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Abstract. A growing body of research on statistical appli-
cations for characterization of atmospheric aerosol Fourier
transform infrared (FT-IR) samples collected on polytetraflu-
oroethylene (PTFE) filters (e.g., Russell et al., 2011; Ruthen-
burg et al., 2014) and a rising interest in analyzing FT-IR
samples collected by air quality monitoring networks call
for an automated PTFE baseline correction solution. The ex-
isting polynomial technique (Takahama et al., 2013) is not
scalable to a project with a large number of aerosol sam-
ples because it contains many parameters and requires expert
intervention. Therefore, the question of how to develop an
automated method for baseline correcting hundreds to thou-
sands of ambient aerosol spectra given the variability in both
environmental mixture composition and PTFE baselines re-
mains. This study approaches the question by detailing the
statistical protocol, which allows for the precise definition of
analyte and background subregions, applies nonparametric
smoothing splines to reproduce sample-specific PTFE varia-
tions, and integrates performance metrics from atmospheric
aerosol and blank samples alike in the smoothing param-
eter selection. Referencing 794 atmospheric aerosol sam-
ples from seven Interagency Monitoring of PROtected Vi-
sual Environment (IMPROVE) sites collected during 2011,
we start by identifying key FT-IR signal characteristics, such
as non-negative absorbance or analyte segment transforma-
tion, to capture sample-specific transitions between back-
ground and analyte. While referring to qualitative properties
of PTFE background, the goal of smoothing splines inter-
polation is to learn the baseline structure in the background
region to predict the baseline structure in the analyte re-

gion. We then validate the model by comparing smoothing
splines baseline-corrected spectra with uncorrected and poly-
nomial baseline (PB)-corrected equivalents via three statisti-
cal applications: (1) clustering analysis, (2) functional group
quantification, and (3) thermal optical reflectance (TOR) or-
ganic carbon (OC) and elemental carbon (EC) predictions.
The discrepancy rate for a four-cluster solution is 10 %. For
all functional groups but carboxylic COH the discrepancy is
≤ 10 %. Performance metrics obtained from TOR OC and
EC predictions (R2 ≥ 0.94 %, bias ≤ 0.01 µg m−3, and error
≤ 0.04 µg m−3) are on a par with those obtained from uncor-
rected and PB-corrected spectra. The proposed protocol leads
to visually and analytically similar estimates as those gener-
ated by the polynomial method. More importantly, the auto-
mated solution allows us and future users to evaluate its ana-
lytical reproducibility while minimizing reducible user bias.
We anticipate the protocol will enable FT-IR researchers and
data analysts to quickly and reliably analyze a large amount
of data and connect them to a variety of available statistical
learning methods to be applied to analyte absorbances iso-
lated in atmospheric aerosol samples.

1 Introduction

Measurement and quantification of atmospheric aerosol
composition and abundance provide a basis from which we
can monitor regional air quality, predict potential impacts
on health and climate, and deduce formation mechanisms
to reduce uncertainties in climate models for simulating al-
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ternative scenarios relevant to climate change adaptation or
policy decision-making (Drouet et al., 2015; Monks et al.,
2009; Isaksen et al., 2009; Goldstein and Galbally, 2007;
Kanakidou et al., 2005). Atmospheric aerosols, or particu-
late matter (PM), occur as complex mixtures of inorganic
salts, crustal elements, sea spray, organic compounds, black
carbon, and water (Seinfeld and Pandis, 2006), and a combi-
nation of analytical techniques are required to resolve their
physical and chemical characteristics (Kulkarni et al., 2011).
A useful and relatively inexpensive strategy is to collect at-
mospheric aerosol particles onto a substrate for offline anal-
ysis in the laboratory. Amongst different substrates, polyte-
trafluoroethylene (PTFE) filters have been extensively used
in both measurement campaigns (Maria et al., 2002, 2003;
Takahama et al., 2011; Frossard et al., 2014; Russell, 2003)
and routine monitoring networks, such as the IMPROVE net-
work in pristine and rural areas or the Chemical Speciation
Network/Speciation Trends Network in urban and suburban
areas in the United States (Dillner and Takahama, 2015a).
Advantages of PTFE substrates include their stability, hy-
drophobicity, and negligible carbon gas adsorption (Turpin
et al., 1994; Gilardoni et al., 2007; Ruthenburg et al., 2014).
As such, they are amenable to gravimetric mass, elemental
analysis, and detailed chemical speciation analysis (e.g., Sur-
ratt et al., 2007).

Carbonaceous particulate matter (PM) composition col-
lected on PTFE filters is characterized by Fourier transform
infrared (FT-IR) spectroscopy. Organic functional groups in
PM absorb mid-infrared (IR) radiation in specific segments
of the spectrum. The amount of light absorbed is propor-
tional to the moles of the functional group (Beer–Lambert
law). The absorption at the characteristic frequency of a par-
ticular type of bond is measured directly through PTFE fil-
ters (Maria et al., 2003; Griffiths and De Haseth, 2007).
The high-frequency region (> 1500 cm−1) contains stretch-
ing and bending modes of important functional groups, such
as alkane (consisting of saturated aliphatic C-CH bonds
found in hydrocarbon chains), carboxylic acid (COH and
C=O found in carboxylic acids and diacids), carbonyl (C=O
found in ketones, aldehydes, and esters), hydroxyl (COH
found in straight chain alcohols), and amine (C-NH2 found
in primary amines) (Russell et al., 2011). The fingerprint
region (< 1500 cm−1) contains absorption bands organoni-
trate (CONO2) and organosulfate compounds (COSO3) (Day
et al., 2010; Hawkins and Russell, 2010) but is outside the
scope of our study.

A growing number of papers in recent years have been
published to introduce and apply different statistical appli-
cations for atmospheric aerosol characterization from the in-
frared spectra. One of the applications includes unsupervised
clustering of discrete spectra categories to quantify source
contributions, such as fossil fuels, biomass vegetation, or
biomass burning, to the total organic PM mass. Spectral clus-
tering has been used in several atmospheric aerosol mea-
surement campaigns and data analysis studies (Russell et al.,

2009; Liu et al., 2009; Takahama et al., 2011; Ruthenburg
et al., 2014). Cluster analysis of spectra have compared fa-
vorably with source class interpretation from factor analy-
sis (Russell et al., 2009; Liu et al., 2009; Takahama et al.,
2011; Russell et al., 2011), which attribute variations in the
spectra matrix to varying contributions from an underlying
set of components, and multiple linear regression with pre-
determined factor sources (Takahama et al., 2011). Another
approach, which has a long record in use for quantification
of functional group composition and source apportionment
in atmospheric aerosol samples (e.g., Russell et al., 2011),
is fitting individual Gaussian line shapes to quantify alcohol
COH, carboxylic COH, alkane CH, carbonyl CO, and amine
NH functional groups (Takahama et al., 2013). Finally, func-
tional groups (Coury and Dillner, 2008; Ruthenburg et al.,
2014) and organic and elemental carbon content equivalent
to that of thermal optical reflectance (TOR) (Dillner and
Takahama, 2015a, b) have been estimated from partial least
squares (PLS) calibration applied to infrared spectra. How-
ever, all applications but PLS regression require baseline-
corrected infrared spectra (without PTFE interferences) to
apply the Beer–Lambert law-type analysis and account for
variations in analyte (aerosol) absorbance only. Aside from
these statistical applications, removing PTFE interferences
is a necessary step for visual inspection and comparison of
similarity of aerosol composition in FT-IR spectra.

The problem of background removal is ubiquitous in
nearly all spectroscopies (e.g., FT-IR, nuclear magnetic reso-
nance (NMR), and Raman spectroscopies) and their respec-
tive applications that quantify chemical quantities based on
the shape and distribution of spectral peaks (Schulze et al.,
2005; Rinnan et al., 2009; Bacsik et al., 2004). A general for-
mulation of the problem is to partition an observed spectro-
scopic signal into two components: one that varies smoothly
(baseline) and one that is zero except in specific, localized re-
gions (analyte). However, background correction represents
an ill-posed problem; we do not know the exact proportions
of the baseline and analyte in the observed signal. As a re-
sult, a realistic approach is to implement a baseline model
representation capable of capturing underlying physical phe-
nomena causing the baseline specific to the spectroscopy
type. While many such investigations have been made in
FT-IR biospectroscopy (Baker et al., 2014; Trevisan et al.,
2012; Felten et al., 2015), single-compound, gas-phase FT-
IR (Shao and Griffiths, 2007; Griffiths et al., 2009; Zhao
et al., 2015), NMR (Golotvin and Williams, 2000; Xi and
Rocke, 2008), and Raman spectroscopies (Weakley et al.,
2012; Liland et al., 2010; Rowlands and Elliott, 2011a), the
background removal in FT-IR atmospheric aerosol samples
remains a far less-studied topic. Therefore, we evaluate ex-
isting classes of background correction methods to identify
the most promising one based on ambient aerosol spectral
characteristics.

Existing techniques include frequency decomposition (via
Fourier transform, wavelets, or digital filters) to separate the
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baseline component from the analyte absorption in the fre-
quency domain (Shao et al., 2003). While the frequency de-
composition techniques have been shown to successfully cor-
rect biological (Trevisan et al., 2012) or single-compound
FT-IR spectra (Shao and Griffiths, 2007; Griffiths et al.,
2009), they do not apply in the PM context, where spectral
features are not well separated due to broad analyte absorp-
tion regions in condensed-phase aerosol samples. Another
existing class, numerical differentiation (e.g., first or second
differentiation, or Savitzky–Golay derivation) (Schulze et al.,
2005; Rinnan et al., 2009), leads to noise amplification and
requires additional smoothing that is sensitive to the signal-
to-noise ratio for a specific set of samples. Furthermore, as
a result of negative values from the derivative transforma-
tion, transformed spectra are difficult to visually interpret
for spectroscopists. The interpolation approach (Liland et al.,
2010; Ruckstuhl et al., 2001; Mazet et al., 2005; de Rooi and
Eilers, 2012; Schirm and Watzig, 1998; Peng et al., 2010;
Takahama et al., 2013) uses sample-specific PTFE signals
on background regions where analyte absorption is not ex-
pected, and interpolates through analyte regions to identify
their relative contributions at each wavelength.

Widely used interpolation methods for aerosol analysis
on PTFE filters (Maria et al., 2003; Gilardoni et al., 2007;
Takahama et al., 2013) are not scalable to projects with a
large number (hundreds of thousands) of aerosol samples.
The most modern implementation of these methods (Taka-
hama et al., 2013) addresses the challenges described above
by prescribing a set of four default background regions and a
polynomial model for the variation. Background regions can
be adjusted for each sample to improve accuracy; yet, this
leads to additional costs in labor and variability across users.
For example, users with extensive FT-IR baseline correction
experience may feel comfortable using visual inspection to
identify the background and analyte regions in Fig. 1. Others,
on the other hand, may prefer to look at past examples or con-
duct a brief literature search on the presence and locations of
absorbing functional groups. Alternatively, for a fixed back-
ground region, a non-negativity constraint can be imposed to
alleviate issues of unrealistic spectral features that can arise
from incorrect specification of the background. However, this
adaptation to handle negative analyte absorbance can lead
to positive bias in certain regions of ambient sample spec-
tra, or overall in blank sample spectra for which the mean
absorbance should be zero (as an average of positive and
negative values). Finally, as the predefined polynomial forms
are unable to account for all PTFE interferences, the method
requires subtraction of blank filter spectra to remove some
PTFE features a priori. Therefore, the baseline correction is
performed on the residual spectra rather than the original.
However, because blank filters themselves exhibit variability,
there is no perfect PTFE reference and the subtraction pro-
cedure may impart additional bias. Additionally, collecting
blank PTFE filters increases FT-IR analysis costs and time.

Figure 1. 794 FT-IR atmospheric aerosol spectra collected on PTFE
filter. Each spectrum is color-differentiated.

However, a separation of atmospheric aerosol absorbance
bands from the PTFE baseline via interpolation can be very
complex, and therefore difficult to quantify precisely and
reason about. We break down the issue into two separate
problems. The first problem is determining sample-specific
bounds for analyte and background subregions in the at-
mospheric aerosol spectra. Atmospheric PM mixtures are
thought to comprise 104–105 atmospheric organic species
(Hamilton et al., 2004; Goldstein and Galbally, 2007; Kroll
et al., 2011), leading to broad, overlapping IR absorption
bands (features on the order of 10–102 cm−1) of different
functional groups that absorb within similar wavenumber re-
gions (Coury and Dillner, 2008). In Fig. 1 we show 794 at-
mospheric PM samples collected on PTFE filters, each differ-
entiated by color. The overlapping absorbance bands can be
seen as smoothly varying features in regions at ∼ 3700–2200
and ∼ 1820–1500 cm−1, superimposed on a sloping baseline.
The range is only indicative; the wavenumber specificity is
further limited by a variability in ambient PM mixture com-
position. As composition varies as a function of PM source
and date, several of these functional groups may be absent
in the sample at hand. Due to the absence of structurally dis-
tinguishable features to indicate the onset of analyte contri-
butions, it is challenging to pinpoint the exact locations of
analyte absorption. The second problem is reproducing the
structure of the PTFE baseline. PTFE scattering represents
the largest source of variation of the FT-IR signal when par-
ticles are collected (McClenny et al., 1985). The extent of
variation in slope and shape of baseline can vary substantially
among individual samples (Fig. 1). Baseline variations due to
PTFE fiber stretching are unique to each sample and do not
follow a prescribed or universal pattern, rendering standard-
ized baseline preprocessing methods, for example pre-scan
subtraction, standard normal variate, and multiplicative scat-
tering correction (Rinnan et al., 2009), insufficient. Due to a
lack of structural specificity of the underlying PTFE signal,
we need a sample-adaptive model.

Naturally, this problem raises the question of how to de-
velop an automated method for baseline correcting hundreds
or thousands of ambient aerosol FT-IR spectra given the
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Table 1. Notation for variables

Category Symbol Description

w weight
y observed absorbance

Smoothing splines model formalization ŷ fitted absorbance
(Sect. 2.1) x wavenumber

j an index to denote the number of wavenumbers
λ smoothing penalty

B background component in observed
absorbances

A analyte component in observed absorbances
Spectral signal decomposition WA set of wavenumbers with absorbances
(Sect. 2.1) WB set of wavenumbers without absorbances

W1–W4 specific wavenumbers to denote boundaries
between analyte and background components

EDFT desired (target) EDF parameter defined by a
user prior to applying the model

Smoothing splines parameter selection
(Sects. 2.1, 2.3.2, 3.1)

EDFA actual EDF parameter computed by the algo-
rithm to match the user-specified EDFT

EDF∗ optimal EDF parameter selected from a range
of EDFT

variability in environmental mixture composition and PTFE
baselines. This study approaches the question by detailing
the statistical protocol, which allows for the precise defini-
tion of analyte and background subregions, applies nonpara-
metric smoothing splines to model sample-specific PTFE
variations, and integrates performance metrics from PM and
blank samples alike in the smoothing parameter selection.
Referencing an extensive set of atmospheric aerosol samples,
in Sect. 2 we start by identifying key FT-IR signal character-
istics (such as non-negative absorbance or analyte segment
transformation), which reduce signal variations to fundamen-
tal features to capture sample-specific transitions between
background and analyte. To reproduce sample-specific vari-
ations in PTFE background and analyte structures, we de-
velop a nonparametric, adaptive model: interpolation based
on smoothing splines regulated by the roughness parame-
ter. While referring to qualitative properties of the baseline
(such as smoothness), the goal is to learn the baseline struc-
ture in the background region to predict the baseline struc-
ture in the analyte region. In Sect. 3 we evaluate the model
both at the physical and application layers. We establish the
initial model feasibility by using near-zero blank absorbance
and non-negative analyte absorbance as our physical crite-
ria. Further, by comparing smoothing splines baseline (SSB)-
corrected spectra with polynomial baseline (PB)-corrected
spectra via three different applications, (1) visual and cluster-
ing analysis, (2) functional group quantification, and (3) or-
ganic and elemental carbon prediction, we are able to discern
which variations in quantities obtained from SSB-corrected
spectra are due to inherent variations already present and
which are added due to the new baseline approximation. We

close with a summary of the baseline correction procedure
extendible to the fingerprint region or spectra acquired on
other substrates in Sect. 4.

2 Methods

Section 2.1 introduces smoothing splines in the context of
FT-IR signal. Sections 2.2 and 2.3 detail the modeling pro-
tocol, including formalizing bounds for analyte and back-
ground regions and selecting smoothing parameters. Sec-
tions 2.4 and 2.5 describe the data set and applications we
used for smoothing splines model evaluation.

2.1 Smoothing splines model description

For the sake of clarity, Table 1 summarizes notation for com-
monly used variables pertaining to specific categories in im-
plementing the smoothing splines model. The proposed in-
terpolation method uses smoothing splines, a popular non-
parametric regression technique, which has been applied in
different steps in spectral signal analysis: data exploration,
model building, testing parametric models, and diagnosis
(Rouh et al., 1993; Rowlands and Elliott, 2011b; Poullet
et al., 2007; Persson et al., 1992; Katajamaa and Oresic,
2007; Fourmond et al., 2009). Their expression is obtained
by minimizing the following two-part objective function:

minimize
ŷ

n∑

j=1

wj (yj − ŷj )
2 + λ

b∫

a

(ŷ′′(x))2dx, (1)
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where w is weight at wavenumber j , y and ŷ are observed
and fitted absorbances at wavenumber j , and λ is a smooth-
ing penalty. Minimizing this criterion over the entire spec-
trum leads to a unique solution, which is a natural cubic
spline with knots at the unique values of the wavenumbers
x for j = 1,2, . . .,N (Hastie et al., 2009). The explicit solu-
tion in form of the natural spline eliminates the knot selec-
tion problem without leading to over-parameterization due to
the smoothing penalty constraint. The advantage of smooth-
ing splines is their capacity to operate both locally, through
w representations for each wavenumber j , and globally,
through a single λ representation over the entire wavenum-
ber domain.

The first, least squares term,
∑n

j=1wj (yj − ŷj )
2, repre-

sents the similarity measure consisting of the squared dis-
tance between observed absorbance values and interpolating
function values. The advantage of locally moderated weights
lies in allowing us to choose whether absorbance at a partic-
ular wavenumber j should be included in determining the fit-
ted baseline. We define weights as follows. Let us decompose
the original spectral signal into a two-component mixture:

yj =

{
Bj + Aj if j ∈WA (analyte region)

Bj if j ∈WB (background region).
(2)

Here Bj denotes the background component comprising
baseline, noise, and, if present, any remaining local, high-
frequency interference (Takahama et al., 2013). Aj denotes
the analyte component, WA denotes the set of wavenum-
bers with analyte absorbance, and WB denotes the set of
wavenumbers without analyte absorbance. We then wish
to select observations that represent solely the background
component and exclude those that contain the analyte contri-
bution:

wj =

{
0 if j ∈WA

1 if j ∈WB.
(3)

Other conceptually analogous variants for determining
weights exist. Some researchers define weights as poste-
rior probabilities from mixture models (de Rooi and Eilers,
2012). Some researchers use curve fitting with asymmetric
weights (Liland et al., 2011; Felten et al., 2015; Peng et al.,
2010; Mazet et al., 2005). While differing in the requirement
of a priori knowledge on the assignment of observations to
different components, all frameworks, including ours, pro-
pose that greater weight is given to those observations rep-
resenting the background only, and smaller or no weight is
given to those containing contribution from analyte peaks.
Therefore, the aim of the least squares term is to extract the
structural information from the neighboring background re-
gions to infer the baseline structure in the analyte region.

The second term of the objective criterion,

λ
∫ b

a
(ŷ′′(x))2dx, is a regularization term. It constrains

ŷ to vary smoothly on a global level. Overall, the objective

function trades off fit to the spectral data with the smooth-
ness via the tuning parameter, λ. For smaller values of λ

more weight is given to fitting the squared error term of
the criterion. When λ = 0 the unique minimizer is a natural
cubic spline, which will interpolate the original response,
yj . Conversely, for greater values of λ more weight is given
to keeping the curvature small. When λ → ∞, the unique
minimizer is a second-degree polynomial. A spectrum of λ

values ranging from 0 to ∞ will generate a family of models,
from interpolation to the parametric polynomial model.

When faced with a problem of how much smoothing
should be applied to fit the spectral data on hand, effective
degrees of freedom (EDF) represents a more physically in-
terpretable metric to parameterize the regularization of the
smoothing spline than λ (Cantoni and Hastie, 2002). Con-
sider writing the n vector of fitted values, ŷ, as

ŷ = N(NTN + λ�N )−1NTy = Sλy. (4)

Here N denotes an n × n design matrix of the cubic spline
basis functions evaluated at the observed values xj and �N

is
∫ m

l
N ′′

l (x) N ′′
m(x)dx. A linear operator referred to as a

smoother matrix, Sλ differentially shrinks influence of y to-
ward their alignment with the corresponding basis functions.
Consequently, the EDF of a smoothing spline is defined as
the sum of eigenvalues of Sλ:

EDFλ =
n∑

j=1

{Sλ}jj . (5)

EDF is bounded between 2 and n. If λ = 0, Sλ becomes
the n × n identity matrix, and EDFλ = n. Conversely, if
λ = ∞, Sλ becomes the projection matrix from linear re-
gression on x, and EDFλ = 2. The advantage of reformu-
lating the smoothing parameter in EDF over λ is that its
span is bounded and defined with respect to the number of
wavenumbers in the region we want to baseline-correct.

If a desired (target) EDF is defined by a user, smoothing
splines models are usually fitted via the backfitting algorithm
to search for the actual EDF closest to the target. At conver-
gence, the solution can be formulated as

EDFA = argminλ

(
EDFT −

n∑

j=1

{Sλ}jj

)2

, (6)

where EDFA represents the actual EDF determined from∑n
j=1{Sλ}jj (Eq. 5) which minimizes the departure from the

target EDF, EDFT . The backfitting procedure is implemented
in the smooth.spline function of the R statistical package (R
Core Team, 2014), which we used to develop our baseline
correction model. Thus, the user-defined EDFT will form a
basis for model parameter solutions from which the optimal
parameter, EDF∗, will be chosen (Sect. 2.3).

Summarizing in Table 2, we argue that smoothing splines
offers a more adaptive and realistic basis for modeling PTFE
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Table 2. Comparison of key background modeling characteristics pertaining to the proposed and current models

Characteristics Proposed method Current method

Functional form Smoothing splines Polynomial
Type Nonparametric Parametric
Representations Global (EDFT) and local (wj ) Global (nth degree of a polynomial)
Requires pre-scans? No Yes
Requires user’s input? No For every scan

Table 3. The relationship between FT-IR spectrum features and smoothing splines parameters to model those features

Spectrum characteristics Model parameters

Segment Region type Wavenumber range (cm−1) Type of modeled baseline Weights EDF

1
Background upper [4000, W1] Fitted wj = 1

EDF∗Analyte [W1, W2] Predicted wj = 0
Background lower [W2, 1820] Fitted wj = 1

2
Background upper [2000, W3] Fitted wj = 1

EDF∗Analyte [W3, W4] Predicted wj = 0
Background lower [W4, W4 − 1(1ν̃)]a Fitted wj = 1

a The lower background region consists of a single wavenumber adjacent to W4 (Sect. 2.2.1).

variations than the current method by combining local and
global representations. We apply smoothing splines to spe-
cific segments where each analyte region is sandwiched by
neighboring background regions containing a smoothly vary-
ing baseline. As a result, each segment then contains an accu-
rate basis for baseline prediction in the analyte region using
an optimal smoothing parameter, EDF∗.

2.2 FT-IR baseline correction protocol

Using the smoothing splines theory described above, we
formalize the baseline correction protocol in Table 3. The
weights wj from Eq. (3), i.e., wj = 0 in the analyte region
andWA and wj = 1 in the background regionWB, are deter-
mined by sample-specific bounds for analyte and background
regions, W1 to W4. Fig. 2 illustrates a road map for our pro-
tocol. In Step 1, we divide a raw spectrum into two segments.
Segment 1 includes the domain from 4000 to 1820 cm−1, to
capture the maximum extent of the background regions sur-
rounding the first analyte region. Segment 2 includes the do-
main from 2000 to 1500 cm−1 and captures a sufficient ex-
tent of background regions surrounding the second analyte
region. We set W2 to 2220 cm−1, which universally marks
the start of the carbon dioxide (CO2) absorbance band (Pavia
et al., 2008).

In Step 2, we perform a geometric transformation, which
will be used to determine and verify some of the bounds for
analyte and background regions: W1 in Segment 1 and W3 to
W4 in Segment 2. As a linear operation, this geometric trans-
formation preserves the actual absorbance magnitudes. Let a

denote an vector of raw absorbances corresponding to a seg-

ment selected in Step 1 illustrated in Fig. 2. First we rotate aj

about a point a1 such that a1 = a R
1 = a R

N , where a R
j denotes

the rotated vector element and R denotes the corresponding
rotation matrix:

a R =Ra, where R =

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]

and θ = arctan

(
νN − ν1

aN − a1

)
.

Second, we translate a R
j such that a∗

1 = a∗
N = 0, where a∗

j

denotes the resulting translated vector:

a∗ = aR − aR
1 .

Projecting raw absorbances on the local platform axis (a1 =

aN = 0) offers a valuable means of numerically represent-
ing a raw spectrum, without appealing to underlying PTFE
structural specification. The geometric transformation is a
key component in our protocol. First, it allows us to analyt-
ically separate background from the analyte in W4 by deter-
mining a local minimum. Second, it provides visually rec-
ognizable verification valuable for further method develop-
ments, if need be (e.g., precise W1, W3, and W4 are difficult
to recognize in raw data in Fig. 1). For instance, the concept
is extendible to application developments for baseline cor-
rection in the fingerprint region (Day et al., 2010), which is
outside the scope of our current study.

In Step 3, we determine specific bounds, W1 to W4, for an-
alyte and background regions,WA andWB. The benefits of
determining sample-specific W1 and W4 are twofold. First,

Atmos. Meas. Tech., 9, 2615–2631, 2016 www.atmos-meas-tech.net/9/2615/2016/



A. Kuzmiakova et al.: Baseline correction 2621

0.00

0.05

0.10 2)

4000 3500 3000 2500 2000 1500
−0.01

0.00
0.01
0.02
0.03
0.04
0.05

A
b

s
o

rb
a

n
c
e

4000 3500 3000 2500 2000 1500

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Wavenumber (cm
−1)

A
b
s
o
rb

a
n
c
e

4)

4000 3500 3000 2500 2000 1500

0.0

0.2

0.4

0.6

0.8

Segment 1

Segment 21)

A
b
s
o
rb

a
n
c
e

0.00

0.05

0.10 3) W1 W2

4000 3500 3000 2500 2000 1500
−0.01

0.00
0.01
0.02
0.03
0.04
0.05 W3 W4

A
b

s
o

rb
a

n
c
e

STEP 1: Divide a raw 

spectrum into segments. 
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Figure 2. (1) Uncorrected spectrum partitioned into two segments:
Segment 1, 4000–1820 cm−1 and Segment 2: 2000–1500 cm−1.
(2) Transformed segments with zero first and last absorbance val-
ues. (3) Upper panel: initial baseline (gray), final baseline estimated
iteratively via a non-negativity constraint (red). Red vertical lines
delineate background and analyte regions: W1 = 3360 cm−1 and
W2 = 2220 cm−1. Lower panel: final baseline (blue). Blue vertical
lines delineate background and analyte regions: W3 = 1820 cm−1

and W4 = 1520 cm−1. (4) Resultant corrected spectrum.

certain analytes may be absent from a complex aerosol mix-
ture at hand, thereby increasing WB. Second, higher load-
ings may lead to broader tails of certain absorption profiles,
thereby decreasingWB. Section 2.3.1 details a method to de-
termine these bounds.

In Step 4, we subtract final baselines from trans-
formed segments and stitch the baseline-corrected seg-
ments together. In the overlapping region between 2000 and
1820 cm−1 , we use the mean absorbance in the final result.
The absorbance between the rightmost background region
down to 1500 cm−1 is set to zero.

2.3 Selection of model parameters

The problem of selecting model parameters, W1–W4 and
EDF, carries key implications for the quality of fitted base-
lines. Our goal is to select model parameters to reproduce the
structure of sample-specific PTFE variations while minimiz-
ing physically unrealistic FT-IR features, such as negative ab-
sorbance from PM spectra or absorbance from blank spectra.
Referencing an extensive set of baseline-corrected ambient
and blank samples (described in Sect. 2.4), we identify two
common physical expectations, to which generated baseline
should conform: (1) non-negative analyte absorbance and
(2) near-zero blank absorbance.

2.3.1 Determining bounds for analyte and background

regions

We determine W1 iteratively for each value of the
smoothing parameter to satisfy a non-negativity constraint
near the boundaries. An initial (conservative) estimate of
W1 = 3720 cm−1 is congruent with our understanding of the
absence of absorption bands over the subdomain between
4000 and 3720 cm−1 (Pavia et al., 2008); yet, smaller contri-
butions from certain functional groups, such as alcohol OH,
increase the likelihood of negative background absorbance
if W1 remains underspecified. Therefore, we begin with the
initial estimate (gray baseline in Fig. 2 Step 3) and iteratively
decrease W1 until the non-negativity constraint is satisfied or
until W1 reaches W2. We set W2 to 2220 cm−1, which univer-
sally marks the start of the CO2 absorbance band (Pavia et al.,
2008). Similarly, we set W3 to 1820 cm−1, which universally
marks the start of the carbonyl absorbance band observed in
all PM samples.

To accommodate the specifications of individual samples,
W4 is determined as a wavenumber ν̃, for which a∗

j attains its
minimum over the set of candidate values between 1520 and
1600 cm−1:

W4 = argminj

{
a∗
j : ν̃j ∈ [1520, 1600]

}
, (7)

where a∗
j are transformed absorbances from Step 2. To min-

imize the interference from the neighboring alkane peak,
starting to absorb around 1510 cm−1 (Pavia et al., 2008), we
limit the lower background region to a single wavenumber
adjacent to W4, W4 − 1(1ν̃).

2.3.2 Selection of EDF

To parameterize the influence of EDF on the quality of fit-
ted baselines via the two expectations, we derive two EDF-
optimizing metrics: (1) a negative absorbance fraction for
ambient samples and (2) total normalized absolute blank ab-
sorbance for blank filters. We summarize the metrics in Ta-
ble 4.

The negative absorbance fraction (NAF) represents the
contribution of negative analyte absorbance, ‖aA-‖1, to the
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Table 4. Relationship between fitted baseline characteristics as a result of varying EDF and EDF-optimizing metrics to represent these
characteristics

Segment Physical criterion Sample type Wavenumber range (cm−1) Representation

1 1 Near-zero blank
absorbance

Blank [4000, 2500], [2200, W2] Total normalized absolute
blank absorbance, ‖aB‖∗

1
2 Non-negative analyte

absorbance
Ambient [W1, 2500] Negative absorbance

fraction, NAF

2 1 Near-zero absorbance Blank [2000, 1500] Total normalized absolute
blank absorbance, ‖aB‖∗

1
2 Non-negative analyte

absorbance
Ambient [W3, W4] Negative absorbance

fraction, NAF

total analyte absorbance, ‖aA‖1:

NAF =
‖aA-‖1

‖aA‖1
× 100%,

where ‖ · ‖1 denotes the 1-norm magnitude of a vector (sum-
mation of all absolute values of vector elements). NAF is cal-
culated across the entire wavenumber range in the analyte
part of in a given segment, excluding the CO2 absorbance
band.

Total normalized absolute blank absorbance, ‖aB‖∗
1, quan-

tifies the model’s departure from the true result, zero ab-
sorbance, per wavelength in a given segment. It is calculated
as a 1-norm magnitude of blank absorbances, ‖aB‖1, nor-
malized by the number of wavenumbers in the corresponding
wavenumber range (Table 4), nν̃ :

‖aB‖∗
1 =

‖aB‖1

nν̃

.

‖aB‖∗
1 is calculated across the entire wavenumber range in

a particular segment excluding the CO2 absorbance band.
We select EDF∗ from a range of EDFT by evaluating min-
ima from both ‖aB‖∗

1 and NAF. To that end, Figs. 3 and 4 in
Sect. 3.1 present a qualitative and quantitative evaluation for
varying EDFT together with EDF∗ selection.

2.4 Experimental data

We apply smoothing splines baseline correction to 794 par-
ticulate matter (≤ 2.5 µm in diameter, PM2.5) samples col-
lected on PTFE filters and 54 blank PTFE filters. The par-
ticulate matter samples were collected at IMPROVE sites on
every third day in 2011. IMPROVE absorption spectra had
been used in a previous studies (Ruthenburg et al., 2014;
Dillner and Takahama, 2015a, b) which detail the mechan-
ics of FT-IR spectra collection. More important for this study
is the level of spectral preparation applied prior to the back-
ground correction. Following the practice established in Dill-
ner and Takahama (2015a, b) we use unmodified spectra
in which values interpolated during the zero-filling process
were removed. Prior to applying the smoothing splines base-
line, we truncate the original wavenumber domain between

Figure 3. 54 randomly selected ambient samples (left) and 54
blank samples (right) corrected by varying EDFT. Each spectrum
is color-differentiated. The CO2 absorption band between 2500 and
2220 cm−1 not associated with PM composition is shaded in color.
The x axis ranges from 4000 to 1500 cm−1 in both left and right
panels.

4000 and 420 cm−1 to capture the subdomain between 4000
and 1500 cm−1 (1944 wavenumbers). As a reference, the
same subdomain is used in the polynomial method (Taka-
hama et al., 2013). In contrast to Takahama et al. (2013), we
do not apply smoothing to remove water vapor interference
and carbon dioxide to minimize the number of preprocessing
steps.
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Figure 4. Median NAF in Segment 1 (a) and Segment 2 (b) cal-
culated from 794 ambient samples (black points). Lower and up-
per bounds of shaded areas denote 3rd and 97th percentiles. Mean
‖aB‖∗

1 for 2 ≤ EDF ≤ 12 in Segment 1 (c) and Segment 2 (d), cal-
culated from 54 IMPROVE 2011 laboratory blank samples (black
points). Shaded areas denote 3 standard deviations from the mean.
In all panels, the black line is drawn to capture the overall trend.
While we select the interval 2 ≤ EDFT ≤ 12 specifically to high-
light each metric’s minima, we present results from the entire inter-
val 2 ≤ EDFT ≤ n for completeness in Fig. S2.

2.5 Applications for model evaluation

2.5.1 Cluster analysis

Cluster analysis with FT-IR measurements generates natu-
ral categories for PM samples based on spectral similarity.
These categories can represent mixture classes of chemically
complex aerosols, and their association with meteorologi-
cal and collocated measurements has been shown to provide
complementary information for source apportionment (Taka-
hama et al., 2011; Corrigan et al., 2013). For this purpose,
each spectrum is SSB-corrected to isolate the analyte contri-
bution to the IR absorbance, normalized by its 2-norm mag-
nitude to emphasize variation in relative composition rather
than absolute concentration, and grouped according to the
hierarchical clustering algorithm of Ward (1963). There are
inherent differences in the vapor artifacts between the PB-
corrected and SSB-corrected spectra that are not critical for
the algorithms used for quantification of functional groups,
or TOR organic and elemental carbon but influence clusters
formed from the naïve clustering approach described above.
As the PB-corrected signal requires differencing the IR spec-
trum of the PTFE before and after sample collection, wa-
ter vapor and CO2 signals remaining in the PB-corrected
spectra represent differences in concentrations present in the
chamber during both scans, whereas SSB-corrected spectra
only contain the amount present in the latter. Therefore, re-
gions where these artifacts are present (̃ν > 3600 cm−1 and

ν̃ < 2400 cm−1 in Segment 1) are excluded from the normal-
ization and clustering, though some water vapor artifact over-
lapping with analyte absorption remains in Segment 2. In ad-
dition, seven samples with specific features or low signal-to-
noise ratios are removed from the set prior to the clustering
as they are not well discriminated by the algorithm, or influ-
ences the grouping of the rest of the spectra.

2.5.2 Peak fitting

We apply the peak-fitting algorithm based on parameter con-
straints described by Takahama et al. (2013) to both SSB- and
PB-corrected spectra and evaluate the differences between
two baseline correction methods by comparing peak areas.
Peak areas correspond to integrated absorbances from line
shapes fitted for alcohol COH, carboxylic COH, alkane CH,
carbonyl CO, and amine NH. We examine the comparabil-
ity and implications of replacing the PB correction approach
with SSB correction in future analyses of this type.

2.5.3 Prediction of TOR organic carbon (OC) and

elemental carbon (EC)

Dillner and Takahama (2015a, b) recently demonstrated that
collocated PTFE samples analyzed by FT-IR and quartz fiber
filters analyzed by TOR can be used to build calibration mod-
els that predict TOR-equivalent OC and EC concentrations
from new FT-IR spectra. One of several calibration models
with accuracy and precision on a par with TOR precision can
be constructed when the concentration range and composi-
tion of carbonaceous samples in the calibration set approx-
imately resemble those in the test (challenge) set. For this
work, we use an identical procedure as described by Dill-
ner and Takahama (2015a, b) for building calibration and
test sets from 794 IMPROVE 2011 samples chronologically
stratified within each site. The spectra are SSB-corrected and
calibration and test samples are drawn to contain two-thirds
and one-third of the entire set, respectively. Only TOR OC
and EC predictions necessitate dividing the data set into cal-
ibration and test subsets; the previous two applications, clus-
tering and peak fitting, are applied to the entire data set.

3 Results

At the physical level, we evaluate the feasibility of our model
by selecting the optimal smoothing parameters in Sect. 3.1
and by presenting the sample-specific bounds for analyte and
background regions in Sect. 3.2. At the application level, we
begin our evaluation of smoothing splines baseline-corrected
spectra with visual and cluster analysis in Sect. 3.3, followed
by functional group quantification analysis in Sect. 3.4, and
predicted TOR OC and EC analysis in Sect. 3.5.
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3.1 EDF selection

Qualitatively, in Fig. 3 we compare the behavior of PM (left
panel) and blank samples (right panel) using varying EDFT

(4, 5, 7, and 200, from top to bottom). In this analysis we
used all 54 blank samples and randomly sampled 54 out of
794 PM samples to keep the counts equal and allow for rep-
resentative cross-comparison. The trend from top to bottom
shows both PM and blank samples exhibit increasing sen-
sitivity to the amount of smoothing applied. With increas-
ing EDFT, baseline-corrected ambient spectra begin to ex-
hibit negative analyte absorbance (left column). Simultane-
ously, baseline-corrected blanks in the region at 3700–2500
and 1820–1600 cm−1 begin to depart from our target, zero
absorbance (right column).

Quantitatively, in Fig. 4 we evaluate the impact of EDFT

on negative absorbance fraction metric, NAF, (top panel) and
total normalized absolute blank absorbance metric, ‖aB‖∗

1,
(bottom panel) in segments 1 and 2 (left and right panel).
Horizontal panels share the same x axis and vertical pan-
els share the same y axis to allow for representative cross-
comparison. Therefore, each plot in the matrix in Fig. 4 cor-
responds to a unique condition in terms of a metric and seg-
ment. Starting from Fig. 4 A (top left), we find that any EDFT

between 2 and 4 minimizes median NAF and its variance si-
multaneously: median NAF ≈ 0.0% and variance = 0.44 %.
Moving down to Fig. 4c (bottom left), we look at the ef-
fect of EDFT on blank absorbance in Segment 1. We find
that any EDFT between 2 and 4 generates very low ‖aB‖∗

1:

mean ‖aB‖∗
1 = 3.42 ×10−4 and 3σ (the extent of shaded ar-

eas) = 2.79 ×10−4. Technically, the minimum variance in
‖aB‖∗

1 occurs for EDFT = 5 but the difference is less than
1.5 %. Of the two metrics, we prefer to minimize NAF over
‖aB‖∗

1 as NAF represents a more robust metric (the sample
size is an order of magnitude greater and in future applica-
tions the choice of EDFT will likely affect disproportionally
more PM samples than blank samples). To finalize the choice
of EDFT from 2 ≤ EDFT ≤ 4, we now consider how these
EDFT values compare to EDFA obtained by the smoothing
splines algorithm from Eq. (6). We plot the distributions of
EDFA given EDFT in Segment 1 using all 794 PM samples
and 54 blank samples in Fig. 5a and b.

The extensive number of knots to form bases for fitting
splines (that is, wavenumbers in observed absorbances used
for fitting: xj for which wj 6= 0 from Eq. 1) creates limita-
tions on minimum achievable EDF. This is particularly acute
when EDFT is low (< 7 in Segment 1 and < 3 in Segment
2). For instance, if we apply baselines with EDFT = 4 in
Segment 1 (Fig. 5a and b), the distribution of EDFA will
span between 4.9 and 6.1 depending on the number of basis-
forming knots (Fig. S3). However, applying baselines with
target EDF < 4 will lead to identical EDFA results, confirm-
ing that the set of EDFA between 4.9 and 6.1 is indeed the
minimum achievable EDF in the search domain. Therefore,
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Figure 5. Box-and-whisker plots representing distributions of
EDFA for a given EDFT used in Segment 1 (a, b) and Segment 2
(c, d) in both PM (n = 794) and blank samples (n = 54). Median
and whiskers in each box-and-whisker plot are highlighted in red.

out of EDFT candidates for EDF∗ we choose 4 as it rep-
resents the actual, true parameters most accurately; given
EDF∗ = 4 we obtain EDFA ∈ ([4.9, 6.1] for PM samples and
[4.9, 4.9] for blank samples.

In Fig. 4b (top right) we start by limiting the evaluation in
Segment 2 to EDFT for which NAF variance is greater than
0.22 % (roughly a half of the value from the best-fit model
in Segment 1). This leaves us with 4 ≤ EDFT ≤ 7. Out of
this subset, we find selecting 4 as EDFT minimizes ‖aB‖∗

1 in

Fig. 4d; mean ‖aB‖∗
1 = 1.71×10−4, 3σ = 1.06×10−4. Ad-

ditionally, and importantly, 4 represents the most parsimo-
nious solutions without visually distorting the blank base-
line and shape of the PM peaks (Fig. 3). By selecting
EDF∗ = EDFT = 4, now the actual EDF parameters match
the target EDF parameter (Fig. 5a and d).

3.2 W1 and W4

Figure 6 presents empirical cumulative distributions’ func-
tions of W1 and W4 from PM and blank samples. Distribu-
tion of W1 in PM samples spans values between 3300 and
3710 cm−1, with 50 % of samples having W1 > 3700 cm−1,
reflecting sample-specific PM mixture composition (illustra-
tion of spectra in Fig. 3a). W1 in blank samples was deter-
mined to be 3710 cm−1 (Fig. 3b). Distribution of W4 in PM
samples spans values between 1520 and 1600 cm−1 , reflect-
ing sample-specific ammonium absorbance width (Fig. 3a).
W4 in blank samples was determined to be 1600 cm−1 ,
which is consistent with our physical expectation about zero
amine absorbance (Fig. 3b).

3.3 Cluster analysis

The number of samples from SSB-corrected spectra not shar-
ing the same relative labeling as those from PB-corrected
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Figure 6. Empirical cumulative distribution functions representing
distributions of W1 and W4 in PM samples (n = 794) in red and
blank samples (n = 54) in blue.

spectra varies with the total number of clusters used to parti-
tion the spectra set. Figure S1 in the Supplement shows that
the discrepancy for 787 samples increases as the set is par-
titioned into a larger number of clusters. The difference in
sample labeling varies between 5 % for two clusters and 11 %
for five clusters; the increase is observed for larger number of
clusters because spectra are grouped according to finer vari-
ations in their features. Feature (wavenumber) selection and
advanced algorithms can lead to more robust clustering that
is less sensitive to small variations in spectra (Hastie et al.,
2009), but visual comparisons of spectra in the present form
of aggregation can provide useful interpretations as discussed
below. The inter-cluster differences will further depend on
the number of clusters and the type of clustering algorithm.
Since there is no absolute reference for baseline-corrected
spectra, these discrepancies speak to the differences between
two candidate methods.

Figure 7 shows spectra from the two baseline correction
algorithms grouped into categories using the approach de-
scribed in Sect. 2. Type I spectra are selected manually, and
Types II–V are determined by a four-cluster solution by hier-
archical clustering (with a discrepancy rate between PB and
SSB of 10 %). Type I spectra display low absorbance in the
alcohol COH region, visible methylene paired peaks (2920
and 2850 cm−1) from CH2 bonds present in vegetative detri-
tus (Hawkins and Russell, 2010), and the largest absorbance
in the carbonyl CO region (centered near 1700 cm−1) com-
pared to the rest of the sample spectra. This spectra type indi-
cates a dominant contribution from biomass burning aerosol
spectra (Hawkins and Russell, 2010; Takahama et al., 2011).
These two samples were collected in St. Marks, FL, during
January and February; fire burning is prescribed near this
location during January through May of each year. Type II
spectra also contain sharp methylene peaks but also stronger
absorption above 3100 cm−1 associated with alcohol COH
and less pronounced carbonyl CO absorption. Sixty percent
of the 132 SSB-corrected spectra are found in Phoenix, AZ,
so this is interpreted to be associated with urban aerosol
(we note that Phoenix samples may be overrepresented in

Figure 7. Cluster membership for polynomial and smoothing
splines methods. The region between 2500 and 2200 cm−1 is
masked to indicate the region of CO2 absorption not associated with
aerosol composition.

this spectra set as two sampling sites out of the seven ana-
lyzed in this work are located in this city). Similar features
have been found in spectra from the urban environment of
Mexico City (Liu et al., 2009). Type V contains spectra for
which peaks near 3200–3100 cm−1 are most prominent, in-
dicating the significant presence of ammonium. These fea-
tures have commonly been reported in fossil fuel burning
samples or factor analysis components (Hawkins and Rus-
sell, 2010; Takahama et al., 2011; Guzman-Morales et al.,
2014) that have been assigned by correlation with combus-
tion tracers (e.g., V, Cr, Ni, Zn, As) and back trajectory anal-
yses. These aerosols presumably arise from a combination
of aged background aerosol and aerosols produced locally
in the presence of high oxidant concentrations of polluted
environments (Liu et al., 2011). However, 87 % of the 322
SSB-corrected Type V samples are found in the five non-
urban sites, suggesting that in this data set this spectroscopic
signature is more indicative of aged secondary aerosol. Am-
monium concentrations are often temporally correlated with
oxidized organic aerosol (e.g., Jimenez et al., 2009; Lanz

www.atmos-meas-tech.net/9/2615/2016/ Atmos. Meas. Tech., 9, 2615–2631, 2016
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slope = 1.02
r = 0.98
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Figure 8. Integrated peak area corresponding to different func-
tional groups (a–e) from polynomial baseline and smoothing splines
baseline-corrected spectra. Slope magnitudes represent the slope of
the regressed line. The silver line represents a one to one line.

et al., 2010) which increases in abundance toward rural areas
(Zhang et al., 2007). Types III and IV share some combina-
tion of features with types I, II, and V, with the ammonium
peak near 3200 cm−1 more visible in type IV and larger con-
tributions from methylene peaks visible in type III. The peak
near 3700 cm−1 present in several type IV spectra is sugges-
tive of phenolic compounds also present in biogenic aerosol
(Bahadur et al., 2010).

This analysis demonstrates that the new SSB correc-
tion method can generate spectra similar in profile to PB-
corrected spectra used in past studies, providing a basis for
further mixture analysis.

3.4 Peak fitting analysis

Figure 8 presents integrated absorbances for alcohol COH,
carboxylic COH, alkane CH, carbonyl CO, and amine NH
quantified from PB and SSB-corrected spectra. For all func-
tional groups but carboxylic COH the discrepancy between
the two methods is < 10 % (the slope of the regressed line
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Figure 9. Predicted FT-IR OC vs. measured TOR OC using smooth-
ing splines-corrected spectra for (a) calibration set (n = 517) and
(b) test set (n = 268). Predicted FT-IR EC vs. measured TOR EC
using smoothing splines-corrected spectra for (c) the calibration set
(n = 501) and (d) the test set (n = 268).

< 1 ±0.1). The difference is on the same order of magnitude
as the cluster discrepancy rate. The bias in carboxylic COH
fitting is likely due to the fact that its line shape was fixed
specifically to the PB-corrected spectra (Takahama et al.,
2013), and is more sensitive to the absorption profile to which
it is fitted than the Gaussian peaks with adjustable parameters
used for fitting other functional groups. The bias in may be
alleviated by rederiving the carboxylic COH line shape for
the smoothing splines method, or applying an adjusted mo-
lar absorption coefficient. The bias of 13 % is on the order of
variation in absorption coefficients of carboxylic COH esti-
mated for different organic acid compounds, and also within
uncertainty for an absorption coefficient estimated from the
mean of these values (Takahama et al., 2013).

3.5 Prediction of TOR organic and elemental carbon

Figure 9 presents performance metrics from TOR OC and
TOR EC predictions obtained from SSB-corrected spectra.
All fits are characterized by high coefficients of variations
(R2 ≥ 0.94) and near-zero bias (≤ 0.01 µg m−3), demonstrat-
ing accurate predictions. With respect to predicted TOR OC,
performance metrics from the test set (Fig. 9b) are on a par
with those obtained from raw spectra and PB-corrected spec-
tra. Specifically, error (0.09 µg m−3) and normalized error
(10 %) are on the same order as those obtained from raw
spectra (error of 0.08 µg m−3, normalized error of 11 %) and
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Table 5. MDL and precision for FT-IR OC and TOR OC.

Carbon type Metric TOR FT-IR FT-IR FT-IR
raw spectrad PB-corrected spectrad SSB-corrected spectra

OC MDL (µg m−3)b, c 0.05 0.14, [0.11, 0.28] 0.11, [0.08, 0.17] 0.06, [0.04, 0.09]
% below MDL 1.5 2.6 0.7 0.0
Precision (µg m−3)b 0.14 0.12 0.21 0.06
Mean blank (µg) NRe 0.1 ± 1.5 1.9 ± 1.2 0.1 ± 0.6

EC MDL (µg m−3)b, c 0.01 0.02, [0.01, 0.02] 0.01, [0.00, 0.01] 0.01, [0.01, 0.02]
% below MDL 3 1 2 1
Precision (µg m−3)b 0.11 0.04 0.06 0.06
Mean blank (µg) NRe 0.06 ± 0.17 0.08 ± 0.15 0.01 ± 0.12

b Concentration units of µg m−3 for MDL and precision are based on the IMPROVE volume of 32.8 m3. c Numbers inside the interval denote 95 %
confidence intervals on the estimate. d (Dillner and Takahama, 2015a, b). e Not reported.

PB-corrected spectra (error of 0.08 µg m−3, normalized er-
ror of 12 %) (Dillner and Takahama, 2015a). In Table 5 we
show that applying SSB leads to a lower minimum detection
limit (MDL) of 0.06 µg m−3), which leaves no samples be-
low MDL. This is statistically different from the no baseline
case, where MDL is 0.14 µg m−3. Precision (0.06 µg m−3)
obtained from SSB-corrected spectra is on the same order as
that obtained from raw (0.12 µg m−3) or PB-corrected spec-
tra (0.21 µg m−3).

Likewise, TOR EC performance metrics from the test set
(Fig. 9d) are on a par with those obtained from raw spectra
and PB-corrected spectra. Specifically, error (0.04 µg m−3)
and normalized error (27 %) are on the same order as
those obtained from raw spectra (error of 0.02 µg m−3, nor-
malized error of 21 %) and PB-corrected spectra (error of
0.04 µg m−3, normalized error of 24 %) (Dillner and Taka-
hama, 2015b). Table 5 shows that MDL (0.01 µg m−3) ob-
tained from SSB-corrected spectra is similar to MDL ob-
tained from raw or PB-corrected spectra (all ≤ 0.02 µg m−3).

In summary, SSB-corrected spectra OC and EC predic-
tions from blank and ambient samples are as accurate and
precise as those from raw or PB-corrected spectra. No ad-
ditional bias is introduced as a result of SSB correction im-
plementation. However, the reduction in the complexity of
baseline correction is amenable for scaling up to a large num-
ber of samples. To some extent, PLS is a robust regression
method and is able to effectively remove contributions to the
signal which are not related to the target analyte. While indi-
vidual predictions vary, we show in Fig. S4 that the quality
of TOR OC and EC predictions is not statistically affected by
the choice of EDF between 2 and 30.

4 Conclusions

Within the past few years the guided polynomial baseline-
corrected algorithm has been applied to characterize the am-
bient FT-IR spectra by classifying mixtures (Russell et al.,
2009; Liu et al., 2009; Takahama et al., 2011; Ruthenburg

et al., 2014), quantifying organic functional groups (Taka-
hama et al., 2013), and predicting TOR OC and EC (Dill-
ner and Takahama, 2015a, b). Here our results demonstrate
that similar estimates (cluster discrepancy rate of 10 %,
functional group difference ≤ 13 %, and R2 ≥ 0.94 %, bias
≤ 0.01 µg m−3, error ≤ 0.04 µg m−3 in TOR OC and EC
predictions) can be obtained using a new, automated base-
line correction protocol. Contrasting with the polynomial
method, this paper detailed the statistical framework, which
applies nonparametric smoothing splines to model sample-
specific PTFE variations, reduces the number of free param-
eters from four to one, and selects the parameter by mini-
mizing two evaluation metrics: negative analyte absorbance
and blank absolute absorbance. The proposed protocol uni-
fies and simplifies many of the steps in existing techniques
while eliminating the need for expert intervention in man-
ually adjusting background regions specific to each sample.
More importantly, the automated solution allows us and fu-
ture users to evaluate its analytical reproducibility while min-
imizing reducible bias due to current default background re-
gions or a variability in human judgement in adjusting these
regions. The solution was developed as a direct response to
the growing body of research on statistical applications for
characterization of FT-IR atmospheric aerosol samples col-
lected on PTFE filters and a rising interest in analyzing FT-
IR samples collected by air quality monitoring networks. As
a result, we anticipate that the model will enable FT-IR re-
searchers and data analysts to quickly and reliably analyze a
large amount of data. Although the exact reduction in user
time may be difficult to generalize due to high variability
across different users, we reason that the following approxi-
mation applies. Qualitatively, if N values are considered for
each free parameter in each method, then the amount of time
for expert examination of each model solution scales up with
N4 for the polynomial method (due to four boundary points
as free parameters) and N for the smoothing splines method
(due to 1 EDF parameter). Additionally, and importantly, the
evaluation metrics, which we established in this manuscript,
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have been shown to sufficiently simplify the parameter selec-
tion process for users of any level of experience.

One of the important avenues for future research in-
clude implementing sample-specific EDF when the param-
eter choice affects model performance significantly across
samples. As Fig. 3 demonstrates, the individual differences
between EDFT 4 and 7 in Segment 1 are negligible; on the
whole these parameters do a very similar job in minimizing
the undesirable quantities (negative analyte absorbance and
blank absorbance) in Fig. 4. However, we anticipate that we
and other FT-IR analysts may benefit from sample-specific
EDF when analyzing data sets collected under different con-
ditions, be it a different sampling flow rate or filter type.
Another line of future work may include extending this ap-
proach to the remaining part of mid-IR absorbance spectrum
(1500–420 cm−1). The fingerprint region contains important
functional groups (Day et al., 2010), such as organonitrates,
which can benefit from an adaptive baseline correction al-
gorithm. As demonstrated in this paper, the general strat-
egy of (1) segmenting baseline regions of interest such that
they contain a smoothly varying (or uniformly sloping) base-
line and (2) using conservative estimates for background re-
gions, and (3) using FT-IR physical criteria (such as mini-
mal blank absorbance, non-negative analyte/background ab-
sorbance, and no baseline discontinuities) for parameter se-
lection can provide a good starting point for these tasks.

The automated smoothing splines baseline correction
method has been implemented in R package APRLssb and
can be accessed at this repository: https://bitbucket.org/
stakahama/aprlssb by contacting the corresponding author.

The Supplement related to this article is available online

at doi:10.5194/amt-9-2615-2016-supplement.
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