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Background—Fragmented QRS (f-QRS) has been proven to bean efficient bio-marker for several diseases 
includingremote and acute myocardial infarction, cardiac sarcoidosis, non-ischemiccardiomyopathy etc. It has also 
been shown to havehigher sensitivity and/or specificity values than the conventional markers (e.g. Q-wave, ST-
elevation etc.) which may even regress or disappear with time.Patients with such diseases have to undergo expensive 
and sometimes invasive tests for diagnosis. Automated detection of f-QRS followed by identification of its various 
morphologies in addition to the conventional ECG features (e.g. P, QRS, T amplitude and duration etc.) 
extractionwill lead to a more reliable diagnosis, therapy and disease prognosis than the state-of-the-art approaches 
and therebywill be of significant clinical importance for both hospital-based and emerging remote health monitoring 
environments as well as for implanted ICD devices. 
Methods and Results— An automated algorithm for detection of f-QRS from the ECG and identification of its 
various morphologies is proposed in this work which, to the best of our knowledge, is the first work of its 
kind.Using our recently proposed Time-Domain Morphology and Gradient (TDMG)based ECG feature 
extractionalgorithm, the QRS complex is extracted and Discrete wavelet transform(DWT) with one levelof 
decomposition, using ‘Haar’ wavelet, is applied on it to detect the presence of fragmentation. Detailed DWT 
coefficients were observed to hypothesize the postulates of detection of all types of morphologies as reported in the 
literature. To model and verify the algorithm PhysioNet’s PTB database was used. 40 patients were randomly 
selected from the database and their ECG was examined by two experienced cardiologists and the results were 
compared with those obtained from the algorithm. 31 out of 40 patients were considered appropriate for comparison 
by two cardiologists and it is shown that 334 out of 372 (89.8%) leads from chosen 31 patients comply favorably 
with our proposed algorithm. The sensitivity and specificity values obtained for the detection of f-QRS were 0.897 
and 0.899 respectively.  
Conclusions— Automation will speed-up the detection of fragmentation reducing the human error involved and will 
allow it to be implemented for hospital-based remote monitoring and ICD devices. 
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Recently in last 5 years fragmented QRS (f-QRS) has 
gained clinical significance in diagnosis of various 
Cardiologic disorders including remote and acute 
myocardial infarction, cardiac sarcoidosis, non-ST-
elevation myocardial infarction, ventricular aneurysm 
etc. [1-15]. These studies have shown that f-QRS 
complexes can be an important bio-maker for detection 
of several diseases and has resulted in higher sensitivity 
and/or specificity than other conventional markers e.g. 
Q-wave, ST-elevation etc. [1-15].However, despite of 

enormous diagnosis significance cardiologists often 
disregard or do not report fragmentation in most of the 
cases except those of bundle branch block (BBB). 
Therefore, automatic detection and identification of 
morphologies of fragmented QRS will precisely report 
on all the cases and may help in finding correlations of 
potential clinical significance by analyzing hundreds of 
tracings and hence, will facilitate its widespread clinical 
acceptance, adaptation and application. 
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In general, the diagnostic information is obtained from 
standard 12-lead ECG using the conventional 
biomarkers e.g. P, Q, R, S waves, their duration and 
peaks,ST elevation/depression, PT interval and 
(non)inverted T wave [16]. However, there are certain 
diseases e.g. cardiac sarcoidosis, myocardial 
infarctionetc. [2-5,9] which cannot be detected by these 
conventional bio-markers e.g. Qwave,ST 
elevation/depression, PT interval etc.Patients suffering 
from these diseases may have to undergo several 
invasive or non-invasive tests for reliable diagnosis 
which may be unaffordable [2-5,9]. f-QRSin this 
context has been found to be a marker for 
aforementioned diseases and its occurrence in standard 
12-lead makes it an inexpensive and easily available 
tool for diagnosis.Table 1 provides information on 
diseases which have been found to have high sensitivity 
and/or specificity values for diagnosis using f-QRS [2-
5,8,9]along with the conventional markers/tests that are 
used to diagnose these diseases and their limitations. 
Computerized ECG interpretation and feature extraction 
are being successfully used in a hospital-based 
environment [17]. Furthermore, significant prevalence 
of cardiovascular diseases throughout the world resulted 
in emerging remote health monitoring system which 
also demands automated, low complexity feature 
extraction algorithms ported into sophisticated mobile 
devices or within onboard sensors processing modules 
[16,18,19]. An automated algorithm can find direct 
applications in remote health monitoring.It has been 
found that f-QRS can be used as selection criteria for 

implantation of ICD devices [20,21]. A long-term 
monitoring is required for this purpose and an 
automated system will considerably reduce the effort 
required for verification of the signals. However, to the 
best of our knowledge f-QRSdetection and identification 
of its various morphologies have not been automated 
and implemented in practice. Here we propose an 
automated algorithm for f-QRS detection and 
morphology identification. 

METHOD 
Fig. 1 presents the procedure followed in the proposed 
method. The raw ECG signal is passed through 
apreprocessing module comprising of baseline 
wandering removal and denoising which will be 
discussed in subsection II. Then, out of existing ECG 
feature extraction technique [16,19,22-25] our recently 
proposed Time Domain Morphology and Gradient 
(TDMG) based algorithm [16] is applied to extract the 
QRS complex which is interpolated next and fed as an 
input to the fragmentation detection and identification 
(FDMI) module. We skip here the detailed discussion 
on TDMG algorithm. Interested readers may consult 
[16] for the details.If fragmentation is detected its 
morphology is then identified. This FDMI module will 
be discussed next.Online QRS detection has been 
investigated by several researchers [22-25]and hence the 
availability of an accurately detected QRS can be safely 
assumed. In this work, DWT has been applied using 
‘Haar’ wavelet. Since, Haar wavelet is discontinuous 
and anti-symmetric [35], it is suitable for discontinuity 

Table 1 – Cardiologic disorders along with their conventional marker and limitations 

Cardiologic Disorder Conventional Marker Remarks 

Acute and remote Myocardial 
Infarction with Coronary 
Artery Disease (CAD) 

Acute ST-elevation, Q-
wave 

After an acute MI resolves repolarization abnormalities stabilize and only Q-wave then 
remains as a marker of MI. Q-waves regress or even disappear with time and there is no 

specific sign of a non Q-wave MInon-ST elevation MI2, 4. 

Bundle branch block, 
premature ventricular 

complexes andpaced rhythm 
QRS ≥ 120ms 

No ECG Diagnosis prior MI scar without the presence of Q wave has been defined. Patients 
have to undergo expensive diagnosis test e.g. SPECT test, echocardiography etc5. 

Left ventricular aneurysm 
with QRS ≤ 120ms 

ST elevation with 
presence of prominent R 

wave in aVR 

Low specificity as ST-segment elevation are present in many cardiac diseases and 
Goldberger’s sign of prominent R also has low sensitivity3. 

Cardiac sarcoidosis No current marker 

Diagnosed by myocardial biopsy, cardiac magnetic resonance imaging with gadolinium-
delayed enhancement images, echocardiography. Myocardial biopsy is invasive and has low 

sensitivity, there is no single diagnostic test but a combination clinical data and 
investigation of CMR with GDE are used for diagnosis9. 

Non-ST-elevation myocardial 
infarction (NSTEMI) 

Ischemic T-waves, ST-
segment depression, 
microvolt T-wave 

alternans, late potentials 
on the signal-averaged 

ECG, pathologic Q waves 

Sensitivity and specificity of f-QRS has been found to be higher than Ischemic T-waves. For 
other bio-markers their correlation with the exact anatomic location of the culprit lesion is 

not very high8. 
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and edge detection [35]. Moreover, due to its low 
computational complexity and power consumption, it is 
suitable for remote health monitoring applications [19]. 
Hence, Haar is used in this investigation.Detailed 
discussion on the “Haar” wavelet based transform seems 
to be out-of-scope of this present paper. However 
interested readers are requested to consult the Section-
III of reference [19] to know about it in more detail. 

I. FDMI module 
This section has been further subdivided into two 
subsections viz. Fragmentation detection and 
Morphology identification. 

A. Fragmentation Detection 

The detailed DWT coefficients behave in a particular 
manner when a discontinuity* is encountered. A peak or 
nadir in any signal can be detected by the zero crossing 
of the wavelet transform. This technique has been 
previously used to detect QRS complexes of ECG [23]. 
In this subsection we explain this behavior with the help 
of Fig. 2. Consider a line segment with positive slope 
joining two points and the corresponding bar plot of 
detailed DWT coefficient as shown in Fig. 2A, it can be 
seen that the coefficient is negative for an increasing 
segment. Fig. 2B shows a line segment with negative 
slope and the corresponding bar plot of detailed DWT 
coefficient which in this case in positive. In Fig. 2C a 
set of points have drawn along with the bar plot of their 
detailed DWT coefficients. It can be inferred from Fig. 
2A-C that an increasing part of the curve results in 
negative and decreasing part of the curve results in 
positive detailed DWT coefficients respectively. It 
should also be noted that the magnitude of the 
coefficients depend on the slope of the tangent at that 
point. Greater the slope greater is the magnitude of the 

                                                            
*Discontinuity is discussed later in this subsection 

coefficient. Whenever a local extremum appears there is 
a transition in the sign of the detailed coefficient 
depending on the presence of a maxima or minima. We 
confirm this hypothesis with Fig. 2D in which both the 
extrema are identified i.e. first the maxima and then the 
minima. This phenomenon has been used in modeling 
and designing of the proposed fragmentation detection 
algorithm. The notches [1-15]  that occur in the QRS 
complex are identified as frequent changes in the sign of 
detailed coefficients and a peak is identified as sudden 
change in sign with a constant follow up of the 
coefficients with same sign. 

Fig. 1- Procedure followed for the detection and identification of fragmentation in QRS of ECG signal. 

C

D

Fig. 2- Explanation of patterns observed on 
occurrence of a discontinuity.  

A B 
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In Fig. 2, bar plots of detailed DWT coefficients of 
interpolated QRS complex are plotted and rules for 
identifying extrema and notches are formulated by 
observing and correlating the patterns occurring in the 
QRS complex and detailed coefficients.It is to be noted 
that the bars may not seem to align because the scale of 
the x-axis of the wave and the bar plot of detailed 
discrete wavelet transform (DWT) coefficients are 
different. When DWT is applied the number of detailed 
coefficients obtained is half the number of samples on 
which DWT was applied. The main purpose of using 
Fig. 2 is to show the behavior of detailed coefficients 
when increasing or decreasing part of wave is 
encountered. In Fig. 2C, the wave has 7 seven samples 
and the total number of detailed coefficients are 4, 

however, the 4th coefficient is zero. Similarly, in Fig. 
2D, the number of samples are 9 and coefficients are 5, 
however, the last coefficient is zero which are indicated 
in Fig. 2. Detailed discussion on the DWT can be found 
in [19].With the help of few patients the criteria in Table 
2 were hypothesized and were then iteratively refined by 
applying them on leads of 40 subjects such that the 
mentioned criteria accurately and reliably captured all 
sorts of discontinuities occurring in the QRS complexes. 
Table 2 presents the rules framed for detection of local 
extrema and notches. Algorithm starts evaluating the 
QRS complex from left-most side of the bar plot and 
proceeds tothe right. While traversing through the 
coefficients patterns are recognized and if any pattern 
matches to those mentioned in Table 2 the

Table 2 – Rules for identification of discontinuities. 
 

PATTERN DESCRIBTION† 
POINTOF 

OCCURRENCE 

 

NOTCH 

A3  and  A4 
Peak— a + b 
Nadir— b + c 

 
A1  and  A2 

Peak— b + c 
Nadir— a + b 

A1 —  a>0; b<0; c>0; d>0 
k = k + 2 

A3 — a<0; b>0; c<0; d<0 
k = k + 2 

A2— a>0; b<0; c>0; d<0 
।b।#<।c।; k = k + 2 
If  ।b।>।c। then C6 

A4 — a<0; b>0; c<0; d>0 

।b।<।c।; k = k + 2 

If  ।b।>।c। then C5 

 

NOTCH  
B1 

Peak— c + d 
Nadir— a + b 

 
B2 

Peak— a + b 
Nadir— c + d 

 

B1 — a>0; b<0; c<0; d>0 

max(।b।, ।c।) <।d।; 
k = k + 3 

If  max(।b।, ।c।) >।d। 
then C4 

B2 — a<0; b>0; c>0; d<0 

max(।b।, ।c।) <।d। 
k = k + 3 

If max(।b।, ।c।) >।d। 
then C3 

 

EXTREMA 

C1, C2,  C3, C4,  
C5, C6 

 
Peak or Nadir — 

a + b 

C1 — a<0; b>0; c>0; d>0 
k = k + 3 

C2 — a>0; b<0; c<0; d<0 
k = k + 3 

C3 — a<0; b>0; c>0 
k = k + 2 

C4 — a>0; b<0; c<0 
k = k + 2 

C5 — a<0; b>0 
k = k + 1 

C6 — a>0; b<0 
k = k + 1 

†Pointer 'k' initially starts at 'a'. 'a', 'b', 'c' and  'd' are consecutive points on the bar plot of discrete coefficients and denote the corresponding boxes. 
        Incrementing 'k' shifts it from box 'a' to box 'b'.  

#।.। — denotes magnitude of the detailed coefficient at a particular point.  
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†NF — Number and presence of notches not fixed 
Nmax — Number of maxima; Nmin— Number of minima; Nnotch— Number of notch; Pmaxv(i)— Position at which ith maxima 
occurs on the vertical axis (magnitude along with sign);Pmaxh(i)— Position at which ith maxima occurs on the horizontal axis; 
Pminv(i) — Position at which ith minima occurson the vertical axis;Pminh(i)— Position at which ith minima occurs on the horizontal 
axis;Pnotchv(i) — Position at which ith notch occurs on the vertical axis;Pnotchh(i)— Position at which ithnotch occurs on the 
horizontal axis 

Table 3A - QRS ≤ 120ms (f-QRS) 

Morphology Name Criteria Conflict 

 

 
 
 

(A) 
rSr' 

(A) 
maxሺ ௠ܲ௔௫௩ሺ1,2ሻሻ
൏ |ܲ௠௜௡௩ሺ1ሻ| 

Nmax= 2 
Nmin = 1 

Pmaxv(1,2)>0 
Pminv(1)<0 

Nnotch = NF† 

When this 
morphology is 

encountered, the 
presence of 

notches on R, R' 
or S wave will 
not lead it to be 

termed as 
fragmented QRS. 

 

 
(B) 

Notched R (rsR') 
 

(B1) 
Without Q 

 
(B2) 

With Q 

Nmax= 1; Nnotch = 1 
Pmaxv(1)>0; Pnotchv(1)>0 

Pnotchh(1)<Pmaxh(1) 
 

(B1) 
Nmin = 1; Pminv(1)<0 

 
(B2) 

Nmin = 2; Pminv(1,2)<0 
 

when Nnotch> 1 
then the 

morphology 
resembles 

Fragmented 
QRS. 

 

 
(C) 

RsR' with ST 
elevation  

 
 
 

(C1) 
With Q 

 
 

(C2) 
Without Q 

 

 
Nmax= 2; Nnotch = 0; 

Pmaxv(1,2)>0; 
End of QRS complex must 
lie above horizontal axis. 

 
(C1) 

Nmin = 2; Pminv(1)<0; 
Pminv(2)>0 

 
(C2) 

Nmin = 1; Pminv(1)>0 
 

Case may arise 
when sR' is 

identified as a 
notch instead of a 
minima-maxima 
pair. Then all the 
cases arising are 

captured by 
morphology (F). 
For an extremum 
to be R it hasto 

be identified as a 
maximum. 

 

 
 

(D) 
rSR' 

 
(D1) 

With S' 
 
 

(D2) 
Without S' 

Nmax= 2;Pmaxv(1,2)>0; 
Pmaxh(1)<Pminh(1) 

 
(D1) 

Nmin = 2; Pminv(1,2)<0 
 

(D2) 
Nmin = 1; Pminv(1)<0; 

Pmaxv(1)<Pminv(1); 
Pminv(1)<Pmaxv(2); 

Presence of 
notches will not 

affect the 
morphology. 

B1  B2 

C1  C2 

D1  D2 
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(E) 
RsR' without ST 

elevation 
 

(E1) 
With Q and S 

 
 
 

(E2) 
S without Q 

 
 

(E3) 
Q without S 

 
 

(E4) 
Without Q and S 

 

Nmax= 2; Nnotch = 0; 
Pmaxv(1,2)>0; 

 
(E1) 

Nmin = 3; Pminv(1,3)<0; 
Pminv(2)>0 

 
(E2) 

Nmin = 2; Pminv(1)>0; 
Pminv(2)<0 

 
(E3) 

Nmin = 2; Pminv(1)<0; 
Pminv(2)>0;Pminh(1)<Pmaxh(1) 

 
(E4) 

Nmin = 1; Pminv(1)>0; 
 

If Nnotch ≥ 1 then 
the morphology 

resembles 
Fragmented 

QRS. R' or R 
must be detected 
as a maxima and 
not a notch for its 
morphology to be 

RsR'. 

 
 

 
(F) 

Rsr' 
 
 

(F1) 
Without Q and S 

wave 
 

(F2) 
Only Q 

 
 

(F3) 
Q and S both 

present 
 
 

(F4) 
Only S 

Nmax= 1; Nnotch = 1; 
Pmaxv(1)>0; 

Pnotchh(1)>Pmaxh(1); 
Pnotchv>0 

 
(F1) 

Nmin = 0 
 

(F2) 
Nmin = 1; Pminv(1)<0; 

Pminh(1)<Pmaxh(1) 
 

(F3) 
Nmin = 2; Pminv(1,2)<0; 

Pminh(1)<Pmaxh(1); 
Pminh(2)>Pmaxh(1) 

 
(F4) 

Nmin = 1; Pminv(1)<0; 
Pminh(1)>Pmaxh(1) 

 

sr' must be 
identified as a 

notch and not an 
extremum pair. If 

more than one 
notch occurs the 

morphology 
resembles 

Fragmented 
QRS. 

 

(G) 
RSr' 

Nmax= 2; Nnotch = UD 
Nmin = 1;Pmaxv(1,2)>0 

Pminv(1)<0 
Pmaxv(1)> |Pminv(1)| 
Pmaxv(2)< |Pminv(1)| 

Presence of 
notches will not 

affect the 
morphology. 

R

|R|

S
|S|

QRS

|r’|
r’
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(H) 
Notched S 

 
(H1 and H3) 

Notch in 
downstroke and 

upstroke of S 
wave. Q not 

present 
 

(H2 and H4) 
Notch in 

downstroke and 
upstroke of S 

wave. Q present. 
 
 

(H5  and  H6) 
If notch is 
detected as 

extremum pair in 
any of the cases. 

(H1 and H3) 
Nmax= 1; Nnotch = 1; 
Nmin = 1;Pminv(1)<0 

Pmaxv(1)>0;  Pnotchv<0 
Pnotchh(1)>Pmaxh(1); 

 
(H2 and H4) 

Nmax= 1; Nnotch = 1; 
Nmin = 2;Pminv(1,2)<0 
Pmaxv(1)>0;  Pnotchv<0 
Pnotchh(1)>Pmaxh(1); 

 
(H5) 

Nmax= 2; Nmin= 2; 
Nnotch = 1; 

Pmaxv(1)>0; Pmaxv(2)<0 
Pminv(1,2)<0 

 
(H6) 

Nmax= 2; Nmin= 3 
Nnotch = 1; 

Pmaxv(1)>0; Pmaxv(2)<0 
Pminv(1,2,3)<0 

If more than one 
notch is present 

then the 
morphology will 

be termed as 
Fragmented 

QRS. Notch may 
be discovered as 
a extremum pair 

but still the 
morphology 
resembles 
Notched S. 

  
 
 
 

(I) 
RSR' 

 

(I) 
minሺ ௠ܲ௔௫௩ሺ1,2ሻሻ
൐ | ௠ܲ௜௡௩ሺ1ሻ| 
Nmax= 2; Nmin = 1 

Pmaxv(1,2)>0 
Pminv(1)<0 
Nnotch = NF 

Presence of notch 
doesn’t affect the 

morphology. 

 

(J) 
Fragmented 

QRS 

(J) 
If none of the 

aforementioned 
morphologies are detected 

and   
Nnotch>= 1; 

Or 
Nmax>= 2; Nmin>= 2 

 

Visually 
identified notch 
may be detected 
as an extremum 
pair. If so, then 

such morphology 
will be termed as 

Fragmented 
QRS. Notches 
may occur in R 
and/or S wave. 

Table 3B - QRS ≥ 120ms (f-wQRS) 
Name Definition Criteria 

Fragmented Bundle 
Branch Block 

(f-BBB) 

Various RSR' patterns with or without Q wave with 
>2 R waves (R') or >2 notches in the R wave or 
>2 notches in downstroke or upstroke of S wave 

Nmax> 2 
Or 

At least 3 notches in the positive half plane  Or  
At least 3 notches in the negative half plane 

Fragmented 
Premature 

Ventricular Complex 
(f-PVC) 

>2 R waves (R') or 
>2 notches in the downstroke or upstroke of S wave or 

Only 2 notches in the R with >40ms separation 

Nmax> 2 
Or 

At least 3 notches in the negative half plane  Or 
2 notches in the positive half plane with >40ms delay 

Fragmented Paced 
Rhythms (f-pQRS) 

>2 R waves (R') or 
>2 notches in the downstroke or upstroke of S wave 

Nmax> 2 
Or 

At least 3 notches in the negative half plane 
 

H1  H2 

H3  H4 
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corresponding discontinuity‡ is realized and noted. 
Algorithm pointer (k) pointing at a particular point ofthe 
QRS complex is incremented according to presence and 
type of discontinuity encountered. If a discontinuity 
isspotted it isidentifiedand pointer increments as per the 
mentioned rule (Table 2) orelse it increments by one.For 
example, in pattern A1 as shown in Table 2, there are 
two consecutive sign changes in the values of detailed 
coefficients which can be attributed to the occurrence of 
an local extremum pair in close proximity and hence can 
assumed to be a notch. Similarly, in pattern A2 there are 
three consecutive sign changes implying there are three 
extrema and the one that is identified as a notch depends 
on the magnitude of the detailed coefficient, the other is 
identified as an extremum. Other patterns for the 
identification of notchand extremum can be interpreted 
in a similar fashion as mentioned in Table 2. 

B. Morphology Identification 

There exist six fundamental morphologies of 
fragmented QRS and several other variations of RSR' 
patterns which were exemplifiedin the literature[1-15]. 
Apart from those mentioned, for the sake of completion 
we have attempted to encompass all the possible 
variations in RSR’ patterns, for example, some 
morphologies were found to have a Q-wave which was 
not reported in the six fundamental morphology as 
shown in B2, C1 etc. in Table 3. However, all the 
originally mentioned morphologies identified as 
fragmentaed QRS have been included. Table 3 
summarizes and states the criteria for identification of 
the corresponding morphologies. Table 3A presents all 

                                                            
‡discontinuity in general refers to any local extrema 
considered  i.e. notch, maxima or minima 

the 10 morphologies that were quantified for QRS ≤ 
120ms and Table 3B presents the criterion for the 
identification of morphologies with QRS ≥ 120mswhich 
are generally encountered in practice and appeared in 
literature. The criterion of identification preferably starts 
once the number of maxima, minima and notch, the 
point of occurrence i.e. positive or negative side of the 
reference axis, sequence of occurrence and height and 
depth of R and S waves respectively have been obtained 
from the fragmentation detection step. We have 
attempted to maintain a clear difference between an 
extremum pair and a notch. Morphologies with 2 R 
waves (R') viz. A, C, E and I have been considered to be 
dominating over the presence of notches so as to prevent 
such morphologies to be identified as Fragmented QRS. 
Notched S morphology where the notch is being 
identified as an extremum pair was encountered, this 
case has also been taken into account. Similar 
morphologies for R waves exist and has been identified 
as RsR' patterns. These criteria have been formulated 
based on the appearance of the QRS complex and have 
been assigned to morphologies such that each one can 
be identified distinctly i.e. criteria assigned to 
morphologies can distinctively identify them without 
any conflict. 

II. Preprocessing and Feature Extraction 

Wavelet based techniques have been implemented for 
low power and low complexity applications [19]. 
Several wavelet transform based artifact removal 
algorithms have been proposed in the literature [27-30]. 
However, there exists no clear demarcation upon the 
performance of these denoising techniques for 
comparison. Hence, all these techniques were employed 
and the denoised signals were visually observed. 

Fig. 3- Two instances in which Approach 2 was found to be tampering the QRS complex  

 

Time

Approach 1 

Approach 2 

Approach 3 

Approach 4 

Approach 1 

Approach 2 

Approach 3 

Approach 4 

M
a
g
n
i
t
u
d
e 
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Discrete wavelet transform (DWT) has been used to 
remove the baseline wandering and have tested four 
different variants of wavelet transform to denoise the 
raw ECG signal.  Baseline wandering removal using 
DWT [27] involvesdecomposition down to level 9 and 
wavelet filter used is Symlet 10. The denoising 
approaches are as follows: 

Approach 1: Denoising and artifact removal using DWT 
[28].Decomposition down to level 3. Wavelet filter used 
was Symlet 4. 

Approach 2: Denoising and artifact removal using 
stationary wavelet transform (SWT)[29].Decomposition 
down to level 4. Wavelet filter used was Symlet 4. 
Empirical Bayes posterior median thresholding is used. 

Approach 3: Denoising and artifact removal using 
undecimated wavelet transform (UWT)[30]. Wavelet 
filters were Daubechies 6. The level of decomposition 
was self-determined by the code [31].We used classical 
standard deviation type of variance estimator and hard 
thresholding. 

Approach 4: Denoising and artifact removal using 
translation invariant wavelet transform (TIWT)[27]. 
Wavelet filters used were Symlet 8. Hard thresholding 
was used and level of decomposition was self-
determined by the code [32]. 

It was found that Approach 2 and in very rare cases 
Approach 1 were tampering with the QRS complex. 
Fig.3 shows two instances taken from two different 
subjects where the tampering with the original signal 
was found while using Approach 2 (SWT), the denoised 
signal is plotted against the baseline wandering removed 
signal which was initially verified as not tampering with 
the signal. It can be seen that notches have been 
introduced even though the original complex did not 
have one; other denoising techniques have smoothly 
retraced the original QRS complex. This visual 
inspection was done for more than 40 subjects and in 
rare instances DWT was also found to tamper the 
complex but none such cases were encountered for 
Approach 3 and 4. Approach 3 (UWT) and Approach 4 
(TIWT) were satisfactorily denoising the signals. For 
designing and verification of the algorithm Approach 4 
was adopted as this denoising technique was applied and 
verified with signals obtained at higher sampling 
frequencies[26] and satisfactory results were obtained. 

The proposed algorithm was implemented on MATLAB 
(ver. 7.10.0-2010a). The appendix provides the 
MATLAB code snippet for the implementation of the 

baseline wandering and denoising techniques. 

EXPERIMENTS AND RESULTS 

This section has been divided into the following 
subsections. Subsection I presents the experimental 
setup, subsection II discusses the case studies to 
understand the working principle of the algorithm, 
section III presents the evaluation methods used to 
measure the performance of the algorithm in terms of 
accuracy and subsection IV presents the results. 

I. Experimental Setup 

PTB database (PTBDB) [33,34] from PhysioNet has 
been used for the designing and verification of the 
proposed algorithm. PTBDB is an unprocessed or raw 
15 lead database comprising of conventional 12 leads 
and 3 orthogonal Frank leads digitized simultaneously at 
sampling frequency of 1 kHz and captured at the 
standard speed of 25mm/s and 10mm/mV with grid 
intervals being 0.2s and 0.5mV. The database was 
categorized on the basis of cardiac disorders reported 
and ECG of patients from various categories was used 
for designing and modeling of the algorithm. PTBDB 
consists of patients belonging to various diagnostic 
classes viz. myocardial infarction, cardiomyopathy/heart 
failure, bundle branch block, dysrthymia, myocardial 
hypertrophy, Valvular heart disease, myocarditis, 
healthy controls and other miscellaneous [33,34].A high 
sampling rate is desired to capture the occurrence of 
high frequency notches in QRS complexes. A simple 
linear interpolation is then applied on the preprocessed 
signal to further increase the number of samples so that 
the detailed coefficients obtained after applying DWT 
can accurately detect all discontinuities (local extrema 
and notches) as DWT diminishes the time resolution by 
a factor of 2. Eq. (1) shows the methodology adopted for 
interpolation. 

௜ܻ௡௧௘௥௣௢௟௔௧௘ௗ ൌ 	
௒ೖା	௒ೖశభ

ଶ
             (1) 

Amean was calculated for every two consecutive 
samples and was inserted in between them thus 
increasing the total number of samples. Interpolation in 
this manner is extremely simple and does not affect the 
points of extrema. Requirement of interpolation is based 
on observational interpretations during the designing of 
the algorithm. Upon interpolation it was observed that 
the detailed coefficients were found to capture all the 
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discontinuities without fail. The MATLAB code snippet 
for the implementation of linear interpolation and DWT 
can be found in the appendix. 

II. Case Studies 

The outputsobtained from the algorithm are the number 
of extrema points (maxima and minima), notches, time 
instants at which they occur, magnitude of extrema, the 
occurrence on the lower or upper half of the magnitude-
time plane and the morphology of fragmentation 
encountered. In this subsection, we discuss 8 different 
cases and the output obtained from the algorithm for 
themwhich are intended to show the working principle 
of our proposed algorithm. These complexes were 
randomly selected from the large database avoiding the 
selections where similar morphologies were selected. 
Fig.4.1-4.8 shows the plot of these cases with part 'a'of 
the plot showing the interpolated QRS complex and part 
'b'of the plot showing the bar plot of the detailed 
coefficients obtained after applying DWT. Notches and 
extrema are denoted by circle and rectangle 
respectively. The following cases correspond to the 
QRS complexes shown in Fig.4. This case study 
provides insight into the working of the algorithm and 
will help in the reproduction of the work.Rules 
mentioned in Table 2 have been used to detect the 
discontinuities and criteria mentioned in Table 3 have 
been used to identify the morphology. 

Case 1: This case is an example of Notched R (rsR') 
morphology. Number of maxima, minima and notches 
are 1, 2 and 1 respectively. On examining Fig.4.1a it can 
be seen that a minima (<0) is encountered first followed 
by a notch (>0), maxima (>0) and a second minima 
(<0). 

Case 2: This case is an example of RsR' without ST 
elevation. Number of maxima, minima and notches are 
2, 2 and 0 respectively. In Fig.4.2b, a maxima (>0) is 
encountered first followed by minima (>0), maxima 
(>0) and minima (<0).  

Case 3: This case is an example ofRsr'. Number of 
maxima, minima and notches are 1, 2 and 1 
respectively. In Fig.4.3b, a minima (<0) is encountered 
first followed by maxima (>0), notch (>0) and minima 
(<0). 

Case 4: This case is an example of Notched S. Number 
of maxima, minima and notches are 2, 2 and 0 
respectively. In Fig.4.4b, a maxima (>0) is encountered 

first followed by minima (<0), maxima (<0) and minima 
(<0). 

Case 5: This case is an example ofrSr'. Number of 
maxima, minima and notches are 2, 1 and 1 
respectively. In Fig.4.5b, a maxima (>0) is encountered 
first followed by notch (>0), minima (<0) and maxima 
(<0). 

Case 6: This case is an example of Fragmented QRS. 
Number of maxima, minima and notches are 2, 3 and 0 
respectively. In Fig.4.6b, a minima (<0) is encountered 
first followed by maxima (>0), minima (<0), maxima 
(>0) and minima (<0).  

Case 7: This case is an example of Fragmented QRS. 
Number of maxima, minima and notches are 3, 4 and 0 
respectively. In Fig.4.7b, a minima (<0) is encountered 
first followed by maxima (>0), minima (>0), maxima 
(>0), minima (>0), maxima (>0) and minima (<0). 
 
Case 8: The length of QRS is more than 120ms (QRS ≥ 
120ms). This case resulted in f-BBB with 3 or more R 
waves (R'). Number of maxima, minima and notches are 
3, 2 and 1 respectively. In Fig.4.8b, a maxima (>0) is 
encountered first followed by minima (<0), maxima 
(>0), notch (>0), minima (>0), maxima (>0). 

III. Evaluation Criteria 

Forty patients were selected at random from the 
database, the QRS complexes were extracted using the 
TDMG feature extraction algorithm and were examined 
by the cardiologists. Out of 40 patients 9 patients were 
removed from the study pertaining to the bad quality of 
their ECG as per the suggestion of the cardiologists. The 
remaining QRS complexes were then independently 
examined by the two cardiologists in a blinded fashion 
and finally a consensus was reached to produce the final 
result which will be hereby referred as cardiologist’s 
status (CS). The measurements obtained from the 
cardiologists are assumed to be the gold standard. The 
QRS complexes were then input to the 
FragmentationDetection Algorithm (FDA) and the 
results obtained were compared with CS and sensitivity 
and specificity values were calculated. The following 
will discuss the test results and test nature: 

True positive: The cardiologists detected fragmentation 
in a particular lead of the patient and the algorithm 
reported correctly.  
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Fig. 4- Eight different morphologies 1-8 comprising of an interpolated plot along with bar plot of its detailed coefficients obtained 
after applying DWT. Square boxes denote extrema and circle denotes notch. 4-point star shows the sudden changes in gradient of 

the wave, however, these do not lead to discontinuity. This star has been used to demonstrate the sensitivity of the algorithm in 
capturing gradients of the wave encountered. 
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False positive: The cardiologists did not detect 
fragmentation but the algorithm reported the presence of 
fragmentation in a particular lead. 

True negative: The cardiologists did not detect 
fragmentation and the algorithm reported correctly. 

False negative: The cardiologists detected 
fragmentation in a particular lead but the algorithm 
could not detect. 

The sensitivity and specificity was calculated using the 
following equations: 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൌ 	
்௥௨௘	௣௢௦௜௧௜௩௘௦

்௥௨௘	௣௢௦௜௧௜௩௘௦ାி௔௟௦௘	௡௘௚௔௧௜௩௘௦
                 (2) 

ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ ൌ 	
்௥௨௘	௡௘௚௔௧௜௩௘௦

்௥௨௘	௡௘௚௔௧௜௩௘௦ାி௔௟௦௘	௣௢௦௜௧௜௩௘௦
                 (3) 

 

IV. Experimental Results 

The QRS complexes obtained from TDMG were 
evaluated by two experienced cardiologists and were 
simultaneously used to obtain results from the 
algorithm. From 372 leads (31 patients) selected i.e. 
only 12-lead ECG of 31 patients and not the Frank 
leads, the results of 89.8% i.e. 334 leads from FDA 
complied with that of CS. The sensitivity and specificity 
values obtained were 0.897 and 0.899 
respectively.Since, cardiologists are often interested in 
fragmentation in the BBB subjects, out of randomly 
selected 31 patients 5 patients belonged to BBB and the 
sensitivity and specificity were found to be 0.932 and 
0.933 respectively.It is to be noted that in this paper we 
have evaluated the presence or absence of fragmentation 
at a lead level rather than patient level which is usually 
the case in the literature. It is important that the 
algorithm detects fragmentation correctly in every lead 
of the patient as well identifies its various 
morphologies.The sensitivity and specificity values 
were obtained for the presence or absence of 
fragmentation and not for the morphologyobtained by 
the algorithm and cardiologists. We haven’t found any 
work which standardizes the morphologies of 
fragmentation for the common agreement and hence, we 
have avoided the evaluation of the morphological results 
obtained from the algorithm. 

DISCUSSION 

From Fig.4.1-4.8 we can see that whenever the gradient 
of the wave is high the magnitude of thedetailed 

coefficients is more. Sensitivity of the algorithm can 
estimated from the fact that it not only captures the 
formation of an extremum pair but also sudden changes 
in gradient which did not result in an extremum pair e.g. 
in Fig.4.6 and Fig.4.8, a sudden gradient change before 
the occurrence of final maxima (Fig.4.6b) and after the 
1st maxima (Fig.4.8b) can be seen (denoted by a 4-point 
star in orange color) with the magnitude of detailed 
coefficients suddenly decreasing and then increasing. 
This highlights the sensitivity of the detailed 
coefficients to sudden changes in the ECG and hence it 
is important to denoisethe ECG before applying FDA 
algorithm or elsea noisy part in the QRS complex may 
be detected as a notch, which upon denoising may not 
be present. Hence, baseline wandering removal 
anddenoising is required for correct detection of 
morphology of fragmented QRS.  

Sampling rate plays an important role in capturing 
fragmentation. We have observed that sampling rate of 
2 kHz will be appropriate for the algorithm 
implementation. This can be deduced from the role 
played by interpolation to double the number of samples 
as the sampling rate of PTB database is 1 kHz. 
Significance of number of samples can be seen from 
Fig. 5 A-D (notches have been denoted by circle in red 
color). Left half of the figure (1a and 1b) shows plot of 
interpolated QRS along with bar plot of detailed 
coefficients. Right half shows the figure (2a and 2b) of 
original QRS along with the bar plot of its detailed 
coefficients. All the four figures show that on increasing 
the number of samples undetectable notches can also be 
identified. This has been our main motivation behind 
interpolating. A notch which is detectable will only get 
elongated or may get converted to an extremum pair; 
this can be taken care with the help of criteria and 
postulates for morphology realization and identification 
respectively but an undetectable notch will result in 
wrong determination of the number of notches and 
hence the morphology which may lead to wrong 
diagnosis. Fig.5A was identified by the algorithm as 
notched S, 5B as Rsr', 5C as f-QRS and 5D as rSR'.  

When pattern similar to Table 2, A1 and A3 are 
encountered, it unfailingly denotes presence of notch but 
when patterns like A2 and A4 are encountered it 
becomes difficult to interpret whether such a pattern 
should be treated as a notch or a extremum pair. Fig. 5 
B1 (a and b) shows a similar case. In the absence of 
magnitude criterion, the maxima would have been 
identified as a notch and the peak of the notch would 
have been identified as a maxima. 
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 Fig. 5 A-D Significance of Interpolation and magnitude criteria used in Table 2. 
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Properties of the detailed coefficients as explained in 
Fig. 2 can be used to explain and understand the 
occurrence of such patterns. Similarly, if the magnitude 
criteria stated in Table 3, B1 and B2 are spared then on 
implementation of the algorithm on Fig. 5 C2 (a and b) 
would have resulted in detection 1st maxima and 2nd 
minima as two notcheswhich is inaccurate. On iterative 
refinement of algorithm and evaluating it on more than 
40 patients we deemed it necessary to incorporate the 
magnitude criterion in the postulates. In the designing 
and modeling phase the method of QRS detection was 
adopted from the appendix of [35]. For obtaining 
accurate results from the algorithm it is necessary to 
input an accurately detected QRS complex. Any extra 
discontinuity will lead to the identification of some 
other morphology. In the worst case scenarios, 
algorithm will identify the morphology as f-QRS 
leaving no fragmented QRS go undetected. 

CONCLUSION 

We have introduced a novel approach for detection of 
discontinuities in the QRS complexes and have verified 
it using PTBDB. A less complex ‘Haar’ wavelet was 
used for low power consumption which can be usedin 
battery operated devices viz. Mobile phone/PDA/Table 
[19] or battery operated ICD devices. This approach is 
not signal specific and the method can be applied to any 
other kind of biomedical signal for detection of its 
certain important aspects and features. For ECG specific 
applications, we have formulated the postulates for 
detection of notches and extrema and have proposed 
criteria for identification of various morphologies. The 
significance of denoising techniques and all types of 
discrepancies encountered have been discussed.  
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APPENDIX 

The appendix provides snippet of Matlab codes which 
will be helpful in reproduction of the work. The part of 
the code which has considered important and necessary 
has been provided. Fig. A provides the Matlab code for 
implementation of denoising techniques and Fig. B 

provides the code for implementation of interpolation 
and DWT. 
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