
Javier Esparza1 and Jens Knoop2

1 Technische Universit�at M�unchen, Arcisstr. 21, D-80290 M�unchen, Germany
e-mail: esparza@in.tum.de

2 Universit�at Dortmund, Baroper Str. 301, D-44221 Dortmund, Germany
e-mail: knoop@ls5.cs.uni-dortmund.de

Abstract. We show that recent progress in extending the automata-
theoretic approach to model-checking beyond the class of �nite-state
processes �nds a natural application in the area of interprocedural data-

ow analysis.

Keywords: Interprocedural data-
ow analysis, model-checking, automata
theory, program optimisation.

1 Introduction

Recent work [15, 24] has shown that model-checking algorithms for abstract
classes of in�nite-state systems, like context-free processes [1, 5] and pushdown
processes [6], �nd a natural application in the area of data-
ow analysis (DFA)
for programming languages with procedures [16], usually called interprocedural
DFA. A large variety of DFA problems, whose solution is required by optimis-
ing compilers in order to apply performance improving transformations, can be
solved by means of a unique model-checking technique.

The techniques of [5, 6] are based on what could be called the �xpoint ap-
proach to model-checking [24], in which the set of states satisfying a temporal
property is de�ned and computed as a �xpoint in an adequate lattice. Some
years ago, Vardi and Wolper presented in a seminal paper [25] an alternative
automata-theoretic approach in which|loosely speaking|veri�cation problems
are reduced to the emptyness problem for di�erent classes of automata. This
approach has had considerable success for �nite-state systems, and constitutes
the theoretical basis of veri�cation algorithms implemented in tools like SPIN
[13], PROD [26], or PEP [27]. Recently, the approach has also been extended to
context-free processes and pushdown processes [4, 10], and to other in�nite-state
classes able to model parallelism [18].

The goal of this paper is to show that the techniques derived from these
recent developments can also be applied to DFA. We provide solutions for the
interprocedural versions of a number of important DFA problems, starting with
the class of so-called bitvector problems. On the one hand, the structural simplic-
ity of these problems allows us a gentle way of introducing our approach. On the
other hand, these problems are quite important as they are the prerequisite of

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 14-30, 1999. 
c Springer-Verlag Berlin Heidelberg 1999

An Automata-Theoretic Approach
to Interprocedural Data-Flow Analysis





numerous optimisations like partially redundant expression elimination, partially
redundant assignment elimination, partially dead code elimination, and strength
reduction [23], which are widely used in practice. In detail, we investigate:

(a) the four problems of Hecht's taxonomy of bitvector problems [12],
(b) the computation of faint variables, and
(c) the problems of (a) for parallel languages.

In contrast to (a), for which there exist several solutions in the literature, (b)
and (c) have|to the best of our knowledge|not been considered yet in an
interprocedural setting; solutions for the intraprocedural case can be found in
[11, 14] for (b), and in [17] for (c).

The paper is organised as follows. Section 2 contains an informal introduction
to DFA, recalls the DFA problems mentioned above, and in particular presents
the 
ow graph model. Section 3 gives 
ow graphs a structured operational se-
mantics. Sections 4, 5, and 6 present the solutions to the problems (a), (b) and
(c) above, respectively, and Section 7 contains our conclusions.

2 Data-
ow Analysis

Intuitively, data-
ow analysis (DFA) is concerned with deciding run-time proper-
ties of programs without actually executing them, i.e., at compile time. Basically,
the properties considered can be split into two major groups (cf. [12]). Proper-
ties whose validity at a program point depends on the program's history, i.e.,
on the program paths reaching it, and properties whose validity depends on the
program's future, i.e., on the su�xes of program paths passing it. Both groups
can further be split into the subgroups of universally and existentially quanti�ed
properties, i.e., whose validity depends on all or on some paths, respectively.

Background. Using the standard machinery of DFA (cf. [12]), the validity of
a property at a program point n is deduced from a data-
ow fact computed
for n. This fact re
ects the meaning of the program at n with respect to an
abstract, simpler version of the \full" program semantics, which is tailored for
the property under consideration. The theory of abstract interpretation provides
here the formal foundation (cf. [7{9, 19]). In this approach the data-
ow facts
are given by elements of an appropriate lattice, and the abstract semantics of
statements by transformations on this lattice. The meet-over-all-paths (MOP )
semantics de�nes then the reference solution, i.e., the data-
ow fact desired for a
program point n: It is the \meet" (intersection) of all data-
ow facts contributed
by all program paths reaching n. TheMOP -semantics is conceptually quite close
to the program property of interest, but since there can be in�nitely many pro-
gram paths reaching a program point it does not directly lead to algorithms for
the computation of data-
ow facts. Therefore, in the traditional DFA-setting the
MOP -semantics is approximated by the so-called maximal-�xed-point (MFP ) se-
mantics. It is de�ned as the greatest solution of a system of equations imposing
consistency constraints on an annotation of the program points with data-
ow

15An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis     



facts. The MFP -semantics coincides with its MOP -counterpart when the func-
tions specifying the abstract semantics of statements are distributive, a result
known as the Coincidence Theorem.

Note that the MOP -semantics is de�ned in terms of possible program ex-
ecutions. From the point of view of temporal logic this means in a pathwise,
hence linear time fashion. In contrast, the computation of the MFP -semantics
proceeds by consistency checks taking the immediate neighbours of a program
point simultanenously into account. From the point of view of temporal logic
this means in a tree-like, hence branching time fashion. Thus, in the traditional
DFA-setting there is a gap between the reference semantics de�ning the data-
ow
facts of the program annotation desired (theMOP -semantics), and the semantics
the computation of the program annotation with data-
ow facts relies on (the
MFP -semantics). An important feature of the automata-theoretic approach to
DFA we are going to present here is the absence of a similar separation of con-
cerns providing in this respect a more natural and conceptually simpler access
to DFA.

Flow graphs. In DFA programs are commonly represented by systems of 
ow
graphs, where every 
ow graph represents a procedure of the underlying pro-
gram. Flow graphs are directed graphs, whose nodes and edges represent the
statements and the intraprocedural control 
ow of the procedure represented.
Usually, control 
ow is nondeterministically interpreted in order to avoid unde-
cidabilities. As illustrated in Figure 1(a) and (b), which show the 
ow graph
and the 
ow graph system representing a single procedure and a program with
procedures, we consider edge-labelled 
ow graphs, i.e., the edges represent both
the statements and the control 
ow, while nodes represent program points. We
assume that statements are assignments of the form v := t including the empty
statement, call statements of the form call �(t1; : : : ; tn), or output operations of
the form out(t), where v is a variable, � a procedure identi�er, and t; t1; : : : ; tn
are terms.

Bitvector properties and faint variables. Bitvector properties correspond to struc-
turally particularly simple DFA-problems, which, simultaneously, are most im-
portant in practice because of the broad variety of optimisations based on them
(cf. Section 1). Their most prominent representatives, the availability and very
busyness of terms, the reachability of program points by de�nitions, and the
liveness of variables, span the complete space of the taxonomy recalled above as
was shown by Hecht [12]. Intuitively, a term t is available at a program point n,
if on all program paths reaching n term t is computed without that any of its
operands is assigned a new value afterwards. Thus, availability is a universally
quanti�ed history-dependent property. Very busyness is its dual counterpart.
A term t is very busy at a program point n, if it is computed on all program
paths passing n and reaching the end node before any of its operands is assigned
a new value after leaving n. Hence, very busyness is a universally quanti�ed
future-dependent property. For illustration consider Figure 1(a), in which the
program points where a+ b is very busy are greyly highlighted.

16 Javier Esparza  and Jens Knoop 



0end

Π 1Π 1

Π 1Π 0 ; VAR c,x,y

0start 1start

1end

end

a)

a := ...

x := a+b

z := a+b

f := f+1

b)

x := a+b

y := c+b

VBE
VBE

(c+b)
(a+b)

c := ...

a := ...

z := a+b
x := a+b

y := a+b

z := a+b

; VAR a,b

call call

start

Fig. 1. Flow graphs and 
ow graph systems.

Reaching de�nitions (for convenience referred to as reachability later) and live
variables are existentially quanti�ed history- and future-dependent properties.
Intuitively, a program point n is reached by the de�nition of a particular edge
e if there is a program path across e reaching n which after passing e is free of
de�nitions of the left-hand side variable of the de�nition of e. A variable v is live
at a program point n, if on some program path passing n there is a reference
to v, which after leaving n is not preceded by a rede�nition of v. Conversely, a
variable is dead at a program point, if it is not live at it.

This latter property is well-suited in order to illustrate how bitvector proper-
ties can be used for optimisation. Every assignment whose left-hand side variable
is dead is \useless," and can be eliminated because there is no program contin-
uation on which its left-hand side variable is referenced without a preceding
rede�nition of it. This is known as dead-code elimination.

Like the bitvector problems recalled above, DFA-problems are often con-
cerned with sets of program items like terms, variables, or de�nitions. Charac-
teristic for bitvector problems, however, is that they are \separable (decompos-
able):" The validity of a bitvector property for a speci�c item is independent of
that of any other item. This leads to particularly simple formulations of bitvector
problems on sets of items (and implementations in terms of bitvectors).

Faintness is an example of a program property which lacks the decompos-
ability property. Intuitively, faintness generalizes the notion of dead variables.
A variable f is faint at a program point if on all program continuations any
right-hand side occurrence of f is preceded by a modi�cation of f , or occurs
in an assignment whose left-hand side variable is faint, too. A simple example
of a faint but not dead variable is the variable f in the assignment f := f + 1,
assuming that the assignment occurs in a loop without any other occurrence

17An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis     



of f elsewhere in the program (cf. Figure 1(a)). Assignments to faint variables
can be eliminated as useless like those to dead ones. Whereas deadness, how-
ever, is a bitvector property, faintness is not. It is not separable preventing the
computation of faintness for a variable in isolation.

DFA in the interprocedural and parallel setting. DFA is particularly challenging
in the presence of recursive procedures|because of the existence of potentially
in�nitely many copies of local variables of recursive procedures at run-time|and
parallel statements|because of the phenomena of interference and synchronisa-
tion. In the following we illustrate this by means of the programs of Figure 1(b),
2, and 3 using very busyness of the terms a+ b and c+ b as example.

In the example of Figure 1(b), the term c + b is very busy at the program
point preceding the recursive call of �1 in procedure �1, while a+ b is not. The
di�erence lies in the fact that in the case of a + b a global operand is modi�ed
within the recursive call, while it is a local one in the case of c + b. Thus, very
busyness of c+ b is not a�ected because the assignment c := : : : modi�es a new
incarnation of c. In fact, after returning from the procedure call, the incarnation
of c which has been valid when calling �1 is valid again, and, of course, it has
not been modi�ed. In contrast, the modi�cation of a a�ects a global variable,
and hence, the modi�cation survives the return from the call. Thus, computing
a+ b after the recursive call will yield a di�erent value than computing it before
this call. Similar phenomena can be observed for the other bitvector problems.
This is illustrated in Figure 2 and Table 1, which summarizes for speci�c pairs
of program points and program items the availability, reachability and liveness
information. In the framework of [16] these obstacles of interprocedural DFA are
overcome by mimicking the behaviour of the run-time stack by a corresponding
DFA-stack, and additionally, by keeping track if modi�cations of operands a�ect
a global or a local variable. So-called return functions, which are additionally
introduced in this setting enlarging the speci�cation of an abstract semantics,
extract this information from the DFA-informations valid at call time and valid
immediately before returning from the called procedure, which allows a proper

0end

start0

end1

Π2

Π2

Π1

Π1

Π1 Π2

Π
0

v := ...

a := ...

21

22

23

24

c := a+w

w := b+v

c := a+u

20

29

25

26

27

28

end

start

; VAR u,v,w

2

2

call

y := ...

10

11

12

13

14

19

15

16

17

18

start

; VAR a,b,c,d ; VAR x,y,z

1

c := a+x

z := b+y

7

6 8

5

2

3

4

a := b+c

9

1

a := ...βd := a+b

α

γ

call call

call

z := a+x

Fig. 2. The sequential interprocedural setting.

18 Javier Esparza  and Jens Knoop 



Program Availability Reaching De�nitions
Point a+ b b+ c a+ x b+ y � : a := � : d := 
 : z :=

5 tt tt | | tt tt |
6 � � | | � tt |
17 tt � tt tt tt tt tt
18 � � � tt � tt tt

Program Liveness
Point b c v w

7 tt � | |
8 � � | |
25 tt � tt �
26 tt � tt �

Table 1. Values of some bitvector problems.

treatment of programs with both local and global variables. In this paper we
present a di�erent approach to this problem.

Consider now Figure 3, and imagine that the three procedures shown in
(a) are embedded either into a sequential (b) or parallel (c) program context,
respectively. The pattern of very busy program points is di�erent because of the
e�ects of interference and synchronisation. While in (b) the term a + b is very
busy at nodes 1, 7, and 8, in (c) it is very busy at nodes 1 and 10. DFA of
programs with explicit parallelism have attracted so far little attention, possibly
because naive adaptations of the sequential techniques typically fail [21], and
the costs of rigorous straightforward adaptations are prohibitive because of the
number of interleavings expressing the possible executions of a parallel program.
Though for an intraprocedural setting it could recently be shown that bitvector
problems are an exception, which can be solved as easily and as e�ciently as their
sequential counterparts [17], a corresponding result for a setting with procedures
has not yet been presented.

Conventions. Without loss of generality we make the following assumptions on

ow graphs, which allow us a simpler notation during the presentation of the
automata-theoretic approach. Flow graphs have a unique start node and end
node without incoming and outgoing edges, respectively. Each node of a 
ow
graph lies on a path connecting its start node and end node. The main procedure
of a program cannot be called by any procedure of the program. Procedures are
not statically nested. Edges leaving (approaching) a node with more than one
successor (predecessor) are labelled by the empty statement. And, �nally, the
left-hand-side variable of an assignment does not occur in its right-hand-side
term.

a) b) c)
3

Π1call Π2 3

Π ; VAR a,b,x,y Π

Π

; VAR a,b,x,y
0

1 Π2 Π

Π
0

,

2

Π 3

Π

,

1

y := a+b

x := a+b

a := ...

2

1

3

4

5

6

7

8

9

Π

call call

10

11

pcall

10

11

Fig. 3. The parallel interprocedural setting.

19An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis     



3 A Structured Operational Semantics for Flow Graph

Systems

In this section we give 
ow graph systems a formal semantics very much in
the style of the operational semantics of process algebras (see for instance [3]).
Intuitively, we interpret a node of a 
ow graph as an agent that can execute some
actions, namely the labels of the edges leaving it. The execution of an action
transforms an agent into a new one. The actions that an agent can execute
and the result of their execution are determined by transition rules. So, for

instance, for a 
ow graph edge of the form n
v := 3
����! n0, interpreted as \the

agent n can execute the action v := 3, and become the agent n0," we introduce

the rule N
v := 3
����! N 0 (uppercase letters are used to avoid confusion). In order

to model procedure calls we introduce a sequential composition operator on
agents with the following intended meaning: The sequential composition of N1

and N2, denoted by the concatenation N1 � N2, is the agent that behaves like
N1 until it terminates, and then behaves like N2. It is now natural to assign

to an edge n
call �i(T )
�������! n0, where T is a vector (t1; : : : ; tk) of terms, the rule

N
�(T )
���! START i �N

0 (the name of the action is shortened for readability)1.

Let us now formally de�ne the semantics. We associate to a 
ow graph system
a triple (Con ; Act;�), called a process system2, where Con is a set of agent
constants, Act is a set of actions, and � � Con+ � Act � Con� is a set
of transition rules. An agent over Con is a sequential composition of agent
constants, seen as an element of Con�. In particular, the empty sequence � is
an agent. The set � induces a reachability relation

a
�!� Con� � Con� for each

a 2 Act, de�ned as the smallest relation satisfying the following inference rules:

{ if (P1; a; P2) 2 �, then P1
a
�! P2;

{ if P1
a
�! P 0

1 then P1 � P2
a
�! P 0

1 � P2 for every P2 2 Con�.

The second rule captures the essence of sequential composition: Only the �rst
constant of a sequence can perform an action. Since the left-hand side of a rule
cannot be empty, the agent � cannot execute any action, and so it corresponds
to the terminated agent.

In the sequel we overload the
a
�! symbol and write P1

a
�! P2 instead of

(P1; a; P2) 2 �.

We associate to a 
ow graph system the process system (Con ; Act;�) where
Con is the set of program nodes plus a special agent constant START, Act is the
set of edge labels plus special actions � , start , end , and end i for each procedure
�i, and � contains the rules shown in Table 2. Observe that the left-hand sides
of the rules of � have length 1, and that all terminating executions of the 
ow
graph system begin with the action start0 and end with end0.

1 Recall that start i is the start node of the 
ow graph �i.
2 Process systems are very close the Basic Process Algebra of [2] or the context-free
processes of [5]. We use another name due to small syntactic di�erences.

20 Javier Esparza  and Jens Knoop 



Flow graph Process rule

n �! n0 N
�
�! N 0

n
v := t
����! n0 N

v := t
����! N 0

n
out(t)
���! n0 N

out(t)
���! N 0

n
call �i(T )
������! n0 N

�i(T )
����! START i �N

0

start node start0 START
start0���! START 0

end nodes end i END i
endi���! �

Table 2. Rules of the process system.

4 Interprocedural Bitvector Problems

In this section we provide solutions to the basic four bitvector problems using
a language-theoretic formalism. We show how to compute the set of program
points satisfying the existentially quanti�ed properties. For universally quanti-
�ed properties we �rst compute the set of points satisfying the negation of the
property, which is existentially quanti�ed, and then take the complement with
respect to the set of all program points.

We �rst consider the case in which all variables are global, and subsequently
move to the general case with both local and global variables.

4.1 Global Variables

We introduce some notations:

{ Def v denotes the set of actions of the form v := t;
{ Ref v denotes the set of actions of the form u := t such that v appears in t;
{ Compt denotes the set of actions of the form v := t 0 such that t0 contains t
as subterm;

{ Mod t denotes the set of actions of the form v := t 0 such that v appears in t.3

Let us start by formalising the liveness problem. A global variable v is live
at a program point n if there exists a sequence START

�1�! P1
�2�! P2 satisfying

the following constraints:

1. P1 = N � P 0

1 (so �1 corresponds to a program path ending at the program
point n);

2. �2 2 (Act � Def v)
�Ref v (so in �2 the variable v is referenced before it is

de�ned).

The other problems (or their negations) can be formalised following the same
pattern. In fact, in the case of very busyness and availability what we directly
compute in our approach, as mentioned above, is the set of program points
at which v is not very busy or t is not available, respectively. Table 3 lists
the constraints on P1; �2; P2 that must be satis�ed in each case (there are no
constraints on �1).

3 Notice that, due to the conventions at the end of Section 2, the sets Compt and
Mod t are disjoint.

21An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis     



Property P1 �2 P2

v is live at n N � P 0

1 LI v = (Act �Def v)
�Ref v Con�

m
v := t
����! m0 reaches n M � P 0

1 REv = (v := t)(Act �Def v)
� N � P 0

2

t is not very busy at n N � P 0

1 NVBt = (Act � Compt)
�(Modt + end0) Con

�

t is not available at n Con� NAt = (start 0 +Mod t)(Act �Compt)
� N � P 0

2

Table 3. Constraints on P1, �2, and P2.

Solving the Problems. Given a process system (Con ; Act;�), we make the
following straightforward but crucial observation: A set of agents is just a lan-
guage over the alphabet Con , and so it makes sense to speak of a regular set of
agents. Automata can be used to �nitely represent in�nite regular sets of agents.

This observation has been exploited by Finkel, Williams and Wolper in [10]
and by Bouajjani, Maler and the �rst author in [4] to develop e�cient algorithms
for reachability problems in process systems. We present some of the results of
[10, 4], and apply them to the bitvector problems for 
ow graph systems.

Let L 2 Con� and C 2 Act� be regular languages. We call C a constraint,
and de�ne

post�[C](L) = fP 2 Con� j P 0 �
�! P for some P 0 2 L and some � 2 Cg

In words, post�[C](L) is the set of agents that can be reached from L by means
of sequences satisfying the constraint C. Analogously, we de�ne

pre�[C](L) = fP 2 Con� j P
�
�! P 0 for some P 0 2 L and some � 2 Cg

So pre�[C](L) is the set of agents from which it is possible to reach an agent in
L by means of a sequence in C. We abbreviate post�[Act�](L) and pre�[Act�](L)
to post�(L) and pre�(L), respectively. We have the following result:

Theorem 1 ([10, 4]). Let (Con ; Act;�) be a process system such that each rule

P1
a
�! P2 satis�es jP1j � 2, and let L � Con� and C � Act� be regular sets.

Then pre�[C](L) and post�[C](L) are regular sets of agents. Moreover, automata
accepting these sets can be computed in O(n� �n

2
L �nC) time, where n� is the size

of �, and nL; nC are the sizes of two automata accepting L and C, respectively.

Let us use this result to compute the set of program points at which the
variable v is live. This is by de�nition the set of program points n for which there
is a sequence START

�1�! P1
�2�! P2 satisfying P1 = N �P 0

1 and �2 2 LIv . Observe
that pre�[LIv](Con

�) is the set of agents from which a sequence �2 2 LIv can
be executed. Notice however that not all these agents are necessarily reachable
from START . Since the set of agents reachable from START is post�(START ),
we compute an automaton accepting

pre�[LIv ](Con
�) \ post�(START )

Now, in order to know if v is live at n it su�ces to check if this automaton
accepts some word starting by N .

22 Javier Esparza  and Jens Knoop 



Problem Set of agents

liveness pre�[LI v](Con
�) \ post�(START )

reachability post�[REv](post
�(START ) \M � Con�)

very busyness pre�[NVBt](Con
�) \ post�(START )

availability post�[Act�NAt](START )

Table 4. Agents corresponding to the four bitvector problems.

Table 4 shows the sets of agents that have to be computed to solve all four
bitvector problems. For the complexity, notice that the number of states of the
automata for L and C depends only on the bitvector problem, and not on the
process system. So the liveness and reaching de�nition problems for a given
variable v and the very busyness and availability problems for a given term t
can be solved in O(n�) time.

4.2 Local and Global Variables

The reader has possibly noticed that we have not exploited all the power of
Theorem 1 so far. While the theorem holds for rules with a left-hand side of
length 1 or 2, we have only applied it to rules with left-hand sides of length 1.
We use now full power in order to solve the bitvector problems in a setting with
global and local variables.

A local variable v is live at a program point n if and only if there exists a

sequence START
�1�! N � P

�2d��! N 0 � P for some agent P such that

(1) d 2 Ref v ,
(2) all the agents reached along the execution of �2d are of the form P 0 �P , and

(3) for every transition P1 � P
a
�! P2 � P of �2, if a 2 Def v, then jP1j � 2.

Here, condition (2) guarantees that the incarnation of v referenced by d and the
incarnation of N �P are the same. Condition (3) guarantees that this incarnation
is not modi�ed along the execution of �2.

We now apply a general strategy of our automata approach, which will be
used again in the next section: Instead of checking conditions (1) to (3) on
the simple process system coresponding to the 
ow graph, we check a simpler
condition on a more complicated process system. Intuitively, this new system
behaves like the old one, but at any procedure call in a computation (or at
the beginning of the program) it can nondeterministically decide to push a new
variable M onto the stack|used to Mark the procedure call|and enter a new
mode of operation, called the local mode. In local mode the process distinguishes
between actions occurring at the current procedure call (the marked call in the
sequel), and actions occurring outside it, i.e., actions occurring after encountering
further procedure calls before �nishing the marked call, or actions occurring after
�nishing the marked call.

We extend the process system with new agents, actions, and rules. The addi-
tional new agents areM (theMarker) and O (used to signal that we are Outside

23An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis     



the marked call). There is also a new action am for each old action a, plus extra
actions mark ; return; exit .4 In the new process system am can only occur at the
marked call, and a only at other levels. For each old rule we add one or more
new ones as shown in Table 5. Notice that once the marker is introduced, all

Old rule New additional rule(s)

N
a
�! N 0 M �N

am��!M �N 0 (am in the marked call)

O �N
a
�! O �N 0 (a outside the marked call)

START
start
���! START 0 START

mark
���!M � START 0

N
�i(T )
����! START i �N

0 N
�i(T )
����!M � START i �N

0 (marking the current call)

M �N
�i(T )
����! O � START i �M �N 0 (entering a deeper level)

O �N
�i(T )
����! O � START i �N

0

N
endi���! � M �N

exit
��! O (end of the marked call)

O �N
endi���! O

O �M
return
����!M (return to the marked call)

Table 5. Rules of the extended process system.

reachable agents have either M or O in front, and that once the marked call
terminates no agent ever has M in front again.

Given a local variable v, we de�ne Rel Def v = fam j a 2 Defvg and
Rel Ref v = fam j a 2 Refvg, where Rel stands for \relevant." If an agent moves
into local mode at a procedure call in which a local variable v is incarnated, then
Rel Def v and Rel Ref v are the actions concerning this same incarnation of v.

If we let Ext Act be the extended set of actions of the new process system,
then a local variable v is live at a program point n if and only if there exists a
sequence START

�1�! P1
�2�! P2 satisfying the following constraints:

{ P1 =M �N � P 0

1, and
{ �2 2 (Ext Act �Rel Def v)

�Rel Ref v .

So the constraint on �2 when the program has both local and global variables is
obtained from the constraint for global variables by substituting Ext Act for Act ,
Rel Def v for Def v, and Rel Ref v for Ref v . The reaching de�nitions problem can
be solved analogously.

For the very busyness and the availability problems we have to take into
account that the term t may contain local and global variables. Let LocId(t) and
GlobId (t) be the set of local and global variables that appear in t. We de�ne

Rel Mod t =
[

v2GlobId(t)

Def v [
[

v2LocId(t)

Rel Def v

Rel Compt = fam j a 2 Comptg

A term is not very busy at a program point n if and only if there exists a sequence
START

�1�! P1
�2�! P2 satisfying the following constraints:

4 These actions are not strictly necessary, they are only included for clarity.

24 Javier Esparza  and Jens Knoop 



{ P1 =M �N � P 0

1, and
{ �2 2 (Ext Act �Rel Compt)

�(Rel Mod t + end0 ).

Since the number of transition rules of the new process system increases only
by a constant factor, the algorithm still runs in O(n�) time.

5 Interprocedural Faint Variables

Recall that a variable v is faint at a program point n if on every program path
from n every right-hand side occurrence of v is either preceded by a modi�cation
of v or is in an assignment whose left-hand side variable is faint as well. We
show how to compute the set of program points at which a variable is faint in an
interprocedural setting with global and local variables. This requires to split the
set of references of a variable into the subset of references occurring in an output
statement, and its complement set. To this end we introduce the notation:

{ RefOutv denotes the set of actions of the form out(t), such that v appears
in t.

Faintness is a universal property, i.e., one that holds only if all program paths
from a point n satisfy some condition. We formalise its negation, which is an
existential property. A variable v is not faint at a program point n if there exists
a sequence START

�1�! P1
�2�! P2 satisfying the following constraints:

{ P1 = N � P 0

1 (so �1 corresponds to a program path ending at the program
point n), and

{ v is not faint at P1
�2�! P2.

It remains to de�ne the set of paths at which v is not faint. In comparison to
the related bitvector property of deadness, the only new di�culty is to deal
adequately with the recursive nature of the de�nition of faintness. The set is
recursively de�ned as the smallest set of �nite paths P1

a1�! P2
a2�! P3 � � �Pn,

where P1 = N � P 0

1, such that

(1) a1 2 RefOutv , or

(2) v is global, a1 =2 Def v and v is not faint at P2
a2�! P3 � � �Pn, or

(3) v is local for N , a1 is an assignment not in Def v, and v is not faint at

P2
a2�! P3 � � �Pn, or

(4) a1 � u := t, where v appears in t, and u is not faint at P2
a2�! P3 � � �Pn.

Notice the di�erence between (2) and (3). If v is local and a1 is a call action,
then after the execution of a1 the new program point is out of the scope of v,
and so v is faint at P1

a1�! P2
a2�! P3 � � �Pn.

5 If v is global, then we remain within
the scope of v, and so we do not know yet whether v is faint or not.

5 With our de�nition v may be faint at N � P 0

1
a1�! P2

a2�! P3 : : : Pn but not faint at

some other path N � P 00

1

a0

1�! P 0

2

a0

2�! P 0

3 � � �P
0

n0 , and so not faint at N .

25An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis     



As we did in the last section, we do not check the complicated property \v
is faint at n" on a simple process system, but a simpler property on a more
complicated process system obtained by adding new agents and rules (although
this time no actions) to the old one. Intuitively, the new process system behaves
like the old one, but at any point in a computation it can nondeterministically
decide to push a program variable v into the stack|represented by an agent
constant V|and enter a faint mode of operation. From this moment on, the
system updates this variable according to the de�nition of non-faintness. The
(updated) variable stays in the stack as long as the path executed by the system
can be possibly extended to a path at which the variable is not faint. So the
variable is removed from the stack only when the process system knows that (a)
v is not faint for the path executed so far, or (b) v is faint at all paths extending
the path executed so far. In case (a) the process system pushes a new agent ?
into the stack, and in case (b) it pushes an agent >.

Formally, the extended process system is obtained by adding the two agents
> and ?, and new rules as shown in Table 6.

Old rule New additional rule(s)

N
a
�! N 0 N

a
�! V �N 0 for each variable v

(the faint mode can be entered anytime)

V �N
a
�! ? if a 2 RefOutv

(condition (1), ? signals that v is not faint)

V �N
a
�! V �N 0 if v global and a =2 Def v

(condition (2))

V �N
a
�! U �N 0 if a � u := t and v appears in t

(condition (4))

N
�i(T )
����! START i �N

0 V �N
�i(T )
����! V � START i �N

0 if v global
(condition (2))

V �N
�i(T )
����! START i � V �N 0 if v local at n

(out of the scope of v)

N
endi���! � V �N

endi���! V if v global
(condition (2))

V �N
endi���! > if v local at n

(condition (3), this incarnation of v can no longer be de�ned
or referenced)

Table 6. Rules of the extended process system.

In order to obtain the set of program points at which the variable v is faint, we
compute the set of agentsN for which there is a sequence START

�1�! P1
�2�! P2

satisfying P1 = V �N � P 0

1 and P2 = ? � P 0

2. It su�ces to compute an automaton
for

(pre�(? � Con�) \ V � Con�) \ post�(START )

26 Javier Esparza  and Jens Knoop 



6 Interprocedural Bitvector Problems with Parallelism

In 
ow graph systems with parallelism, which we call in the sequel parallel 
ow

graph systems, we allow edge-labels of the form n
pcall �i1

(T1);::: ;�i
k
(Tk)

����������������! n0. The
procedures �i1 ; : : : ; �ik are called in parallel; if and when they all terminate,
execution is continued at n0. Notice that parallel calls can be nested, and so
the number of procedures running in parallel is unbounded. Notice also that

ow graphs without parallelism are the special case in which k = 1 for all pcall
instructions.

We show that the four bitvector problems can be solved for parallel 
ow
graph systems in polynomial time when all variables are global. For this it will
su�ce to apply a beautiful extension of Theorem 1 recently proved by Lugiez
and Schnoebelen in [18].

In order to model parallel 
ow graph systems by process systems we need to
extend these to parallel process systems (also called process rewrite systems in
[20]). An agent of a parallel process system is a tree whose root and internal nodes
are labelled with either � or k, representing sequential and parallel composition,
and whose leaves are labelled with agent variables. So, for instance, the intended
meaning of the tree (XkY ) �Z is that X and Y are �rst executed in parallel, and
if and when they terminate Z is executed. The empty tree 
, which satis�es


 � P = P � 
 = 
kP = Pk
 = P

plays now the rôle of the terminated process. We denote the set of agents by
T (Con) (trees over Con). Rules are now elements of (T (Con) n f
g) � Act �

T (Con). A set � of rules induces a reachability relation
a
�!� T (Con) � T (Con)

for each a 2 Act, de�ned as the smallest relation satisfying the following inference
rules:

{ if (P1; a; P2) 2 �, then P1
a
�! P2;

{ if P1
a
�! P 0

1 then P1 � P2
a
�! P 0

1 � P2 for every P2 2 T (Con);

{ if P1
a
�! P 0

1 then P1kP2
a
�! P 0

1kP2 and P2kP1
a
�! P2kP

0

1 for every P2 2 T (Con).

We make free use of the fact that parallel composition is associative and commu-
tative with respect to any reasonable behavioural equivalence between agents,
such as bisimulation equivalence [22].

We associate to a parallel 
ow graph system the process system (Con ; Act;�)
as in the sequential case, the only di�erence being the rule corresponding to
parallel calls, which is shown in Table 7. Observe that the left-hand side of all

Parallel 
ow graph Process rule

n
pcall �i1

(T1);::: ;�i
k
(Tk)

����������������! n0 N
�1(T1);::: ;�k(Tk)������������! (START i1k : : : kSTART ik) �N

0

Table 7. Rules of the parallel process system

rules consists of just one variable. Parallel process systems with this property
are closely related to the PA-algebra studied in [18].

27An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis     



The four bitvector problems are de�ned almost as in the non-parallel case.
The only di�erence is that in the parallel setting a program path can begin or
end at many nodes due to the existence of parallel computation threads. In the
non-parallel case, the agents corresponding to \being at node n" are those of
the form N � P . In the parallel case, they are the agents (trees) satisfying the
following property: there is a leaf N which does not belong to the right subtree
of any node labelled by �. We call the set of these agents At n.

Solving the Problems. An agent is no longer a word, but a tree|and so a set
of agents is now a tree language. Tree automata can be used to �nitely represent
in�nite regular sets of agents. We brie
y introduce the tree automata we need.
They are tuples (Q;A; �; F ) where:

{ Q is a �nite set of states and F � Q is a set of �nal states.
{ A is a �nite alphabet containing the set Con and two binary in�x operators
� and k. The automaton accepts terms over this alphabet, which we just call
trees.

{ � is a �nite set of transition rules of the formN ! q, q1 �q2 ! q, or q1kq2 ! q.
The rules de�ne a rewrite relation on terms over A [Q.

The automaton accepts the trees that can be rewritten into a �nal state using
the transition rules. As an example, we present a tree automaton accepting the
set At n. It has two states fq1; q2g, with q1 as �nal state, rules N ! q1 and
N 0 ! q2 for every program point n0 6= n, and rules

qi � qj !

�
q1 if i = 1
q2 otherwise

qikqj !

�
q1 if i = 1 or j = 1
q2 otherwise

for i; j 2 f1; 2g.
The question arises whether Theorem 1 can be extended to the tree case,

i.e., the case in which Con� is replaced by T (Con). The answer is unfortunately
negative. For instance, it is not di�cult to see that the problem of deciding
whether post�[C](L) is nonempty is undecidable even for the special case in

which each rule P1
a
�! P2 satis�es P1 2 Con and L contains only one agent [18].

However, Lugiez and Schnoebelen show in [18] that it is possible to save part of
the theorem. In particular, they prove the following result:

Theorem 2 ([18]). Let (Con ; Act;�) be a parallel process system such that

each rule P1
a
�! P2 satis�es P1 2 Con, let L 2 T (Con) be a regular set of agents,

and let A � Act. Then pre�[A](L), post�[A](L), pre�[A�](L), and post�[A�](L)
are regular sets of agents, and tree automata accepting them can be e�ectively
computed in polynomial time.

In order to check if the variable v is live at a program point n, we have to
decide if there is a sequence START

�1�! P1
�2�! P2 satisfying P1 2 Atn and

�2 2 LIv. Fortunately, LIv is the concatenation of two languages of the form

28 Javier Esparza  and Jens Knoop 



A and A� for which Theorem 2 holds, namely (Act � Def v)
� and Ref v . So it

su�ces to compute a tree automaton accepting

pre�[(Act �Def v)
�](pre�[Ref v ](T (Con))) \ post�(START ) \ Atn

and check if it is empty. The other three bitvector problems are solved anal-
ogously. If we now wish to extend this result to the case with both local and
global variables, we can proceed as in Section 4.2. However, the process system
so obtained contains rules whose left-hand side is a sequential composition of
two agents. Since Theorem 2 has only been proved for the case P1 2 Con , we
cannot directly apply it. The question whether the bitvector problems can also
be e�ciently computed for local and global variables is still open.

7 Conclusions

We have shown that recent progress in extending the automata-theoretic ap-
proach to classes of processes with an in�nite state space �nds interesting ap-
plications in interprocedural data-
ow analysis. Even though research in this
area is at its very beginning, it is already possible to envisage some advantages
of automata techniques. First of all, data-
ow problems are expressed in terms
of the possible executions of a program, and so it is very natural to formalise
them in language terms; from the point of view of temporal logic, data-
ow
problems correspond to linear-time properties, and so the automata-theoretic
approach, which is particularly suitable for linear-time logics, seems to be very
adequate. Secondly, the approach pro�ts from the very well studied area of au-
tomata theory. For instance, Lugiez and Schnoebelen obtained their results [18]
by generalising constructions of [4, 10] for word automata to tree automata, and
we could immediately apply them to bitvector problems in the interprocedural
parallel case.

References

1. J. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence
for processes generating context-free languages. Journal of the ACM, 40(3):653{
682, 1993.

2. J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts in

Theoretical Computer Science, 1990.
3. B. Bloom. Structured operational semantics as an speci�cation language. In Pro-

ceedings of POPL '95, pages 107{117, 1995.
4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Application to model-checking. In Proceedings of CONCUR '97, volume
1243 of Lecture Notes in Computer Science, pages 135{150, 1997.

5. O. Burkart and B. Ste�en. Model checking for context-free processes. In Proceed-

ings of CONCUR '92, volume 630 of Lecture Notes in Computer Science, pages
123{137, 1992.

6. O. Burkart and B. Ste�en. Composition, decomposition and model checking of
pushdown processes. Nordic Journal of Computing, 2(2):89{125, 1995.

29An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis     



7. P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In Conf. Rec.

4th Symp. Principles of Prog. Lang. (POPL'77), pages 238 { 252. ACM, NY, 1977.
8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

Conf. Rec. 4th Symp. Principles of Prog. Lang. (POPL'79), pages 269 { 282. ACM,
New York, 1979.

9. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. of Logic and

Computation, 2(4):511 { 547, 1992.
10. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model

checking pushdown systems. Electronic Notes in Theoretical Computer Science, 9,
1997.

11. R. Giegerich, U. M�oncke, and R. Wilhelm. Invariance of approximative semantics
with respect to program transformations. In Proc. 3rd Conf. Europ. Co-operation

in Informatics, Informatik-Fachberichte 50, pages 1 { 10. Springer-V., 1981.
12. M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, North-Holland, 1977.
13. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279{295, 1997.
14. S. Horwitz, A. Demers, and T. Teitelbaum. An e�cient general iterative algorithm

for data 
ow analysis. Acta Informatica, 24:679 { 694, 1987.
15. M. Klein, J. Knoop, D. Kosch�utzki, and B. Ste�en. DFA&OPT-MetaFrame: A

tool kit for program analysis and optimization. In Proc. 2nd Int. Workshop on

Tools and Algorithms for Constr. and Analysis of Syst. (TACAS'96), LNCS 1055,
pages 422 { 426. Springer-V., 1996.

16. J. Knoop. Optimal Interprocedural Program Optimization: A new Framework and

its Application. PhD thesis, Univ. of Kiel, Germany, 1993. LNCS Tutorial 1428,
Springer-V., 1998.

17. J. Knoop, B. Ste�en, and J. Vollmer. Parallelism for free: E�cient and optimal
bitvector analyses for parallel programs. ACM Trans. Prog. Lang. Syst., 18(3):268
{ 299, 1996.

18. D. Lugiez and P. Schnoebelen. The regular viewpoint on PA-processes. In Proceed-
ings of CONCUR '98, volume 1466 of Lecture Notes in Computer Science, pages
50{66, 1998.

19. K. Marriot. Frameworks for abstract interpretation. Acta Informatica, 30:103 {
129, 1993.

20. R. Mayr. Decidability and Complexity of Model Checking Problems for In�nite-

State Systems. Ph.D. thesis, Technische Universit�at M�unchen, 1998.
21. S. P. Midki� and D. A. Padua. Issues in the optimization of parallel programs. In

Proc. Int. Conf. on Parallel Processing, Volume II, pages 105 { 113, 1990.
22. R. Milner. Communication and Concurrency. Prentice Hall, 1990.
23. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-

mann, San Francisco, CA, 1997.
24. B. Ste�en, A. Cla�en, M. Klein, J. Knoop, and T. Margaria. The �xpoint-analysis

machine. In Proc. 6th Int. Conf. on Concurrency Theory (CONCUR'95), LNCS
962, pages 72 { 87. Springer-V., 1995. Invited contribution.

25. M. Y. Vardi and P. Wolper. Automata Theoretic Techniques for Modal Logics of
Programs. Journal of Computer and System Sciences, 32:183{221, 1986.

26. K. Varpaaniemi. PROD 3.3.02. An advanced tool for e�cient reachability analy-
sis. Technical report, Department of Computer Science and Engineering, Helsinky
University of Technology, 1998. Available at http://www.tcs.hut.�/pub/prod/.

27. F. Wallner. Model checking LTL using net unfoldings. In Proceedings of CAV '98,
volume 1427 of Lecture Notes in Computer Science, pages 207{218, 1998.

30 Javier Esparza  and Jens Knoop 


	Introduction
	Data-flow Analysis
	A Structured Operational Semantics for Flow Graph Systems
	Interprocedural Bitvector Problems
	Global Variables
	Local and Global Variables

	Interprocedural Faint Variables
	Interprocedural Bitvector Problems with Parallelism
	Conclusions

