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Abstract 
 

Genomic sequence data are often available well before the annotated sequence is published. We present a method for 
analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant 
sequences by BLAST. The routines are used to develop a system for automated annotation of genome DNA sequences. 

[Lynn A. M., Jain C. K., Kosalai K., Barman P., Thakur N., Batra H. and Bhattacharya A. 2001 An automated annotation tool for  
genomic DNA sequences using GeneScan and BLAST. J. Genet. 80, 9–16] 

Introduction 

DNA sequencing has evolved from a complicated labo-
ratory process to an automated technique using high-
throughput sequencers with fluorescent-dye-based chemistry. 
This technological advance coupled with the replacement 
of the traditional mapping and sequencing of clones in 
series to an integrated simultaneous mapping and sequen-
cing approach—‘shotgun’ genome sequencing (Fleisch-
mann et al. 1995)—has significantly reduced the amount 
of time it takes to sequence a genome (Lee and Lee 2000). 
Large-scale genome sequencing generates raw sequence 
data. Annotation is the process of interpreting this data 
into useful biological information. Preliminary annotation 
involves detection and description in the sequence of  
features like the location of protein-coding genes, their 
structure (the demarcation of control regions, exons,  
introns and untranslated regions), the location of repeti-
tive sequences and their nature, and the location of genes 
encoding noncoding RNA. Further annotation involves 
characterization of these sequence elements in terms of 
their relationship with other sequence elements within the 

genome and in other genomes, and the prediction of struc-
tural and functional attributes traditionally on the basis of 
homology. Interpreting the domain fold and attributing 
function to predicted protein sequences on the basis of 
sequence comparison with sequences of known proteins 
are examples of this type of characterization. 
 Computational gene identification in genomic DNA 
sequences is the normal start point in creating an inven-
tory of genes. Methods for ab initio gene identification 
can be classified into two types (Haussler 1998): signal 
sensors are methods that detect local sites such as start 
and stop codons, branch points, splice sites, promoters 
and terminators of transcription, polyadenylation sites and 
ribosomal binding sites, while methods that use nucleotide 
frequencies and dependencies that help differentiate  
between coding and noncoding sequences are called con-
tent sensors. In the past five years, several systems that 
combine signal and content sensors have been developed 
in an attempt to identify complete gene structure. 
 Coding regions of DNA sequences have a strong three-
base periodicity (Fickett 1982). Algorithms based on 
identifying this periodicity as a signal of protein-coding 
regions form the basis of programs like TESTCODE 
(Fickett 1982; Wisconson Package, GCG) and GeneScan 
(Tiwari et al. 1997). 
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 The Fourier transform is a mathematical technique that 
essentially converts periodicity into a function of its  
inverse, the frequency. A three-base periodicity is repre-
sented as a peak at a frequency of 1/3. The frequency 
spectrum enables a more detailed assignment of the  
protein-coding region in two ways. The intensity of the 
peak at frequency = 1/3 is a measure of the extent of  
periodicity. The signal/noise ratio of this peak at fre-
quency = 1/3 (Pn) was defined as a quantitative measure 
of this parameter. By analysis of the cumulative distri-
bution of Pn with sample coding and noncoding DNA 
sequences, it is found that 95% of coding sequences have 
Pn value above 4.0, whereas 90% of noncoding regions 
have this value below 4.0 (Tiwari et al. 1997). The  
presence of other types of periodicity, represented by 
peaks at regions other than 1/3 on the frequency spectrum, 
is often a signal of repeat regions in the test sequence. We 
refer to this method of discriminating between coding and 
noncoding sequences as the GeneScan algorithm. 
 Gene finding in bacterial genomes is close to being a 
solved problem with a number of tools that give excellent 
results (for details see Bhattacharya et al. 2000). The  
recent adaptation of the GeneScan algorithm to bacterial 
and organellar genomes has displayed a sensitivity of 98% 
for the Mycoplasma genitalium and Haemophilus influ-
enzae Rd genomes (Ramakrishna and Srinivasan 1999). 
The simplistic gene structure in bacteria—the presence of 
continuous open reading frames—is one of the reasons for 
such confidence in prediction. The presence of splice sites 
and the absence of clear definite rules that define these 
signals in eukaryotic genomes makes gene identification 
in these systems more difficult. 
 The most efficient eukaryotic gene identification sys-
tems integrate information from different signal sensors 
such as promoters, splice sites, start and stop codons and 
the 3′ untranslated regions with statistical properties from 
content sensors for coding regions. Since signal sensors 
often vary from gene to gene within organisms and  
between organisms, the program often has to be ‘trained’ 
on sequences that are best representative of gene structure 
within the organism. The choice of this representative set 
of genes is critical in determining the efficiency of gene 
identification. 
 A recent experiment to evaluate gene identification 
programs on a well-studied 2.9-Mb region of the Droso-
phila genome (Reese et al. 2000) showed disappointing 
results. In evaluating a program’s efficiency, sensitivity 
(genes identified/genes reported) and specificity (number 
detected/number detected + false positives) are indices 
used to gauge the extent of correct prediction and over-
prediction of genes respectively. At the base level, the 
best programs reached a sensitivity of 95% and a speci-
ficity of 90% in identifying presence of a gene. However, 
prediction of explicit structure has poorer results. The 
average sensitivity and specificity of any program was 

78% and ~ 50% at the exon level, and at the gene level 
the values were just over 60% and below 40% respec-
tively. 
 One of GeneScan’s most attractive features is the uni-
versal applicability of the algorithm, without the need for 
representative gene training sets. In the present implemen-
tation, we have avoided introducing signal sensors to  
map gene structure, relying on database comparisons to 
characterize the elements of coding sequences identified 
by the GeneScan window analysis. We use databases of 
both protein and EST (expressed sequence tag) sequences 
deposited in the public domain to infer information based 
on homology: amino acid similarity with a protein is used 
to identify the homologues of the gene, and EST matches 
imply experimental evidence for the expression of the 
sequence identified as a coding sequence. 
 This protocol can be used to generate the gene com-
plement of an organism from genomic sequence data. The 
relevance of a list of genes can be appreciated by the  
impact on our understanding of the organism’s biology 
from earlier published results. 
 

Microbial genomes 

Genome sequences reveal a gene complement and organi-
zation that reflects in detail the specific adaptations and 
lifestyles of the organism concerned. It is thought that the 
genome information will be useful to decipher the biology 
of the organism. 

Pathogenic microbes 

Two general features of pathogenic microbes are con-
firmed from the complete genome sequences of patho-
genic microbes. First, virulence factors are encoded in 
clusters (so-called ‘pathogenicity islands’), and the first 
comparisons of whole genomes show that these islands 
often differ substantially from the rest of the genome in 
such parameters as G + C content, codon usage and gene 
density, suggesting that they are relatively recent acquisi-
tions that conferred pathogenicity to a relatively benign 
symbiont. Second, pathogens evade host immune response 
through variation of cell-surface antigens, which is due 
either to polymorphism in the genes encoding the protein 
or to paralogue expansions of a gene family. The mecha-
nism and mapping of the genes responsible for this anti-
genic variation are a boost to vaccine development against 
the pathogen. 
 These two features are typically exemplified by the 
genome of Neisseria meningitidis (Parkhill et al. 2000), 
the causative agent of bacterial meningitis and septicaemia, 
where three islands of horizontal DNA transfer are identi-
fied, two of which contain genes coding for proteins 
known to be involved in pathogenicity, such as structural 
proteins of the pilus, and several coding regions unique to 
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capsular polysaccharide synthesis. The genome contains 
an abundance of diverse repeat sequences in each menin-
gococcal strain, with the expression of about 65 genes 
altered by inaccurate DNA replication of repeat regions. 
Many of these genes encode antigens or cell-surface 
molecules involved in pathogenesis. Mycobacterium tu-
berculosis displays a metabolic potential to survive in a 
variety of environments (anaerobic in tissues). This is 
reflected to some extent in the gene list deduced from the 
complete genome sequence (Cole et al. 1998), which  
includes genes of lipid and carbohydrate metabolism to 
generate the complex structures of the cell wall, and  
potential virulence factors. The genome contains a high 
level of sequence conservation during replication though 
some polymorphic G + C-rich regions encode sets of 
products with peptide motifs which may be involved in 
antigenic variation. 
 The genome of Borrelia borgdorferi (Fraser et al. 
1997), the recently discovered causative agent of Lyme 
disease, which affects both vertebrate and invertebrate 
hosts, was published before much of the organism’s 
physiology was known. Borrelia’s linear chromosomes 
challenged the idea of a circular bacterial chromosome. 
Orthologues of normal virulence factors such as toxin and 
invasion genes, global regulatory genes, two-component 
signal transduction pathways and bacteriophages of other 
pathogenic bacteria were not identified, though duplicated 
lipoprotein genes, unique to Borrelia spp. and of un-
known function, were. One member of this family, OspA, 
has been structurally characterized, and is currently being 
tested as a vaccine candidate. There are two circular 
chromosomes of Vibrio cholerae (Heidelberg et al. 2000). 
The gene list derived from the complete nucleotide  
sequence shows genes dedicated to essential cell functions 
such as DNA replication, cell division, gene transcription, 
protein translation and cell-wall biosynthesis along both 
chromosomes. Many of the genetic loci associated with 
virulence are however located on the larger chromosome. 
These include the cholera toxin, which is encoded in a 
phage sequence; the factor essential for colonization of 
the intestine, which is part of the Vibrio pathogenicity 
island; and genes encoding ToxR and ToxT, which regulate 
the expression of genes involved in virulence. Several essen-
tial proteins, like the ribosomal proteins L20 and L35, are 
present only on the smaller chromosome. The two chromo-
somes have 105 genes in common, allowing the opportunity 
to study interchromosomal recombination in bacteria. 
 Features of the genome that reflect the organism’s  
adaptation to its environment are typified by Helicobacter 
pylori (Alm et al. 1999), which is one of the major causes 
of stomach ulcers. Proteins encoded by the genome con-
tain double the lysine/arginine content of their normal 
orthologues from similar organisms, to maintain the high 
electropositive internal environment of the cell that  
enables it to survive the acid environment of the stomach. 

Also essential, the enzyme urease, which converts toxic 
urea into ammonia and carbon dioxide, seems conserved 
and is probably the result of horizontal gene transfer. The 
gene complement of Xylella fastidiosa (Simpson et al. 
2000), a pathogen of citrus plants, reflects its life in the 
plant xylem in three different ways. First, the bacterium is 
adapted to use a variety of free sugars found in xylem sap 
and supplement these with glucose derived from the 
breakdown of cellulose. Second, a set of genes (67) are 
devoted to the uptake of iron and other transition metals 
from the xylem sap; depletion of these micronutrients 
causes symptoms of disease. Third, the organization pro-
duces two distinct types of cell adhesion proteins—one for 
a matrix of extracellular polysaccharides that embeds the bac-
terium in the matrix of the xylem, and the other for bacterial 
adhesion of the gut and mouth parts of the insect vector. 
 Rickettsia prowazekii (Andersson et al. 1998), the 
causative agent of tick-borne typhus, has 834 genes,  
and is an example of a highly reduced genome, getting 
many essential factors complemented by its host. It is of 
interest also because it belongs to a group of bacteria that 
are thought to be closest to the eukaryotic mitochondria. 
Comparisons between the two show that both lack genes 
for anaerobic glycolysis and amino acid and nucleotide 
synthesis, though the bacterium has a complete set of 
genes for the TCA cycle, while in mitochondria only a 
subset of the genes is found. The importance of finding 
genes from genome data is clear from these examples. 

Microbial evolution 

The availability of complete microbial genome sequences 
has made it possible to examine evolutionary relationships 
among living organisms in a more comprehensive way. 
Traditionally molecular evolution has been dominated by 
the calculation of the ‘distance’ between sequences from 
the differences on aligning small-subunit rRNA to yield a 
bifurcating tree structure. This assumes a linear evolution 
of organisms from a common ancestor. There is increasing 
evidence that genomes contain considerable portions that 
have arisen through genetic recombination from other 
organisms, mediated by viruses or other genetic elements 
—a process called lateral or horizontal transfer of DNA. 
Using whole-genome information, it has been possible to 
build an average phylogenetic tree on the basis of gene 
content. Other research has also identified an evolutionary 
‘core’ of genes that code primarily for proteins involved 
in genome replication and expression. Specific metabolic 
functions are more sporadically present and may involve 
lateral transfer of genetic content (Nierman et al. 2000). 

Eukaryotic genome sequences 

The complete annotated genome sequences of Saccharo-
myces cerevisiae (Short et al. 1997), Caenorhabditis ele-
gans (The C. elegans Sequencing Consortium 1998), 
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Drosophila melanogaster (Adams et al. 2000) and Arabi-
dopsis thaliana (The Arabidopsis Genome Initiative 
2000, and references therein) are now available. Yeast 
genetics is normally used as a model for eukaryotic genet-
ics and major efforts are being made to understand the 
proteome. There are different approaches and one of them 
is the use of yeast two-hybrid techniques to determine the 
interacting patterns of the ~ 6000 hypothetical proteins  
in a bid to define their function. C. elegans and D. 
melanogaster are model systems to understand the genetic 
basis of multicellular organization, particularly organo-
genesis, behavioural response, and so on. 
 The genome annotation tools currently used for  
eukaryotic genomes are often found wanting in both sensi-
tivity and specificity. A common factor is not to rely on 
individual programs for ab initio prediction but to use 
them in concert with database comparisons for gene iden-
tification (Lewis et al. 2000). The rest of this paper  
describes one of the annotation tools that we have deve-
loped and some examples of its application. 

Methods 

The GeneScan algorithm and Fourier transform  

A DNA sequence can be converted to four binary  
sequences (Uα) for each base (α = A, T, C, G) by repla-
cing the sequence with 1 for the occurrence and 0 for the 
absence of the base under consideration. The total Fourier 
spectrum can be calculated to determine the periodicity of 
the nucleotide by applying the Fourier transformation 
S( f ) on each binary string. 
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This value is used in evaluating the relative height of the 
peak at f = 1/3: 
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A Pn > 4 is considered as a discriminator for coding  
sequences. 

Structure and application of the program 

I. GeneScan-based identification of coding regions (figure 1): 

Figure 1. Gene identification using the GeneScan algorithm. The program requires as input genomic DNA 
sequences, and outputs a list of coding sequences, with the explicit sequence of each in a FASTA file, which is used in 
the next stage for BLAST analysis. 
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1. Sequence input: The chromosomal sequences were read 
into a one-dimensional array, the array number corres-
ponding to the base position in the chromosome. Routines 
were written to read both FASTA and GENBANK  
formats. The program was compiled on a Silicon Graphics 
O2 with 64 MB memory running IRIX 6.3, and also on a 
Compaq Pentium III with 64 MB memory running RedHat 
Linux 6.2. For computers with less memory, the sequence 
can be written out as a random-access file and the record 
number used to trace the base position in the sequence for 
subsequent steps. 
 
2. Window analysis: The primary step in the analysis is to 
identify regions in the chromosome with a Pn value above 
4.0. The algorithm for the Fourier analysis of DNA  
sequences is applied to the sequence with a sliding  
window of 300 bases, to find the peak/noise ratio at a  
frequency = 1/3 (Pn). Since only the Pn is to be calculated, 
k is set equal to N/3 in the first equation above, requiring 
a single calculation to be made for each xj. The spectrum is  
normalized to allow comparison between windows. The 
result of this routine is a series of data points in two  
columns: the first column is the start of the window, the 
second column is the Pn value of that window. The data is 
written into a file (sequence_name).win. 
 
3. Selection of tentative coding regions: Selecting regions 
of the chromosome that have a peak/noise ratio above 4.0 
is performed by reading the file sequentially and noting 
the sequence numbers at which the Pn value increases 
above, and subsequently decreases below, 4.0. Since these 
numbers correspond to the base position in the chromo-
some sequence, the potential coding sequence can be read 

out of the array containing the sequence with an addition 
of three hundred bases to compensate for the window 
length. Sequences of length less than 400 bases (corres-
ponding to a continuous stretch of Pn less than 100) are 
listed but not processed to reduce false positives. The 
sequence file is saved to disk using a format A5-I1-I2, 
where A5 is a five-character code for the genome under 
study and I1 and I2 are integers that mark the start and 
length of coding sequence respectively.  
 
4. Complete Fourier analysis of the sequences: These  
selected regions were then analysed by complete Fourier 
analysis. The Fourier algorithm is used in a loop for all 
frequencies from 1/N to N/2 (where N is the number of 
bases in the sequence). The spectrum is analysed for the 
presence of multiple peaks, and sorted. Sequences with 
single peaks or two peaks are selected for automated 
comparison against sequence databases. Those that  
have multiple peaks are listed separately for manual inter-
pretation.  

II. BLAST analysis (figure 2): 

EST databases (dbest) are a valuable source for gene 
identification, a match across two or more exons provid-
ing definite clues to the presence of a gene. Sequence  
homology with a known protein is also useful in associa-
ting function with an unknown protein. We use the pro-
gram BLAST (Altschul et al. 1997) to compare potential 
coding sequences against protein and EST sequence data-
bases. The results are sorted on the basis of BLAST 
scores into categories as specified for the annotation of 
human chromosome 23. 

Figure 2. BLAST analysis and categorization. 
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 BLAST is performed at two levels. Databases of all 
proteins and EST sequences of the organism under study 
are generated from the NCBI (National Center for Bio-
technology Information, Bethesda) databases and the 
analysis is carried out on local computers. The results are 
then filtered for sequences that have a BLAST score lar-
ger than 100 and an e-value less than 10–5. These proteins 
are selected tentatively into category 3, and can be up-
graded on manual inspection of the BLAST results to 
category 1 (perfect matches along the entire sequence). 
The remaining sequences (tentatively categorized 4), 
along with paralogue sequences are then subjected to 
BLAST comparisons against the complete databases using 
the network BLAST client program. This is a program 
that runs on the local computer to compare sequences to 
the databases at NCBI using the Internet, in the absence 
of having the requisite hardware to support the entire 
GENBANK and associated databases locally. Both the 
local and network BLAST were downloaded from the 

NCBI ftp site (ftp.ncbi.nlm.nih.gov). This is the rate-
limiting step in the procedure, as it is dependent on the 
speed of the network. A program, makeblast, reads in the 
names of sequences listed in the genelist file and gener-
ates a series of the appropriate BLAST commands using 
the sequence name input and appending a tag to identify 
the output result. The file can be executed to serially run 
each BLAST command. BLAST results are used to up-
grade genes to categories 2 and 3 in the presence of the 
requisite similarity scores. 
 For any genome, the total amount of the data generated 
is voluminous. A program, catalog, was written that reads 
in the sequence name, and evaluates the BLAST results 
for the sequence using a discriminator based on the 
BLAST score and e-value (initially set at 100 and 10–5 
respectively). For evaluating the program vis-à-vis the 
annotation, a routine was added that compares the  
presence of a GeneScan coding sequence to the annota-
tion, allowing the calculation of sensitivity, specificity 

Table 1. Genes not identified by automated routine of GeneScan (Plasmodium falci-
parum chromosome 3, 36 proteins). 
      
Location Length Product 
      
  64604 . . 65358 + 217 Hypothetical protein 
 175096 . . 176550 + 485 Putative ankyrin repeat protein 
 297681 . . 298580 – 300 Hypothetical protein 
 366600 . . 367175 + 114 Hypothetical protein 
 460635 . . 460967 + 111 Hypothetical protein 
 465980 . . 466811 + 206 Hypothetical protein 
 499392 . . 502542 + 433 Aspartyl protease 
 530935 . . 531934 + 127 60S Ribosomal protein L26 
 534472 . . 535500 – 343 Hypothetical protein 
 536439 . . 539506 + 808 Hypothetical protein 
 539937 . . 540638 – 234 Hypothetical protein 
 545414 . . 548149 + 912 Hypothetical protein 
 548697 . . 550214 – 420 Hypothetical protein 
 556030 . . 558650 + 645 Hypothetical protein 
 559062 . . 562352 – 1097 Hypothetical protein 
 569361 . . 575061 – 1828 Hypothetical protein 
 608028 . . 608708 + 190 Hypothetical protein 
 629539 . . 630780 – 283 Hypothetical protein 
 634976 . . 637717 + 914 Hypothetical protein 
 671150 . . 672328 + 222 Hypothetical protein 
 674534 . . 675166 + 131 40S Ribosomal protein S15A 
 675926 . . 677494 – 523 Zinc-finger protein (C3HC4-type) 
 721910 . . 722820 + 162 40S Ribosomal protein S11 
 798950 . . 799594 – 167 Hypothetical protein 
 803967 . . 804440 + 158 Ubiquitin-conjugating enzyme E2, 17 kDA 
 814602 . . 815384 + 181 Elongation factor 1-beta 
 837051 . . 838055 + 174 Hypothetical protein 
 883651 . . 885353 – 357 N-Acetylglucosamine-1-phosphate transferase 
 891449 . . 892431 + 298 Hypothetical protein 
 930612 . . 930923 – 104 Hypothetical protein 
 962244 . . 963193 – 263 40S Ribosomal protein S3A 
 965366 . . 965893  – 55 Homologue of C. elegans F49C12.11 protein 
 982954 . . 984299 + 316 Hypothetical protein 
1002641 . . 1003489 + 283 Hypothetical protein 
1004102 . . 1004891 – 232 Hypothetical protein 
1009044 . . 1010153 + 310 Hypothetical protein 
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and other statistics. In addition, a simple program was 
written to convert the list of genes into HTML format, 
providing links to all associated data, allowing easy navi-
gation and retrieval of data using a Web browser (figure 3). 
 These modules are shown in the flow chart along with 
the input and output elements. 

Results and discussion 

We have tested the system on the published sequence of 
chromosome 3 of Plasmodium falciparum (Bowman et al. 
1999). The automated routine detected 363 coding  
regions, corresponding to 184 genes, with a sensitivity of 
83.6%. Of the 36 annotated genes not identified by 

GeneScan (table 1), 25 are labeled ‘hypothetical’ with no  
known homologue and may represent significant over-
predictions by the annotators. Four genes encode ribo-
somal proteins, which have different contexts from 
normal coding sequences and thus have low three-base 
periodicity. They are also small in size, increasing noise 
in the Fourier transform. However, because of their con-
served nature, ribosomal genes are identified using sepa-
rate routines. Of the remaining seven genes, one (the 
ankyrin repeat protein) has repetitive peptide motifs, and 
was rejected during automation owing to the presence of 
alternate periodicity peaks arising from the repetitive  
motif. When we consider only experimentally determined 
genes or genes with significant homology to known pro-
teins to evaluate the efficiency of the method, the sensiti-
vity of this technique on the test sequence is 92.9%. 
 As there is no precise definition of the number of genes 
identified (this routine only identifies tentative coding 
sequences and not complete gene structure), there is  
no direct measure of the prediction of false positives. In  
developing the GeneScan algorithm, evaluation on pub-
lished sequences resulted in a sensitivity of 86% and a 
specificity of 100% after manual filtering of repeat  
sequences. This high specificity is an important reason for 
using this method to ratify the predictions made by other 
gene prediction routines, especially when the basis—
three-base periodicity—is not explicitly used as a context 
sensor. Identifying novel coding sequences not previously 
annotated is of prime importance: GeneScan identified 17 
coding sequences not previously annotated (table 2). By 
BLAST analysis, the var gene 3D7-varT3-2 was mapped 
to four contiguous coding regions at the 3′ telomeric end 
of the chromosome. Var proteins are expressed by the 
parasite in the blood stage and transported to the erythro-
cyte surface where they adhere to host endothelial pro- 

Table 2. Novel coding regions identified on Plasmodium falciparum chromosome 3 
by GeneScan. 
        

8944 12819 4.1 EST match (228, 7e-60) 
26606 27683 4.1 EST match (129, 1e-30) 
30116 31024 4.1 EST match (129, 1e-30) 
46283 47278 1.2 EST match (412, e-113) 

256667 256936 4.3 Hypothetical protein 
457724 458388 4.3 Hypothetical protein 
493592 494094 4.3 Hypothetical protein 
565218 565612 4.3 Hypothetical protein 
645278 646148 4.3 Hypothetical protein 
806597 809078 4.3 Hypothetical protein 
841525 841852 4.3 Hypothetical protein 
950624 951621 4.3 Hypothetical protein 

1026997 1027252 4.3 Hypothetical protein 
1027331 1028825 1.1 Identity with var gene 3D7-varT3-2 (753, 0.0) and 

similarity with EST match (325, 2e-86) 
1029579 1031220 1.1 Identity with var gene 3D7-varT3-2 (879, 0.0) 
1031105 1031876 1.1 Identity with var gene 3D7-varT3-2 (543, e-154) 
1031949 1033024 1.1 Identity with var gene 3D7-varT3-2 (593, e-171) 
        

Figure 3. All output from the program is accessible through a 
Web browser. 
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teins. This mechanism prevents the parasite-infected RBC 
from being transported to the spleen and is also impli-
cated in mortality associated with cerebral malaria where 
infected erythrocytes bind to the endothelial layers in  
the brain, blocking blood supply. The protein family is 
encoded by multiple genes, members of which are selec-
tively expressed to allow antigenic variation. The genetic 
regulation of var gene expression is still unknown, and 
fragments of var genes may serve to mediate recombina-
tion events important for their expression. 
 This routine has application in identifying and charac-
terizing coding sequences from publicly available unpub-
lished genome data. Although the direct result of gene 
annotation is reserved by sequencing consortia as part of 
their report on the sequence, advance knowledge of the 
gene complement is useful in planning experiments. We 
have applied this routine on data available in November 
2000 for P. falciparum (www.plasmoDB.org) and have 
identified 9367 protein-coding sequences. This set of cod-
ing sequences may be queried, for example, to identify the 
genetic basis of observed phenotypes. It was observed 
that on blocking the erythrocyte-binding antigen known in 
P. falciparum, alternative pathways were available for 
RBC invasion. We have identified four homologues of the 
erythrocyte-binding protein (data not shown) which may 
be tentative candidates to perform this role. Vaccine  
targets may also be identified: more than 25% of the  
P. falciparum genome is expected to contain members of 
the rifin, var and stevor genes, all associated with anti-
genic variation. The gene complement may also be used 
to identify metabolic pathways unique to the parasite. 
These can be used as drug targets. 
 In summary, our automated annotation tools will be 
very useful in making use of genome data. In all auto-
mated predictions there is a certain amount of error, which 
can be avoided by manual examination of the results. 
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