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Abstract—Arithmetic circuits like adders and multipliers are
key workforces of many error resilient applications. Prior efforts
on approximating these arithmetic circuits mainly focused on
manual circuit level functional modifications. These manual
approaches need high design time and effort. Due to this only a
limited no. of approximate design points can be generated from
the original circuit leading to a sparsely occupied pareto front.
This work proposes an automated approximation methodology
for arithmetic circuits. Proposed method approximates the gate
level standard cell library and uses these approximate standard
cells to modify the netlist of the original circuit. A heuristic design
space exploration methodology is proposed to speed-up the design
process. We integrate this methodology with traditional ASIC
flow and validate our results using adders and multipliers of
different bitwidths. We show that our methodology improves on
existing state-of-the-art manual as well as automated design tech-
niques by generating non-dominant pareto-fronts. An application
case study (sobel edge detection) is shown using approximate
arithmetic circuits generated by our methodology. In case of
sobel edge detector, we show upto 50% energy improvements for
hardly any quality degradation (PSNR ≥ 20dB).

Index Terms—Approximate Computing, Logic Synthesis, De-
sign Space Exploration, Low Power Design

I. INTRODUCTION

Computing in the ”Dark Silicon” era marks the need to

focus on newer computing paradigms which are realistic and

economically viable. Approximate Computing–which trades-

off quality of desired output for energy, area or performance

improvements–is a potential candidate to meet these comput-

ing challenges. Prior efforts in approximate computing spans

across different abstraction levels in the computing spectrum,

namely, algorithm, architecture and circuits [1]. The scope of

this work is confined to circuit level approximation strategies.

These strategies are generally applicable to all domains.

This work focuses on approximation of arithmetic circuits

like adders and multipliers as they are the key workforces

of many error resilient applications. Notable examples are

datapaths of image, signal and video processing accelerators,

or multiply-accumulate units of artificial neural networks [2].

Approximate arithmetic circuits, such as, approximate adders

and multipliers, can be used to replace the exact calculations

in these hardware accelerators.

For designing an approximate accelerator which satisfies a

global quality constraint (defined by the application, developer

or end-user), following steps are needed: (1) an error resilience

analysis to determine local quality constraints for each ap-

proximate arithmetic submodule, (2) designing approximate

arithmetic submodules which satisfy the local quality con-

straints, thereby, giving different tradeoff points with diverse

energy, area or delay, (3) a design space exploration to find

the best combination of approximate arithmetic submodules

while optimizing for energy, area or delay.

Point (2) is the main focus of this work. A significant

amount of effort has been put into the design of approximate

adders [3] [4] and multipliers [5]. Prior attempts to design

these circuits followed a manual strategy [6] [3] [4]. Manual

design approaches have limited number of design variants,

leading to restricted trade-off possibilities. Also, every time

global quality constraint changes, manually designing new

approximate design versions require high design time. This

motivates the move towards an automated design approach

for approximate arithmetic circuits, which can reduce design

time and generate various approximate versions satisfying a

given quality constraint while optimizing for either energy,

area or delay.

In this work, we propose a design automation methodology

for synthesis of approximate arithmetic circuits. This work

adopts an automated netlist based replacement and modifica-

tion approach which is compatible with existing logic synthe-

sis tools. This method approximates the gate-level standard

cell library and uses these approximate cells to systematically

modify the netlist while adhering to the quality constraints.

The key contributions of this work are:

• A methodology for automatic synthesis of approximate

arithmetic circuits (section III).

• Systematic design and characterization of a gate-level

approximate standard cell library (section IV).

• A graph based replacement strategy of standard cells

by their approximate versions along with an intelligent

design space exploration methodology to speed-up ap-

proximate circuit synthesis (section V).

• Analysis and comparison of generated designs with state-

of-the-art techniques. Evaluation of generated designs on

a real accelerator (sobel edge detector) (section VI).

The rest of the paper is organized as follows: Section II

presents an overview of existing approximation techniques

for arithmetic circuits. Proposed methodology is explained in

section III. Section IV discusses designing of approximate

standard cell library. Our design space exploration methodol-

ogy is explained in section V. Section VI provides the results

for our techniques and finally, section VII concludes the paper

with a brief summary of our findings.

II. RELATED WORK

This section gives a brief overview of the existing ap-

proaches for approximation of adders and multipliers. Prior ef-



forts on functional approximation of arithmetic circuits can be

categorized into two types: manual or automated approaches.

Most manual approaches introduce modifications to care-

fully pre-selected parts of the arithmetic circuit. In case of

adders, it is possible to approximate the elementary 1-bit

adders (IMPACT [7]) or introduce segmented adders (ETA

[8]) or modify the carry propagation chain (ACA [9]). Quality

configurable adders have been proposed in (GDA [3], GeAr

[4]) which modifies the error using several configuration bits.

These configuration bits can connect or disconnect some

preselected parts of the circuit to tradeoff quality versus power

or delay. In case of multipliers, approximation is done in

generating partial products, in the partial product tree or the

compressors in the partial product tree [10]. A major drawback

of these manual approaches is high design time and effort.

Only a few approximate versions can be created from the

original circuit, leading to a sparsely occupied pareto front.

In contrast to manual approaches, there is limited work in

automated algorithmic approaches for designing approximate

arithmetic circuits. A depth-first search based design space

exploration methodology is proposed in [5] for approximation

of multipliers. Various design points, each exhibiting distinct

power, area and output quality, are generated by using ap-

proximate elementary 1-bit adders and 2x2 multipliers. A

multi-objective cartesian genetic programming (CGP)-based

approximation process for artihmetic circuits is described in

(EvoAprrox8b [11]). Automatic pruning technique have been

proposed as a logic level method to select and prune parts of

a digital circuit [12] [13].

Our proposed methodology differs from the above tech-

niques in the following aspects: (1) Existing automated tech-

niques try to modify the behavioural RTL description of the

design by using simplified elementary adders & multipliers

[5] or by using evolutionary algorithms [11]. So, they operate

on pre-synthesis stage of ASIC design flow. Our proposed

methodology is orthogonal to these approaches. It operates on

post-synthesis netlist which makes it more generic. While our

primary motivation is to automatically approximate arithmetic

circuits, it can be applied to any combinational datapath (not

the focus of this paper). (2) Most existing techniques adopt

a bottom-up approach to incorporating approximate arithmetic

modules in complex accelerator datapaths. First, they generate

different approximate versions of arithmetic circuits with-

out prior application/accelerator knowledge. A pareto front

trading-off quality and power/delay/area is obtained. Then a

design space exploration is used to figure out the best combina-

tion of the non-dominated points to be used in the approximate

accelerator. Contrarily, in top-down approach, local quality

constraints are obtained by error analysis of the approximate

accelerator [point(1), section I]. Our methodology can be used

in a top-down approach to generate approximate arithmetic

modules given a local constraint. This saves design time as

generation of densely populated pareto front is expensive.

III. METHODOLOGY OVERVIEW

In a traditional ASIC design flow, a register transfer level

(RTL) code is synthesized to a netlist using a standard cell

library (see Fig. 1). We integrate our methodology with this

traditional ASIC flow, but instead of using accurate standard

cells, proposed methodology uses approximate standard cells

for automatic synthesis of arithmetic circuits (adders and

multipliers).
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Fig. 1. Proposed methodology integrated with standard design flows.

At first, the gate-level netlist of the accurate circuit is con-

verted into a directed acyclic graph (DAG), where the nodes

represent standard cell instances and the edges represent wires.

Arithmetic circuits follow a notion of bit significance, i.e.,

each bit has two times higher significance than the previous

bit when moving from LSB to MSB. So, each primary output

bit is considered as a configurable knob for controlled quality

modulation. For a particular primary output bit, the logic cone

is obtained by backward dependency search using reverse

graph traversal. The cells in this logic cone are replaced with

approximate cells from the library having the same type to give

an approximate netlist. The above mentioned steps are shown

in Fig. 1. Note: Our methodology can be altered to optimize

for energy, area or delay. In the rest of the discussion, we will

optimize designs for energy.

IV. DESIGNING APPROXIMATE STANDARD CELL LIBRARY

The first step in our methodology is building an approximate

library of standard cells. Functionally inexact versions of

standard cells are designed by altering the truth table of the

cells. Following 3 design rules are considered for building the

approximate standard cell library (as shown in Fig. 2):

I. Design Space Reduction: It is not feasible to approxi-

mate all cells in the existing standard cell library. Therefore,

there is a need for design-space reduction. To achieve this,

energy breakdown of design under test is obtained. Only

cell types that contribute more than 10% to the total energy

consumption of the circuit are selected. For example, for

a 8-bit multiplier, only fulladder (FA32) and compressor

(CMPE53) cells are selected for approximation after design

space reduction (see Fig. 2).

II. Truth Table Optimization: Multiple functionally inex-

act version of each selected cell type are generated manually
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DESIGN AND CHARACTERIZATION OF APPROXIMATE STANDARD CELL LIBRARY: An illustrative example of a 8-bit multiplier is shown. Step I shows the cell based energy  breakdown of the circuit under 

test. Full adder (FA32) and Compressor (CMPE42) cells are chosen for approximation. Step II shows truth table optimization for FA cells. Step III shows the characterization and elimination of 

pareto non-optimal cells.

FA32: fulladder(3 input, 2 output), HA: halfadder, CMPE: compressor, XOR: xor, XNOR: xnor, AND: and, NAND: nand, INV: inverter

Fig. 2. Steps in Building Approximate Standard Cell Library

by altering the truth table of the cells. Fig. 2 shows an illus-

trative example where 1-bit fulladder cells are approximated

based on designs reported in [7] [2].

III. Characterization: All approximate cell designs gen-

erated in step. II are characterized by trading-off accuracy

& energy efficiency. Designs that are not pareto-optimal are

filtered out (see Fig. 2). For characterization of approximate

designs, we formulate a cost function, Cell Error Affinity

(CEA), which is a weighted sum of error probabilities (Eprob)

at the output bits of the standard cells. The formulation of

Eprob for ith output bit is given in equation 1, where M is

n-bit accurate output, M’ is n-bit approximate output and

input count is the input bitwidth of the circuit. Equation 2

gives Cell Error Affinity (CEA) which is the weighted sum

of Eprob for each output bit of the cell. α1, α2, .., αn are the

respective weights satisfying
∑n

i=1
αi = 1.

Eprob(i) =
2
input count∑

1

1/2input count if M ′
i 6= Mi (1)

CEA =
n∑

i=1

αi × Eprob(i) (2)

The weight values are tuned manually by analysing the

impact of each erroneous output bit of the standard cell on

the global circuit output. In case of multipliers and adders,

it is clear that errors in MSB of the standard cells are more

critical than those in the LSB. Therefore, pareto-curve shown

in Fig. 2 assumes a higher weight for the MSB & lower for

the LSB.

V. DESIGN SPACE EXPLORATION METHODOLOGY

Given an accurate netlist and an approximate standard cell

library, there is a need to find out proper combination of

approximate cells to obtain different inexact versions of the

same circuit adhering to certain accuracy. This is an intractable

optimizaton problem leading to design space explosion. So,

our methodology employs a heuristic exploration methodology

rather than exhaustively trying out all possible combinations,

as shown in algorithm 1. The size of design space covered in

exhaustive search can be calculated by equation 3, where DP

represents the total number of design points, L represents total

no. of cell types, C1, C2, ..CL represents no. of approximate

versions of each cell type and N1, N2, ..NL represents no. of

instances of each cell type.

DP = CN1

1 × CN2

2 × ...CNL

L (3)

To tackle design space explosion problem (as evident from

equation 3), an iterative algorithm is proposed that makes the

locally optimal choices in successive iterations, with selective

back stepping to avoid getting trapped in local optimum, while

searching for the global optimum.

The inputs to the algorithm are: RTL description of an

arithmetic circuit (Cktorig), a collection of pre-characterized

approximate cells (ApproxLIB), a quality metric ( Qmetrics),

described in section VI and a quality constraint (Qconstraint)

specific to the target application. The algorithm begins by

sorting out the different approximate variants of the same cell

type in ascending order of their energy cost (lines 4-6). It is

followed by two distinct phases of operation. In the first phase,

greedy search for a locally optimal solution is performed

by only considering the cells with highest approximation

(therefore, least energy cost) to get an initial seed (lines 8-

18). In the second phase, further fine tuning is done on the

initial seed to get a better optimized solution (lines 19-39).

In the initial phase, cell instances in the logic cone on which

a particular output bit is dependent, are extracted (section

III). This is done by performing reverse graph traversal on

directed acyclic graph (DAG). These instances are replaced

with least energy consuming approximate cells. This process

is iteratively repeated for all output bits, starting with the

LSB and then incrementing until the design breaks the quality

specifications. This gives the initial seed. The iteration index

(output bit index) where the design breaks is recorded. In the

fine tuning phase, the iterator is rolled back to select a less

promising solution (line 26). Cell instances corresponding to

the iteration index are replaced with approximate ones chosen

from the approximate library list (line 5) sorted in ascending

order of energy cost (lines 27-29). This process is repeated

for every increment of the iterator until the quality check

fails (lines 30-34) which gives a new seed to be used in

subsequent iterations. However, in case of no improvements,a

previous locally optimal design corresponding to an old seed



is used (lines 35-37). The back step and new seed generation

is continued until all the approximate cell versions are iterated,

finally resulting in a quality controlled approximate design.

VI. EXPERIMENTAL RESULTS

For the evaluation of the proposed methodology, we im-

plemented approximate versions of various arithmetic circuits

as shown in Table I. We also evaluate effectiveness of our

generated solutions by systematically using them in a sobel

edge-detection application.

Qualtiy Metric Formulation: In this work, three differ-

ent quality metrics are considered: Maximum Error Distance

(MaxED), Mean Error Distance (MED) and Peak Signal to

Noise Ratio (PSNR). Equations 4-5 & 6 give the formulation

of these quality metrics where M is accurate result, M ′ is

approximate result and S is the sample size.

MaxED = max{|M ′ −M | ∀ val ∈ T} (4)

MED =
1

|T |

|T |∑

n=1

|M ′ −M | (5)

MSE =
1

|S|

|S|∑

n=1

|M ′ −M |2, PSNR = 20 log
10

max{T}√
MSE

(6)

where T = {val|val ∈ Z
+, |val|<2

input count}

Experimental Setup: The test circuits were synthesized

using Cadence Encounter RTL Compiler at nominal operating

conditions, mapped to a 40nm TSMC technology library

and functionally verified using Cadence Incisive Enterprise

Simulator. A python based behavioural model is generated

for each intermediate approximate netlist which is used for

functional verification.

Results: Fig. 3 shows the accuracy vs energy/area/delay

trade-off for a 8-bit signed multiplier on a pareto frontier.

Energy, area & delay scales on the Y axis are normalized

with respect to the tool synthesized versions of the accurate

design, at relaxed frequency constraint (baseline). The exper-

iments are performed for different target values of MaxED

& MED chosen from the sets {250 – 2000} and {5 – 400}
respectively. Compared to baseline, designs obtained using our

method achieve energy savings of upto 80% for less than 5%

degradation in output quality (MaxED ≤ 2000)(see Fig. 3,

row1,col1). Comparison with literature shows that the designs

reported in [5]1 are pareto-domiated by our designs. This is

expected as approximate multipliers in [5] were composed of

smaller ones and this composition procedure introduces some

overhead. It is also observed that our method generates a better

densely-spread pareto front compared to bitwidth truncation

and Evoapprox [11]. Proposed method also reduces the area-

under-the-pareto-front (AUP) for tradeoffs between energy and

quality. Average AUP-energy reductions of 11%, 75% & 10%

are obtained compared to bitwidth truncation, Rehman et. al

[5] and Evoapprox [11] respectively.

1Only unsigned multipliers are reported in this work. We make them
signed using two’s complemented I/Os. Results include the cost of these
two’s complement modules. For fair comparison, we also report results of
the unsigned multipliers without two’s complemented I/Os.

Algorithm 1: Optimal Design Search Algorithm

Input : Cktorig : Exact circuit, ApproxLIB : List of

multiple variants of approximate cell types, Qmetric

: Qualtiy metric suitable for target application,

Qconstraint : Application specific quality constraint

Output: Cktapprox : Approximate Circuit

1 Begin

2 Initialize : netlistorig , netlistapprox = synthesize (Cktorig)

3 DAG ← netlistorig
4 for each different cell type in ApproxLIB do

5 listi = sortenergy (cell type, cell variants, ascending);

6 end

7 // Assuming N = Total count of distinct cell types.

8 // Find initial seed

9 for each outputbit from lsb to msb in netlistorig do

10 cell names =

extract cell instances (DAG, outputbit);
11 netlistapprox = replace (netlistapprox, cell names,

12 list1[0], list2[0], .. , listN [0]);
13 Qtest = Qmetric (netlistapprox);
14 if Qtest donot meet Qconstraint then

15 initial seed = previous netlistapprox;

16 set seed = initial seed,

outputbit = previous outputbit;
17 break

18 end

19 // Fine tuning

20 for each cell list1 in list1 do

21 for each cell list2 in list2 do

22 . .

23 for each cell listN in listN do

24 set old seed = seed
25 for outputbit to msb in seed do

26 new outputbit =
backstep (outputbit);

27 cell names =

extract cell instances(DAG,new outputbit);
28 seed = replace (seed, cell names,

29 cell list1, cell list2, .. , cell listN );
30 Qtest = Qmetric (seed);
31 if Qtest donot meet Qconstraint then

32 set seed = previous seed,

outputbit = previous outputbit;
33 break

34 end

35 if seed donot improve upon old seed then

36 seed = old seed;
37 end

38 end

39 end

40 Cktapprox = seed;

41 return Cktapprox;

42 End

Fig. 4 shows the accuracy vs energy/area/delay trade-off for

8-bit, 16-bit and 32-bit adders on a pareto frontier. Energy,

area & delay scales on the Y axis are normalized with respect

to the tool synthesized RCA adder, at relaxed frequency

constraint (baseline). Manual2designs approaches like ACA

2Some open source adder libraries like ACA, GeAr etc., are optimized for
delay, not power. For fair comparison, we consider energy as a metric. We
also report AUP for all metrics: energy, area & delay.



TABLE I
BENCHMARK CIRCUITS USED IN EXPERIMENTS

Benchmark Name Bit
Width

Input Dataset Cell:Cell
Type 1

Approx
Cell Types 2

I:O Area
(GE)

Energy
(pJ)

Delay
(ps)

Quality
Metric

Array multiplier (signed) 8 65536 8-bit integers (dist:
uniform, order: random)

155:18 FA32(4), CMPE53(6) 16/16 1242 0.32 2507 MaxED,
MED

8 65536 8-bit integers (dist:
uniform, order: random)

8:2 FA32(4), HA22(5) 16/9 142 0.03 1558 MaxED,
MED

Ripple Carry adder
(RCA)

16 65536 16-bit integers (dist:
uniform, order: random)

16:2 FA32(4), HA22(5) 32/17 286 0.12 2646 MaxED,
MED

32 65536 32-bit integers (dist:
uniform, order: random)

35:5 FA32(4), HA22(5) 64/33 603 0.42 4000 MaxED,
MED

Brent-Kung adder 32 65536 32-bit integers (dist:
uniform, order: random)

177:20 FA32(4), HA22(5),
XNOR2(3), NOR2(3)

64/33 1412 0.18 1412 MaxED,
MED

Kogge-Stone adder 32 65536 32-bit integers (dist:
uniform, order: random)

321:25 HA22(5), XOR2(3),
AOI21(3), NAND2(3)

64/33 2374 0.21 1108 MaxED,
MED

1 total no. of cells: total no. of different cell instances
2 cell instances chosen for approximation (no. of approximate variants of each cell type)
2 FA32: fulladder(3 input, 2 output), HA: halfadder, CMPE: compressor, XOR: xor, XNOR: xnor, NOR: nor, NAND: nand, AOI: and-or-invert
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Fig. 3. Pareto fronts showing tradeoffs between MaxED and Energy, Area,
Delay for a 8-bit multiplier (signed). The area under the pareto fronts (shaded
in red) is plotted for all the plots. Lower area under the curve is better.

[9], ETA [8], GDA [3] and GeAR [4] have limited no. of

design points leading to a sparsely populated pareto-front (see

Fig. 4). Contrarily, our method provides a dense pareto front

which validates the requirement of automated approximation

strategy for arithmetic circuits. For 8-bit adders, upto 62%

energy savings are obtained compared to baseline for less than

5% quality degradation (MaxED ≤ 25). Average AUP-energy

reductions of 4%, 42%, 33% & 30% are obtained w.r.t bitwidth

truncation, ACA [9], GDA [3] and GeAR [4] respectively. For

8-bit adders, Evoapprox [11] generates a few design points

which dominates our results (See Fig. 4 row1, col1). When

we analyze some of these cases, we observe that our heuristic

misses these design points as it starts by finding an intial

seed using the cells least energy cost, followed by fine tuning.

Instead, if we start directly with fine tuning, we cover these

cases. However, this leads to longer runtimes, which is a trade-

off designer needs to consider. For 16-bit and 32-bit adders,
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Fig. 4. Pareto fronts showing tradeoffs between MaxED and Energy for 8-bit,
16-bit and 32-bit adders. The area under the pareto fronts (shaded in red) is
plotted for all the plots. Lower area under the curve is better.

our heuristic methodology out performs existing approaches in

the literature, including, bitwidth truncation & Evoapprox [11].

Fig. 4 (row3, col1) shows the energy improvements obtained

for high speed adder designs like brent-kung & kogge-stone

adders. This validates the applicability of our methodology for

both high speed (brent-kung & kogge-stone) as well as low

power (RCA) adders.

Heuristic Optimality Analysis: Fig. 5 shows a compara-

tive analysis between exhaustive search and heuristic search



(Section V). The experiment took 7.5 hours for exhaustive

search & 70 seconds per optimal design point for heuristic

search on a Intel i7 (3.4 GHz) processor and 32GB RAM.

Total runtime is mostly dominated by the ASIC design flow.

A speedup of 10× is obtained over exhaustive search while

giving near optimal solutions (Fig. 5).
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Application Case Study: To test the effectiveness of our

method, a case study on sobel edge detection is performed.

Considered accelerator architecture consists of six 8-bit adds,

two 16-bit adds and one shift, each for vertical as well as

horizontal edge detection. We follow the top-down approach

(see section I, II) for approximate accelerator design. Firstly,

an error resilience analysis [2] is performed on a python-

based behavioural model of sobel edge detector by emulating

use of approximate adders. A design space exploration is

performed using emulated 8-bit and 16-bit approximate adders

with different error bounds and quality impact on final sobel

output is analysed. As shown in Fig. 6 (row1, col1), each

point gives a particular combination of emulated 8-bit and

16-bit approximate adders with certain error bounds. Y-axis

gives the error bounds on the emulated 8-bit adders while

the colorbar gives the error bounds on the emulated 16-bit

adders. For each combination, the final application PSNR is

given on X-axis. So, for a given global quality constraint of

PSNR ≥ 20dB, local quality constraints are obtained for 8-

bit (MaxED ≤ 12) and 16-bit (MaxED ≤ 25) adders. Then,

using our methodology, 8-bit & 16-bit approximate adders are

generated to meet these local constraints. Finally, a design

space exploration is performed using the non-dominated pareto

points, to obtain the best trade-off between energy and PSNR

(Fig. 6, row1, col2). For hardly any quality degradation (Fig.

6, row2, col5), upto 50% energy improvements are obtained

(point D, Fig. 6, row1, col2). Fig. 6, row1, col1, also shows

that our designs significantly outperforms bitwidth truncated

designs. Detailed analysis shows that our designs perform

better as truncated designs make unidirectional errors (either

+ or -). However, proposed designs make bidirectional (+/-)

errors at the output which leads to error compensation.

VII. CONCLUSION AND FUTURE WORK

This work proposes an automated approximation method-

ology for arithmetic circuits. Proposed method approximates

the gate level standard cell library and uses these approximate

standard cells to modify the netlist of the original circuit.

A heuristic design space exploration methodology is pro-

posed to speed-up the design process. We integrate proposed

methodology with traditional ASIC flow and validate our

results using adders and multipliers of different bitwidths.

Upto 80% improvements in energy efficiency is obtained for

less that 5% degradation in quality. A comparative analysis

with state-of-the-art techniques as well as bitwidth truncation

is performed. We show that our methodology improves on

existing techniques by generating dense and non-dominant

pareto-fronts. For a real application(sobel edge detection),

approximate arithmetic circuits generated by our methodology

achieve upto 50% energy improvements for hardly any quality

degradation (PSNR ≥ 20dB). Future iterations aim to extend

support for sequential circuits as well as automated inexact

standard cell generation.
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