters include the directory of data

files.

When you click Setting item, you will see a window popped up

as shown in the following (Fig. 6).

Setting f

Confidence Level

The confidence level shou

Reset Value:) 0.7

Directories

Data Folder;

Training Data File:

Test Data File:

Output Folder:

[r<*. i

d be a number between 0 ;

data

sample.txt
_i

test.txt

output

Cancel

n d l .

W\

Default

FIGURE 6. THE TAB OF SETTING

30

The data in this tab are set to default values as above. The

Confidence Level is a parameter which controls the degree of merging.

This value should be a number between 0 and 1, the smaller of this

number; the coarser of the merging process, that is, more states are

regarded as compatible and merged. The resulting SFA will accept

more language and actually the confidence of authorship will decline.

On the other hand, if this value is big and close to 1, few states

are merged and the standard for a language to be accepted is high. In

this case, some other writing piece of the same author would probably

be rejected in the testing due to the difference in writing style. We

need to adjust this parameter appropriately so that it is practically

useful and reasonable. For the moment, the author believes that 0.7

is an ad hoc appropriate value.

The second data need to be set are the sample text file

directory and file name, and test file directory and name. The default

values for these are data/sample.txt and output/test.txt. You can

change them by hand. After you set the value, you need to create the

corresponding directories and files.

31

Now it is ready to train the program data, click Run->Train, the

windows will show

Training data, please wait...

This process may take time, so don't close the window during

training. After the completion of training, you will see the following

information (Fig. 7):

:™i Authorship Unt i t led

New Run Tools Help

Training data, please wait..
Training complete!

FIGURE 7. THE RESULT AFTER TRAINING

When you see this message, the SFA represented the writing

style of the author has been generated. You can then test the writing

32

piece stored in the text file test.txt (or the file specified by you in the

setting tab).

To test the data, simply click Run->Test, this process is

relatively not time-costly. After it is done, you will see the result

shown on the window. In our example, it reads

The confidence probability is 99 %

It means the test data is written by the same author for a

probability of 99% (Fig. 8).

33

i*3 Authorship - Untitled

New Run Tools Help

umm

Training data, please wait...
Training completel

Testing...

Test done!

The confidence probability is 99 %

FIGURE 8. THE RESULT AFTER TEST

Some other files are created at the same time when running the

program. These files record the intermediate results during the

running of the program, or some copy of final results. Some results

are actually not used, they are primarily created for reference of the

data, or as a backup data for other possible future generalization.

The major files include

sample_data.txt,

test_data.txt,

pta

34

log.txt

automaton.txt

In these files, only pta is not a text file. I t is usually opened by

WordPad, because it is generally time-costly for notepad to open it,

and the format in WordPad is better for browsing it.

Let me give an example here.

In the output directory there is a file named automaton.txt (Fig.

9),

I I automaton.txt - Notepad

File Edit Format View Help

The automaton is the following:

160 75 1 19 1214
731 1428 177 2 521
101 290 3 118 1502
4739 273 167 4 2738
4566 581 34 786 5
13880 51564 25365 6
- 7 - -
- 50923 8 -
_ g _ _

10
- 11
- - 12 - -

13 -
- - 14 - -

15 -
- - 16 - -

17 -
- - 18 - -

45 20 265 171 1438
126 653 21 56 1511

FIGURE 9. THE FILE AUTOMATON.TXT

35

It gives the automaton in table format which is the way to store

the SFA. To explain it, let's take a look at the last line

20: 126 653 21 56 1511

It represents the node or state labeled by 20. The first number

126 is a label of the node 126, and it is the first child of node 20, that

is, transited by string 0. In the same way, by string 1, node 20 goes

to node 653; by string 2, it goes to node 21 , etc.

It is easy to guess that the - notation in the table means that

the node has no corresponding child for that string. So for instance

you will see node 6 has only one child node 7 led to by string 2,

because node 7 is in the third position in all five ones (notice that the

index for position always start with 0, hence the third one gives string

2).

36

7. RESULTS

In this section we present the results of the running of our

program. The author we choose is J.K.Rowling and the writing sample

is her book Harry Potter and the Order of the Phoenix. The test

writings are her other three books:

Book 1: Harry Potter and the Sorcerer's Stone

Book 2: Harry Potter and the Chamber of Secrets

Book 3: Harry Potter and the Prisoner of Azkaban

and one book of Gabriel Garcia Marquez:

Solitude: One Hundred Years Of Solitude

In our program, we choose a sentence as a unit. One reason is

that we already get good results with this choice. Another reason is

that if we choose larger unit, the program will run longer. Since our

results are good enough to distinguish authors, we don't bother to

waste time to get similar results.

37

As we use one sentence as unit, the patterns we catch all have

size smaller than one sentence. Any larger size pattern can be

absorbed in the automaton. Now we give an example to illustrate this

situation. The following paragraph consists of five sentences:

dabad.caba.baba.cabad.cabacaba.

One pattern is the repeat of string aba appeared in every

sentence

dabad.caba.baba.cabad.cabacaba.

According to our method, the automaton (Fig. 10) is

FIGURE 10. AUTOMATON FROM EXAMPLE

Note that there is another larger pattern abad.caba across

sentences:

dabad.caba.baba.cabad.cabacaba.

38

This string can be accepted by the previous automaton. If we

use two sentences as a unit, we can get a PTA, after merging, we will

get the same automaton as above. However, it takes more time using

this algorithm. So it is this technical reason we choose one sentence

as a unit.

Next, we present our results. First of all, we use the PTA as our

SFA, that is, we do not merge the states of the PTA. In this case, the

PTA accepts exactly the set of strings of the sample data. The

following table (table 2) gives the result:

TABLE 2. THE TABLE OF TESTING WITHOUT MERGING

Book 1
Book 2
Book 3
Solitude

$ total sentences
6186
6360
8425
5678

jj accepted sentences
3904
4007
5554
1751

accepting probability
0.631102
0.630031
0.659228
0.308383

In this table, one can find a big gap of the accepting

probabilities between the book of same author and the book of

different author.

39

Next we fix the parameter a = 0.7. Then after merging we get

an SFA as the writing pattern of the author. The results of accepting

probability are given in the following table (table 3).

TABLE 3. THE RESULT OF TESTING WITH A=0.7

Book 1
Book 2
Book 3
Solitude

ft total sentences
6186
6360
8425
5678

| accepted sentences
4285
4390
6021
2079

accepting probability
0.692693
0.690252
0.714659
0.36615

The accepting probabilities in this table are greater than the

correspondence probabilities in the table before merging. This is

because after merging, the new SFA can accept more strings than the

one before merging. These new strings cannot be identified by the

sample data.

We remark that if we take the parameter a<= 0.55 in our

program, then a lot of non-equivalent states will merge due to a large

error used in the comparison of frequencies. The accepting probability

is greater than 0.97 in all four books. This phenomenon does not

imply that our method is not effective. It reminds us to pick the

parameter appropriately to get the best result. In fact, our first table

40

of accepting probability obtained from the PTA (before merging) has

already shown the difference between Book 1-3 and Solitude.

8. CONCLUSION

We believe that there is tremendous potential generalization of

this method. For instance, one can change the size of the segment

from one sentence to several sentences, or one can use a finer

classification of the set of function words instead of part of speech.

Even further, one can also include some type of content words into the

sample data instead of the set of function words.

Another direction to refine the result is to combine this method

with the traditional statistic methods. The author is working on this

direction and obtained partial results.

The same method can also be applied to Microarray in biology.

It is an interesting direction to work out various details and generalize

this method combined with other tools.

42

ENCES

[1] T. Y. Lin, "Rough Patterns in Data-Rough Sets and

Foundation of Intrusion Detection Systems,"

Journal of Foundation of Computer Science and

Decision Support, Vol.18, No.3-4, pp. 225-241,

1993

[2] T. Y. Lin, "Patterns in Numerical Data: Practical

Approximations to Kolmogorov Complexity, "

SFDGrC, pp. 509-513, 1999

[3] P.Baliga and T.Y.Lin, "Kolmogorov Complexity

based Automata Modeling for Intrusion Detection,"

Proceeding of the 2005 IEEE International

Conference on Granular Computing, Beijing,

China, pp. 387-392, July 25-27, 2005

[4] J.Grieve, "Quantitative Authorship Attribution: An

evaluation of Techniques, "Literary and Linguistic

Computing, Vol. 22, No. 3, pp. 251-270, 2007

[5] R.C.Carraso and J.Oncina, "Learning stochastic

43

regular grammars by means of a state merging

method," Proceedings of the 2nd International

Colloquium on Grammatical Inference, Lecture

Notes in Artificial Intelligence, pp.139-152, 1994

J.E.Hopcroft, R.Motwani and J.D.UIIman,

Introduction to Automata Theory, Language, and

Computation, Addison Wesley, 2001

T.Paek and R.Chandrasekar, 'Windows as a

Second Language: An Overview of the Jargon

Project," Proceedings of the First International

Conference on Augmented Cognition,2005

M.Koppel, S.Argamon and A.Shimoni,

"Automatically categorizing written texts by author

gender," Literary and Linguistic

Computinq.Vol.17. No.4, pp. 401-412, 2002

R.Sekar, M.Bendre, D.Dhurjati and P.Bollineni, "A

Fast Automaton-Based Method for Detecting

Anomalous Program Behaviors," Proceeding of

44

http://Computinq.Vol.17

2001 IEEE Symposium on Security and

Privacy,2001

[10] M.Young-Lai and F.Tompa, "Stochastic

Grammatical Inference of Text Database

Structure", Machine Learning, pp. 111-137, 2000

[11] F.Mosteller and D.L.Wallace, Inference and

disputed authorship: The Federalist, Reading,

Mass, Addison-Wesley,1964

45

APPENDIX A: STOP WORD LIST

The stop word list is important to the program, there are

different list online. The one we used in our program is downloaded

from

http://www.marlodqe.supanet.com/museum/funcword.html

To store the data into the program, we defined the following

array

s t a t i c c o n s t char funword[WordType][WordNumber][WordLength]=

{ { " a g a i n " , " a g o " , " a l m o s t " , " a l r e a d y " , " a l s o " , " a l w a y s " , " a n y w h e r e " , " b a c k " , "e

I s e " , " e v e n " , " e v e r " , " e v e r y w h e r e " , " f a r " , " h e n c e " , " h e r e " , " h i t h e r " , " h o w " , " h o

w e v e r " , " n e a r " , " n e a r b y " , " n e a r l y " , " n e v e r " , " n o t " , " n o w " , " n o w h e r e " , " o f t e n " , "

o n l y " , " q u i t e " , " r a t h e r " , " s o m e t i m e s " , " s o m e w h e r e " , " s o o n " , " s t i l l " , " t h e n " , " t

h e n c e " , " t h e r e " , " t h e r e f o r e " , " t h i t h e r " , " t h u s " , " t o d a y " , " t o m o r r o w " , " t o o " , " u

nderneath","very","when","whence","where","whither","why","yes","yester

day","yet"},

{"am","are","aren't","be","been","being", "can", "can't","could", "couldn'

t","did","didn't","do","does","doesn't","doing","done","don't","get","g

46

http://www.marlodqe.supanet.com/museum/funcword.html

ets","getting","got","had","hadn't","has","hasn't","have","haven't", "ha

ving","he'd","he'11","he's","i'd","i'11","I'm","is","i've","isn't","it"

s","may","might","must","mustn't","ought","oughtn't","shall","shan't","

she'd","she'll","she's","should","shouldn't","that's","they'd","they'11

","they're","was","wasn't","we'd","we'll","were","we're","weren't","we"

ve","will","won't","would","wouldn't","you'd","you'll","you're","you've

{"about","above", "after","along","although","among","and","around","as"

,"at","before","below","beneath","beside","between","beyond","but","by"

,"down","during","except","for","from","if","in","into","near","nor", "o

f","off","on","or","out","over","round","since","so","than","that","tho

ugh","through","till","to","towards","under","unless","until","up","whe

reas","while","with","within","without"},{"a","all","an","another","any

","anybody","anything","both","each","either","enough","every","everybo

dy","everyone","everything","few","fewer","he","her","hers","herself","

him","himself","his","i","it","its","itself","less","many","me","mine",

"more","most","much","my","myself","neither", "no","nobody","none", "noon

e","nothing","other","others","our","ours","ourselves","she","some","so

mebody","someone","something","such","that","the","their","theirs","the

m","themselves","these","they","this","those","us","we","what","which",

"who","whom","whose","you","your","yours","yourself","yourselves"},

{"billion","billionth","eight","eighteen","eighteenth","eighth","eighti

eth","eighty","eleven","eleventh","fifteen","fifteenth","fifth","fiftie

th","fifty","first","five","fortieth","forty","four","fourteen","fourte

enth","fourth","hundred","hundredth","last","million","millionth", "next

","nine","nineteen","nineteenth","ninetieth","ninety","ninth","once" , "o

ne","second","seven","seventeen","seventeenth","seventh","seventieth","

47

s e v e n t y " , " s i x " , " s i x t e e n " , " s i x t e e n t h " , " s i x t h " , " s i x t i e t h " , " s i x t y " , " t e n " , "

t e n t h " , " t h i r d " , " t h i r t e e n " , " t h i r t e e n t h " , " t h i r t i e t h " , " t h i r t y " , " t h o u s a n d " ,

" t h o u s a n d t h " , " t h r e e " , " t h r i c e " , " t w e l f t h " , " t w e l v e " , " t w e n t i e t h " , " t w e n t y " , "

t w i c e " , " t w o " } } ;

Notice that the enumerate type

enum {Adv,Aux,Prep,Pron,Number}

stores the part of speech we are interested in.

48

APPENDIX B: DETAILS OF HOW THE FUNCTIONS IN
THE PROGRAM WORK

In this appendix we give an illuminating example which shows

how the functions in our program work.

The sample text file (Fig. 11) is

File Edit Format View Help

'the'. ~~
the of.
the of.
the of of.
the of the of.
the of the of.
the of the of.
the of the of.
the of the of.
the of the of the of.
the of the of the of.

FIGURE 11. SAMPLE TXT

You can think of these are 11 sentences containing the above

stop words; we just ignore all contents words.

49

Similarly, we have our test file for some unknown author. We

also ignore all content words to avoid interrupting information.

The test file (Fig. 12) is the following:

E test.txt - Notepad

File Edit Format View Help

(the of the of the of the of.
the of of of.
the the of.
the of the of the.

FIGURE 12. TEST.TXT

Notice that all sentences are different from the sentences in

sample.txt. We potentially varied each sentence a little bit by adding

a repetition, or by deleting a word, or partially repeat some part. We

will see how this merging will give rise to new knowledge to identify

these new sentences.

50

The following several figures collect the result of running the

program for different parameter a. You will see the importance of this

parameter in the influence of the final result.

We first set a=0.9, we expect to see a low confidence

probability as a result, because the merge standard is high and few

states are merged (Figs. 13, 14, 15, 16).

New Run Tools Help

Training data, please wait...
Training complete!
Testing...
Test done!
The confidence probability is 0 %

FIGURE 13. A=0.9

51

Authorship - Untitled

New Run Tools Help

mreipRi

Training data, please wait-
Training complete!
Testing...
Test done!
The confidence probability is 25 %

FIGURE 14. A=0.8

3 Authorship - Untitled
New Run Tools Help

Training data, please wait...
Training complete!
Testing-
Test done!
The confidence probability is 50 %

FIGURE 15. A=0.4

52

f, I Authorship - Untitled
New Run Tools Help

Training data, please wait...
Training complete!

Testing...
Test done!
The confidence probability is 75 %

FIGURE 16. A=0.3

To see what is happening, we take a look at the corresponding

automaton we get stored in the file automaton.txt (Figs. 17, 18, 19,

20) in each setting of parameter a.

53

0
1
2
3
4
5
6
7

1 _
_ _ 2 - -
- - 3 4 -

_ _ 5 - -
6 -

_ _ 7 - -

FIGURE 17. AUTOMATON FOR A=0.9

0
1
2
3
4
5
6
7

1 _
- - 2 - -
- - 3 4 -

_ _ 5 _ _
_ _ _ 4 _
=4
=5

FIGURE 18. AUTOMATON FOR A=0.8

- 1
2 -
2 4

5 -

=4
= 5

FIGURE 19. AUTOMATON FOR A=0.4

54

0
1
2
3
4
5
6
7

-
-
-
=2
=1
=2
=1
-1

FIGURE 20. AUTOMATON FOR A=0.3

55

APPENDIX C: TEST ENVIRONMENT AND
PERFORMANCE

The result is gained by running program on:

Window XP professional SP2

2007C4U— LENOVO THINKPAD T60

Intel CPU CORE DUO T2500 2 GHZ

2.5GB of RAM

Sample file:

<<Harry Potter and the Order of the Phoenix>>

total sentences: 17,214

total function words: 133,867

total words in the articles: 1,223,507

txt file size: 1,500KB

states in the automaton: 57741

total training time: < = 20 seconds

(I got different running time such as 15 or 16 or 18 or 20 seconds. It

depends on whether my laptop is responsing to other programs.)

56

The total training time includes reading file, extracting the function

words, building the PTA and merging(dominating factor).The training

part dominates the time since the testing part is much quicker.

Test Time(using confidence value , a=0.7):

Harry Potter 1(6186 sentences), it takes 2 seconds to test.

Harry Potter 2(6560 sentences), it takes 2 seconds to test.

Harry Potter 3(8425 sentences), it takes 2 seconds to test.

One Hundred Year of Solitude (5678 sentences), it takes 3 seconds to

test.

Remark: The running time is not proportional to the number of

sentences, but proportional to the number of function words.

57

	An automata based authorship identification system
	Recommended Citation

	ProQuest Dissertations

