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Abstract. We consider an extension of linear-time temporal logic (LTL)
with constraints interpreted over a concrete domain. We use a new
automata-theoretic technique to show PSPACE decidability of the logic for
the constraint systems (Z, <, =) and (N, <, =). We also give an automata-
theoretic proof of a result of Balbiani and Condotta [BC02] for constraint
systems that satisfy a “completion” property.

1 Introduction

We consider in this paper an extension of Linear-time Temporal Logic (LTL)
[Pnu77] with atomic assertions from a constraint system D. The logic is denoted
CLTL(D), for Constraint LTL parameterised by the constraint system D, and
is obtained from LTL by replacing propositions by atomic constraints in D. In
classical LTL variables represent propositions and models are sequences of propo-
sitional valuations for these variables. These models can be viewed as having a
“spatial” axis (here the elements T and 1), along which the variables move. In
CLTL(D), the spatial axis for the models will comprise elements from the domain
of D. For example, in CLTL(N, <,=) one is allowed to use atomic constraints
involving < and =, and variables ranging over natural numbers. The formula
O(z < y) in CLTL(N, <, =) is interpreted over a sequence of N-valuations for
the variables z and y, and asserts that at every point in the future, the value of
the variable z is less than the value of y. This formula is of course satisfiable,
and a candidate satisfying model is ss---, where s assigns 1 to = and 2 to y.

Constraint temporal logics have been introduced and studied by logicians in
the field of knowledge representation [WZ02]. Spatio-temporal logics, as they are
better known there, involve a hybrid of temporal logic and constraint systems,
with varying degrees of interaction. For instance, one may be permitted to refer
to the value of a variable z in the nezt time instant, leading to constraints of
the form (z > Ox). More generously, one may permit (z > <y), which asserts
that the current value of z exceeds the value of some future value of y.

* Part of this work was done during this author’s visit to LSV, ENS-Cachan.



While research in the area has focused mainly on logics involving constraint
systems that have as domains intervals [Al183,BC02] and regions [RCC92,WZ00],
with a variety of decidability and complexity results, there has been little progress
with commonly used constraint systems of the form (D, <,=), with D as the
integers Z, or the natural numbers N. Comon and Cortier [CCO00] consider a
constraint system with the reals R as the underlying domain and constraints of
the form z < Oy + 2, which they show is undecidable. They identify a decidable
fragment of the logic by restricting the use of the “Until” operator. Balbiani and
Condotta [BC02] prove a general decidability result for constraint systems that
satisfy a “completion” property — essentially that, given a finite set of consistent
constraints S, a valuation for a subset of variables which satisfies the constraints
involving only those variables, can be extended to a valuation which satisfies S.
The constraint system (R, <,=) satisfies this property, and the decidability of
CLTL(R, <,=) in PSPACE follows from this result.

In this paper we focus mainly on the constraint systems (Z,<,=) and (N,<,=).
As in [BCO02], we restrict the interaction between the temporal operators and
variables to terms of the form OO --- Oz. Our approach is automata-theoretic
in nature, and we hope that the benefits of such an approach will be evident
to the reader. In particular, it facilitates a transparent argument for the result
of [BCO2] for constraint systems satisfying the completion property. For such
constraint systems D one can further show that the set LP(¢), of models which
satisfy a given formula ¢, is w-regular — i.e. it can be described by an automaton
on infinite words. This parallels the results for classical LTL [VW86].

The constraint systems (Z, <,=) and (N, <,=) are more interesting from a
technical point of view. As a typical illustration, the formula O(z > Ozx) has
no (infinite) N-models, while it does have R-models and Z-models. These con-
straint systems don’t satisfy the completion property, and, as we show in Sec. 6,
the set of models of a formula in these logics is not, in general, w-regular. Nev-
ertheless, we show that the satisfiability problems for the logics CLTL(Z, <, =)
and CLTL(N, <, =) are decidable, and in fact PSPACE-complete. Our approach is
automata-theoretic, in that we associate with a given formula ¢, an automaton
Ag which is non-empty iff ¢ has a D-model (for D = Z,N). The technique used
is as follows: Find an w-regular superset M of L”(y), which has the property
that all its ultimately periodic words (those of the form 7-§¢) are also in LP ().
This property guarantees that M is non-empty iff L? () is. One can then check
the emptiness of M using standard automata theory techniques. This lets us
decide the D-satisfiability of .

The model checking problem for CLTL reduces easily to that of classical
LTL. We address this briefly in Sec. 3, and focus on satisfiability in the sequel.
Proofs omitted due to lack of space can be found in [DD02].

2 Preliminaries

A (concrete) constraint system is of the form D = (D,R;...,R,,Z), where D
is a non-empty set called a domain, and each R; is a predicate symbol of arity



a;, with Z(R;) C D* being its interpretation. We will suppress the mention of
T whenever it is clear from the context. Let us fix such a constraint system D
for the rest of this section.

An (atomic) D constraint over a finite set of variables U is of the form
Ri(x1,...,x,;) where each z; € U. A D-valuation over U is a map s : U — D.
Let ¢ = Ri(x1,-..,%,;) be a D constraint over U, and let s be a D-valuation
over U. Then we say s satisfies ¢, written s =p ¢, iff (s(z1),...,s(z4;)) € Z(R;).

The temporal logic we consider will use atomic constraints over terms which
refer to the values of variables in succeeding time points. Let V be a finite set
of variables which we will use in formulas of our logic, and which we fix in the
rest of this paper. An (atomic) term constraint in D is of the form

R’i(Onlxl: s 70nai mai)

where x1,...,2,, €V, ny,...,n, € N. Here O stands for the juxtaposition of
the next-state operator O i times, with Oz representing just z. By the O-length
of a term constraint ¢ we will mean the value 7 + 1 where ¢ is the largest j for
which O7 occurs in ¢. A term constraint in D is interpreted over a sequence of D-
valuations. A D-valuation sequence is represented as a function o : N — val(D),
where val(D) denotes the set of D-valuations over V. We say a D-valuation
sequence o satisfies a term constraint ¢ = R; (0™ x1,...,0Mix,,), in D, written
olEpec, iff
((n1)(@1),- .., 0(na;)(xa;)) € Z(Ry).

For i,5 € N, and i < j, let us denote by o/ the finite valuation sequence
o(i),0(i +1),...,0(j). The truth of ¢ in o is thus determined by ¢%*~! where
k is the O-length of c. A term constraint ¢ can thus be viewed as a constraint
over the variables V' x {0,...,k — 1}, where k is the O-length of c.

We now introduce CLTL(D), the constraint linear-time temporal logic, pa-
rameterised by the constraint system D. The syntax of CLTL(D) is given by:

pu=c|p| (V)| Op| (eUyp)

where c is a term constraint in D.

Models for CLTL(D) formulas are D-valuation sequences. Let ¢ be a CLTL(D)
formula, and o a D-valuation sequence. The satisfaction relation o |= ¢ is de-
fined inductively below. We use the notation o? to denote the i-th suffix of o
given by oi(l) = o(l +i) for all [ € N.

olEc iff o Epc
ocE-a iffolEa
cEaVpifoEaoroEp

ocEOa iffolEa
o EaUp iff 3k € N such that o =B and Vi: 0<i <k, o' | a.

The semantics =1, of classical LTL are given in a similar manner using
propositions instead of constraints and models as propositional valuation se-
quences. ¢ and O will stand for the usual temporal abbreviations for “some-
times” and “always”, with the semantics ¢a = (TUa), and Oa = —~(TU-a).



As an example, consider the constraint system (N, <, =) with the usual inter-
pretation of the symbols ‘<’ and ‘=". Let V' be the set of variables {z,y} and let
us represent a valuation s over V as (s(z), s(y)). Then the formula O(z < Oy)
is satisfied by the N-valuation sequence o = (1,2)(2,4)(3,6)---, but not by
o' = <17 1><2a2><27 2> T

The semantics of CLTL(D) can also be given in the sense of Prop. 1 below, in
terms of what we call frame sequences. A frame over a set of variables U, w.r.t.
a constraint system D, is essentially a maximally consistent set of D constraints
over U. More precisely, let framep(s,U) denote the set of D constraints over U
satisfied by a D-valuation s over U. Then a set S of D constraints, is a frame
over the variables U, w.r.t. D, if there exists a D-valuation s over U such that
S = framep(s,U). The frame checking problem for a constraint system D is to
decide whether a given set of D constraints S, over a finite set of variables U, is
a frame over U, w.r.t. D.

In the context of terms in the logic it is convenient to define the notion of a k-
frame which is essentially a frame over the set of variables V' x {0, ...,k —1}. Let
P,Z) denote the set of propositions p. such that ¢ is a term constraint in D of O-
length at most k. Let o be a D-valuation sequence. We use k-framep (o) to denote
the set of all propositions p, € PP such that o =p c. A k-frame w.r.t. D is a
propositional valuation v over the set of propositions PP (represented as a subset
of PP) such that there exists a D-valuation sequence o with v = k-framep, (o).

We say a pair of k-frames (v, v') is locally consistent if for all R;, and for all
Ni,...,Ng; €{1,...,k—1}:

R;(O™zy,...,0Mig,,) € viff R;(O™txy,...,0" 1g,,) €.

(For readability, we write c¢ instead of p..) Accordingly, a k-frame sequence p
is locally consistent if for all I € N, the pairs (p(l),p(l + 1)) are locally con-
sistent. A given D-valuation sequence o induces, for a given k, a canonical lo-
cally consistent k-frame sequence p, w.r.t. D, denoted k-fsp(0), and given by
p(i) = k-framep(0?). We extend k-fs to act on sets of valuation sequences in the
natural way. A k-frame sequence p will be said to admit a D-valuation sequence,
if there exists a D-valuation sequence o such that k-fsp(a) = p.

We say a CLTL(D) formula ¢ has O-length k if the largest O-length of
constraints in ¢ is k. Thus the O-length of the formula O(z < Oy) is 2. For a
CLTL(D) formula ¢, let @ denote the classical LTL formula obtained from ¢
by replacing each constraint ¢ by p.. Then the following proposition is a direct
consequence of the semantics of CLTL(D) and classical LTL.

Proposition 1. Let ¢ be a CLTL(D) formula of O-length k. Let o be a D-
valuation sequence, and let p = k-fsp,(0). Then o = ¢ iff p ErTL P. O

By the above proposition, a CLTL(D) formula ¢ of O-length k cannot differ-
entiate between D-valuations that induce the same k-frame sequences. We define
L3, () = {k-fsp(0) | 0 |= ¢}. Stated differently, L (¢) is the set of all k-frame
sequences (w.r.t. D) that satisfy ¢ and admit a D-valuation.



3 Model checking

Let D= (D, Ry,...,R,,T) be a given constraint system. A D-Kripke structure
is of the form (@, —,1) where (Q, —) is a finite directed graph, and [ : Q —
val(D) is a labelling of states with D-valuations. For a D-Kripke structure M =
(Q,—,1) and a state ¢ € Q, we define L(M,q) to be the set of all D-valuation
sequences which appear as labels along an infinite path in M beginning at q.

Let ¢ € CLTL(D). We say M,q = ¢ iff 0 | ¢ for each o € L(M,q).
The model checking problem for CLTL(D) is: given a program modelled as a
D-Kripke structure M, a state ¢ in M, and a formula ¢ in CLTL(D); does
M,q E ¢?

In the instance of the model checking problem above, let ¢ have O-length
k. Then, by Prop. 1, M,q = ¢ iff p v @ for every k-frame sequence p
induced by a D-valuation sequence o € L(M,q). We can define a classical P,? -
labelled Kripke structure My = (T, —,m), which (for suitable choices of initial
states) generates precisely the language k-fsp(L(M,q)). Define T to be the set
of k-length paths in M. We define go---qr—1 — 710---rp_1 iff for each ¢ €
{1,...,k =1}, ¢ = ri—1. Define m(qo - - - gr—1) = k-framep(1(go) - - - (gk—-1))-

The model checking problem for CLTL(D) now reduces to the model checking
problem for LTL in the following sense: (M, q) | ¢ iff (My,t) =L @ for each
t € T of the form qg - - - gr—1 with go = ¢. This gives us a way to decide, in PSPACE,
the model checking problem for constraint systems that are “well-behaved” in
that the satisfiability problem for the predicates R; are decidable in PSPACE.

Proposition 2. For every well-behaved constraint system D, the model checking
problem for CLTL(D) is in PSPACE. O

4 A general satisfiability result

For a constraint system D, the satisfiability problem for CLTL(D) is: given a
CLTL(D) formula ¢, does there exist a D-valuation sequence which satisfies ¢?
Our approach to answering this problem is to decide whether there exists a k-
frame sequence p (where k is the O-length of ¢), which satisfies $ and admits a
D-valuation sequence. Since such a k-frame sequence must be locally consistent,
we can restrict our attention to k-frame sequences which are locally consistent.

In general, a locally consistent k-frame sequence may not admit a D-valuation
sequence (see for instance the constraint system (Z,<,=) in Sec. 6). However,
when the constraint system satisfies the “completion” property described below,
locally consistent k-frame sequences do admit D-valuation sequences.

A constraint system D is said to satisfy the completion property if given

— a frame S over a finite set of variables U w.r.t. D,

— a subset U’ of U, and

— a valuation s’ over U’, such that S[U’ = framep(s',U’) (by S|U' we mean
the subset of constraints in S which use only variables in U");



then there exists a valuation s over U which extends s’ and satisfies S =
framep(s,U). The constraint systems (D, <,=) for D = Q,R are examples of
systems that satisfy the completion property.

Proposition 3. Let D be a constraint system which satisfies completion. Then
every locally consistent k-frame sequence w.r.t. D admits a D-valuation sequence.

Proof. Let p = vov1 ... be a locally consistent k-frame sequence w.r.t. D. We
define a D-valuation sequence o = s¢s; - - -, with the property that p = k-fsp (o),
as follows. We view each v; as a set of constraints over the variables U; = V x
{i,...,i+k—1}. Since each v; is a k-frame, for each ¢ there exists a D-valuation
t; over U; such that v; = framep(t;, U;). Define so(z) = to(x,0),...,8p-1(x) =
to(z,k — 1), for all z € V. Now consider the set of constraints v;. We know
that vy is a frame over U;. Further consider the subset U' =V x {1,...,k —1}
of Uy. Clearly the restriction ¢' of the valuation tg to U’, is such that v; [U’ =
framep(t',U"). Thus, by the completion property we have a D-valuation ¢” which
extends t' to the variables V' x {k}, and satisfies v; = framep(t",U1). We can
now define si(z) = t"(x,k) for each € V. This argument can be extended
repeatedly to define the rest of o. Clearly, o has the property that k-fsp (o) = p,
and hence p admits the D-valuation sequence o. O

We can now state an interesting result regarding the language of k-frames
defined by a CLTL(D) formula ¢. Recall that a Biichi automaton over an alpha-
bet A is simply a classical automaton A = (Q, go, —, F') over A, but with the
set of final states F' used as a acceptance condition on infinite words @ € AY.
A run p: N — @ on « is accepting if p(i) € F for infinitely many i € N. L(A)
is the set of infinite words accepted by A, and L C A% is termed w-regular if
L = L(A) for some Biichi automaton A over A (see [Tho90]).

Proposition 4. Let D be a constraint system satisfying the completion property.
Let ¢ be a CLTL(D) formula. Then L',?fs (p) is w-regular.

Proof. Let ¢ be of O-length k. We define a Biichi automaton Ag over the alpha-
bet 2(P) | such that L(A?) = L, (). Define AT = Az NAL*, where Aj is the
Vardi-Wolper automaton [VW86] for the LTL formula @, and A}Z’k is a Biichi

automaton over 2(F¢) which accepts locally consistent k-frame sequences. We
can define Ag’k = (Q, g0, —, F) where @ is the set of k-frames w.r.t. D, along

with a separate start state go; — is given by g — v, and v == v’ iff (v,v') is
locally consistent (here v and v’ range over k-frames w.r.t D); and F = Q. O

Prop. 4 gives us a way to decide the satisfiability problem for a constraint
system D which satisfies the completion property, and has a decidable frame
checking problem. We can do this by constructing .Ag and checking for language
emptiness. In particular, if D is such that frame checking can be done in PSPACE,
then the satisfiability problem for CLTL(D) can be solved in PSPACE. This is
because both Az and A}Z’k are implicitly defined graphs whose transition rela-
tions can be checked (with the above assumption) in PSPACE in the length of ¢.



Since the number of states in both A5 and Ag’k are exponential in length of ¢,
reachability of states in AE can be done non-deterministically in PSPACE. Thus,
emptiness checking, which essentially involves a couple of reachability checks,
can be done non-deterministically in PSPACE in length of ¢. This is essentially
the result of [BC02].

Theorem 1. The satisfiability problem for CLTL(D) when D satisfies comple-
tion and allows frame-checking in PSPACE, is in PSPACE. O

5 Constraint systems of the form (D, <, =)

In this section we develop some notions which are useful in dealing with con-
straints systems of the form (D, <,=). The case D = R is dealt with at the
end of the section (the rationals Q behave very similarly as far as our logic is
concerned), while Z and N are completed in the next section.

For a constraint system of the form (D, <, =) it is convenient to visualise a
frame as a labelled, directed graph. We represent a frame v over a finite set of
variables U by a {<,=}-labelled, directed graph over the vertices U, where we
place a ‘~’-labelled edge (for ~€ {<,=}) from z to y precisely when z ~ y € v.
Such a graph clearly satisfies the conditions that:

1. there is an edge between every pair of vertices;
2. if there is ‘="-labelled edge from z to y then there is also one from y to z;
3. there are no strict cycles (i.e. directed cycles with a ‘<’-labelled edge).

Conversely, given an {<,=}-labelled graph G over a finite set of vertices U
which satisfies the above conditions, one can verify that the set of constraints
vg ={x ~y |z — yin G} constitutes a frame over U. In the sequel we will
often make use of this graphical representation of frames. Fig. 1 shows the first
two 3-frames of a locally consistent 3-frame sequence over variables z, y.

A locally consistent k-frame sequence p can be represented as a single {<, =}-
labelled, directed graph G, which is essentially the super-imposition of the over-
lapping k-frames (see Fig. 1). More precisely, G, has V x N as its set of vertices,
and an edge (z,i) — (y, j) iff either i < j and (z ~ O7~%y) € p(i), or, i > j and
(O=iz ~ y) € p(j). An important property of G, is that it does not contain
any strict cycles (see below).

The frame checking problem for (D, <, =) is essentially the cycle detection
problem in a directed graph, which is in NLOGSPACE. It is not difficult to ar-
gue that (R, <,=) satisfies the completion property [DD02]. Thus, from Theo-
rem 1 we conclude that the satisfiability problem for CLTL(R, <,=) is PSPACE-
complete. As a corollary we can also conclude that for a locally consistent k-frame
sequence p, G, always admits an R-valuation and hence contains no strict cycles.

6 Satisfiability for CLTL(Z, <, =)

The constraint system (Z, <,=) does not satisfy the completion property and
hence we cannot appeal to Theorem 1 to solve the satisfiability problem for the



p(0)

p(1)

Fig. 1. A 3-frame sequence over the variables {z, y}

logic CLTL(Z, <,=). In fact, unlike R, the language L%fs(cp) is not, in general,
w-regular (see Cor. 1). However, we can still solve the satisfiability problem for
7 automata-theoretically. The idea is to define a Biichi automaton Ag which
accepts a superset of L%fs (¢), with the property that all wltimately periodic
words in it are also in L7, (). It then follows that L(AZ) is non-empty iff ¢ is
Z-satisfiable.

We begin with a characterisation of locally consistent k-frames which admit
a Z-valuation. Let p be a locally consistent k-frame sequence. For a directed path
p in G,, let slen(p) (the strict length of p) denote the number of ‘<’-labelled
edges in p if this number is finite, and w otherwise. For any two vertices u, v in
G, define slen(u,v) to be the supremum of slen(p) over directed paths p from
u to v, if it exists, and w otherwise.

Lemma 1. Let p be a locally consistent k-frame sequence. Then p admits a
Z-valuation iff for all u,v € G,, slen(u,v) < w.

Proof. If p admits a Z-valuation, then clearly slen(u,v) <| f(v) — f(u) |, where
f is a Z-valuation admitted by p. Thus, there cannot exist vertices u and v with
slen(u,v) = w. Conversely, suppose G, satisfies the given condition. Then one
can verify that the procedure given below produces a Z-labelling f of the vertices
of G, that respects the labels on edges of G,. This in turn implies that p admits
a Z-valuation. We assume an ordering < on variables, and use it to define an
ordering of vertices in G, given by (z,9) < (y,j) iff i < j,ori=jand z < y.

1. Label the vertices in order. Begin by labelling the first, say (z,0), by 0.

2. In general, if X is the portion of the graph already labelled, and u is the
next vertex to be labelled: if there is a directed path from u to a vertex in
X, set f(u) = min{f(v) — slen(u,v) | v € X, I a path from u to v}, else,
set f(u) = max{f(v) + slen(v,u) | v € X, 3 a path from v to u}. |



Let p be a locally consistent k-frame sequence. An infinite forward increasing
(respectively decreasing) chain in G, is a sequence d : N — V x N satisfying:

1. for all i € N, there is an edge from d(i) to d(i + 1) (respectively, an edge
from d(i + 1) to d(7)),

2. for all 4 € N, if d(i) is in level j, then d(i + 1) is in a level greater than or
equal to j + 1. By the “level” of a vertex (z,4) we mean 4.

Such a chain d is strict if there exist infinitely many ¢ for which there is a ‘<’-

labelled edge from d(i) to d(i + 1) (respectively, from d(i + 1) to d(i)).
Consider now the condition (C7z) below on a locally consistent k-frame se-

quence p: there do not exist vertices u and v in the same k-frame in G, satisfying:

. there is an infinite forward increasing chain d from w,

. there is an infinite forward decreasing chain e from v,

. either d or e is strict, and

. for each i,j € N, whenever d(i) and e(j) belong to the same k-frame there
is an edge labelled ‘<’ from d(4) to e(j).

= N =

It follows from Lemma 1 that condition (C%) is necessary for p to admit a Z-
valuation sequence. But it is not sufficient, as witnessed by the 2-frame sequence
p% , in Fig. 2. We have shown only the relevant edges in the figure. pZ ; clearly
satisfies condition (C7). However, it cannot admit a Z-valuation since there are
paths of unbounded strict length from (z,0) to (z,0).

zZe ﬂetﬂ e‘eoeﬁoeo

=0 —~0<— 0 0 0= _0 e -

VAT

x‘e‘e‘ =0 <=0<=0<=0<=0<=0

Fig. 2. Frame sequence p% ; satisfies (Cz) but does not admit a Z-valuation.

However, when p is an ultimately periodic word (i.e. of the form 7 - §), this
condition is indeed sufficient.

Lemma 2. Let p be an ultimately periodic, locally consistent, k-frame sequence.
Then p admits a Z-valuation sequence iff p satisfies (Cz).

Proof. If p admits a Z-valuation, then by Lemma 1 p must satisfy the condition
(Cz). Conversely, suppose p does not admit a Z-valuation. We will show that p
fails to meet condition (C7). By Lemma 1 we know that there must exist two
vertices 4 and v in G, with slen(u,v) = w.

Now for any ¢ € N, we can find a path p; from u to v in G,, of the form

u 25 w <5 v where d; is a forward increasing chain from u to w, e; is a forward
decreasing from v to w, both d; and e; have length at least i, and either d; or e;
has strict length at least ¢. This must be true, given the bounded width of the
graph, and the unbounded strict length of paths from u to v.



We can also assume that v and v are in the same k-frame. Otherwise (say
v was ahead of u), using an argument similar to Kénig’s Lemma, we can find a
vertex u' in the same k-frame as v, with slen(u’,v) = w.

Now let p = 7-6“. Let there be N nodes in 6. Consider p; for some i > |7|+N.
We assume here that d; is the one with at least i ‘<’ edges (a symmetric argument
holds when e; has this property). Now it must be the case that d; visits a vertex
z in a § block twice, with at least one ‘<’ edge between the two occurrences (see
Fig. 3). Let this segment of d;, which begins at z and ends at z (in different §
blocks) be g. Note that the “future” of the vertices z in different ¢ blocks are
exactly the same by the periodic nature of p. Now consider the path f from
given by the initial part of d; to x, then ¢ followed by ¢, ad infinitum. This is
a strict infinite forward increasing chain from « in G,. In a similar manner, the
path e; gives rise to an infinite forward (not necessarily strict) decreasing chain
g from v, via an ultimately periodic concatenation of a path segment r between
occurrences of y.

X X w
u o q o o

Fig. 3. Infinite paths extracted from p;

Finally we must argue that for each vertex «' in f and v' in g, whenever
they are in the same k-frame, there is an edge from u' to v’ labelled <. The
interesting case is when «' and v’ lie on some copies of the path segments ¢
and r (see Fig. 4). The initial occurrences of the segments ¢ and r in f and g
were part of the path p;. Hence there is a path ¢ from z to w to y. Further, this
path is strict, since by the choice of i, the path from x to w must contain at
least one ‘<’. Now, there must be a point in the future (a multiple of the lcm
of the lengths of ¢ and r) which occurs after ' and v’, and where the path ¢
is duplicated. Thus we have a path from u’ to z, followed by a strict path ¢,
followed by a path from y to v’ in G,. Since there must be an edge between '
and v’ (being in the same k-frame), the edge must be strict and directed from
u' to v’ (otherwise G, would have a strict cycle!). O

Let us now define A% = Az NAF N A7, where Ap and A" are as in Sec. 4,
and A”, described below, accepts k-frame sequences which satisfy (Cz). Let B



be a Biichi automaton over the alphabet of k-frames, which simply checks the
negation of condition (C7z). Thus B non-deterministically guesses the vertices u
and v, and then verifies the conditions (1)—(4). We non-deterministically choose
in the beginning, whether to signal (via the Biichi condition) each time the d or
e path sees an edge labelled ‘<’. The automaton A% is now just the complement
of B.

Corollary 1. There ezist ¢ in CLTL(Z, <, =) for which L%fs () is not w-regular.

Proof. Consider the formula ¢ = O((z < Oy) A (y < 2)). The frame sequence
p%. 4 of Fig. 2 is a model for the LTL formula @. Suppose L%fs (p) were w-regular.
Then, L = ((2P%)% — L, (0)) N L(AZ) is also w-regular. Now, pj,q & Liz(¢)
and p} ; € L(AZ). Hence p},; € L. But L is w-regular, and hence there must
exist an ultimately periodic word p in L. But p € L(Ag) and hence satisfies

(Cz). By Lemma 2, p admits a Z-valuation sequence. Since p € L(A3), we can
conclude that p € Ly, (). This is a contradiction. O

Lemma 3. A CLTL(Z) formula ¢ is Z-satisfiable iff L(.ASZ;,) is non-empty.

Proof. Suppose ¢ is Z-satisfiable. Let o |= ¢, and let p = k-fs(o), where k is the
O-length of . By Prop. 1, p € L(Ag). We know that p € L(AlZc’k). Further, by
Lemma 1, G, satisfies (Cz) and hence p € L(A%). Thus p € L(Az) N L(AlZC’k) N
L(A”). Hence p € L(A%).

Conversely, suppose A%, accepts a word p. Then it must accept an ultimately
periodic word p’ (by nature of the acceptance condition). Now p' is locally con-
sistent and satisfies (Cz). Hence by Lemma 2, p’ must admit a Z-valuation, say
o. Since p' FrrL @, by Prop. 1, o = ¢. Thus ¢ is Z-satisfiable. O

Theorem 2. The satisfiability problem for CLTL(Z, <,=) is PSPACE-complete.

Proof. The number of states in B above can be seen to be polynomial in |¢p|.
Hence A%, which is the complement of B, is at most exponential in || using,
say, the construction of Safra [Saf88]. The number of states in both Az and AJ*
is also exponential in |¢|. Further, the transition relation of each of these com-
ponents is implicitly defined in terms of ¢ and can be computed in polynomial
space in |p|. It follows that the emptiness of Ag can be decided in PSPACE in
the length of . PSPACE-hardness follows from that of LTL [SC85]. a

We close this section with an outline of the proof that the satisfiability prob-
lem for CLTL(N, <,=) is PSPACE-complete. The treatment of this case is very
similar to that of Z. We outline the counterparts of the lemmas for the Z case.
Define, for a vertex w in G,, sdlen(u) to be the supremum of slen(p) over di-
rected paths p from some vertex v to u in G,. Then the counterpart of Lemma 1
is that a locally consistent k-frame sequence p admits an N-valuation iff for all
u € G, sdlen(u) < w.

Let (Cn) denote the following condition on a locally consistent k-frame se-
quence p: G, satisfies (Cz) and it does not contain a strict infinite forward



descending chain. One can now prove, using an argument similar to the proof
of Lemma 2, that: an ultimately periodic, locally consistent, k-frame sequence p
admits an N-valuation sequence iff p satisfies (Cy). Now define an automaton Aj
as in the Z case, so that the formula ¢ is N-satisfiable iff L(AE) is non-empty.

Theorem 3. The satisfiability problem for CLTL(N, <, =) is PSPACE-complete.

Yeo <=>e<>e eoeoeoe%

Teo—=e o—eo—= e o——e0o—0 =@

Fig. 5. Frame sequence py, satisfies (Cy) but does not admit an N-valuation.

Finally, the frame sequence p},; of Fig. 5 allows us to argue that there is a
CLTL(N, <, =) formula ¢ for which L, () is not w-regular.
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