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Abstract—Testing has always been a crucial part of application
development. It involves different techniques for verifying and
validating the features of the target systems. For a complicated
and/or complex system, tests are preferred to be carried out in
different stages of the development process and as early as possible
to avoid extra costs due to the errors caught at later stages. With the
increasing system complexity, the cost of testing is also increasing
in terms of resources and time, which introduce further impact
against development constraints such as time-to-market. On the
other hand, more and more associated electronic components lead
to an ever-increasing system complexity in high reliable applica-
tions such as automotive ones different from heterogeneous systems
such as advanced driver assistance systems, sensor fusion systems,
etc. In this article, we present a testing framework utilizing the
continuous integration (CI) solution from software engineering, a
commercial virtual platform, and a hardware field programmable
gate array based verification platform focusing on the engine con-
trol unit to demonstrate the feasibility of the proposed method. The
efficiency and viability of the CI method have been demonstrated
on a real heterogeneous automotive system.

Index Terms—Automotive electronics, reliability, system
validation, system verification, testing.

I. INTRODUCTION

T
ESTING, as a crucial part of system development, has

attracted a lot of attention over the years, especially when

electronic devices are concerned. It involves steps at different

stages of development for verifying and validating the features

and functionalities of the target design.

Taking integrated circuit (IC) design as an example, different

techniques have been developed for guaranteeing the correctness

of the design at different development phases. Simulation-based

techniques could be applied at different abstraction levels, from

system behavioral level to register transfer level and down to

post-synthesis/post-layout gate level, where the developer has

fine observability and control over the internal behavior of the

design. As the abstraction level goes down, the simulation results

become more accurate w.r.t. the real system; however, the cost
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in term of simulation time and resources increase rapidly along

the scale of the target design.

Meanwhile, emulations could be carried out for speeding up

the verification process as low-level details are ignored. It is

quite beneficial to have an emulation platform especially when

both hardware and software developments are involved.

The emulation platform usually allows hardware and software

co-design by providing software developers a base platform to

start even without real hardware. Besides, software developers

could also provide feedback to hardware developers at an early

stage to tune the system regarding features, performances, or

other constraints to avoid cost due to hardware modifications at

a later stage.

As the complexity of the target design increase, testing cost

including time and resources (e.g., power consumption) be-

comes one of the major constraints, besides the desired level

of coverage. Automated test pattern generation (ATPG) is often

used for generating test inputs for IC design test with the

optimization of reducing the number of input vectors while

maintaining an acceptable test coverage, in order to reduce the

time cost and power consumption for executing test (considering

the volume of manufacturing). Besides, when design complex-

ity scales up, especially when it involves both hardware and

software, it quickly becomes infeasible for manually generating

test inputs (or at least the entirety of it, as expertise of the

internal knowledge of the design, could ease the optimization

effort of ATPG).

However, for some applications such as automotive, low-level

testing techniques are not sufficient to guarantee the adoption of

qualified commercial-off-the-shelf (COTS) components within

an automotive system. In general, COTS components adopted

in automotive systems undergo various kinds of tests, from the

manufacturer to the final user (e.g., manufacturing and low-level

input/output tests); however, these tests do not certify that func-

tions that Car Makers are interested in are verified and, thus,

properly pass all the functional requirements of the integrated

automotive system.

Thus, regarding testing throughout application development,

the focus is more on functional test and system integration test.

Nevertheless, techniques commonly used for IC design testing

(and software test) could be adopted in automotive application

testing, especially considering the number of electronic com-

ponents in modern vehicles is increasing rapidly with blooming

Internet-of-Things technology and the rise of hybrid and electric

cars.
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On one side, the growth of the number of electronic compo-

nents in modern systems brings new challenges for testing as

even though qualified COTS could be used. Moreover, they still

need to be tested by the manufacturer either for an individual

functional test or for system integration (or both) where hard-

ware and software (and mechanical) components must be tested.

Since the software is involved, the availability of a hardware

emulation platform could allow the software development and

test to be carried out in parallel with hardware (and mechanical)

development, thus greatly reduce the cost in terms of time.

On the other side, automotive applications as safety-critical

application have further constraints, such as the ones defined in

standards [1], to satisfy besides the requirements for functional

requirements. It is not enough to perform tests under normal

conditions, not only because of the probability of failure of

the COTS components used but also considering even at sea

level electronic components could still be affected by radiation

particles [2], which could lead to single event effects (SEEs)

and propagate further causing system-level misbehavior. This

phenomenon is becoming more and more serious and frequent

as the IC technology progresses, as smaller node dimensions,

higher clock frequency, and lower voltage make the components

more susceptible to SEEs induced by radiation particles [3].

Different techniques could be applied to perform such tests. For

example, a simulation-based fault injection campaign as one of

the low-cost techniques could be used to mimic the SEEs in the

components and investigate the design behaviors. Radiation test

experiments using an accelerated particle beam to induce the

SEEs could provide more accurate results related to radiation

effects.

Thus, as per the focus of this article, the test has to be

taken into consideration at an early stage of the design and

with consideration of abnormal operating conditions, such as

component misbehavior due to radiation effects. In this arti-

cle, as the main contribution, a new test framework taking

advantage of continuous integration (CI) solution and different

test platforms for automotive applications with a unified API

to allow automatic test cases generation across test platforms

is presented. The rest of the article is organized as follows:

Section II introduces state-of-the-art techniques regarding the

CI solution and available test platforms for systems including

automotive ones; Section III presents the proposed framework

in detail; Section IV provides experimental results and analysis;

Section V draws conclusions and discusses future work.

II. STATE OF THE ART

Different techniques have been used to evaluate the reliability

of hardware electronic systems, such as fault tree analysis and

reliability block diagrams. When the integrated system embeds

hardware and software modules, the analysis is increasingly

difficult due to the heterogeneous characteristics of the system.

Several kinds of approaches exist for evaluating the reliability of

complex systems. They are grouped into two main categories:

simulation- and emulation-based approaches. Simulation tools

are based on a model of the system under evaluation and they

may include fault injection capabilities in order to force the

simulation of the system to unexpected behavior. On the other

side, emulation approaches rely on a hardware prototype or on

the effective hardware device used on the final manufacturing

stage of the system, which allows the verification of the sys-

tem functionality when hardware components are used. Fault

injection methods for emulation platforms are also available

but generally have different levels of applicability due to the

intrusiveness of the approaches.

High-reliability systems integrate different electronic de-

vices typically architected by heterogeneous system-on-chip

designs. Due to the significant complexity, modern simulation

approaches such as the work of Mishra et al. [4] rely on model-

based solutions including hardware-level simulation engines

that perform post-silicon validation. However, when the com-

plexity of the system broads, these kinds of solutions became

extremely time-consuming, therefore high-level model-based

design and simulation approaches [5] are increasingly adopted

to cope with the challenges of complex system simulation.

On the other hand, the evaluation of the reliability of complex

systems does not only require efficient and accurate simulation

tools, but it is necessary to adopt methods capable to inject

faults into the system. The introduction of faults into a system

with the specific purpose to evaluate the behavior and provide

a measurement of the reliability is recommended by several

safety standards including the ISO 26262 for automotive safety

[6]. Several fault injection methods were developed aiming at

inserting hardware fault models (e.g., bit-flip or stack-at) into

the system, in order to represent real hardware faults such as

Xception [7] or GOOFI [8]. The main innovation of these tools

has been the possibility to insert hardware-based faults into the

system, however, their capability to insert functional faults or

software faults is limited.

In order to overcome this limitation, several hardware emu-

lation platforms were also proposed during the last decade. The

main goal of hardware emulation is the possibility to perform a

quasi-real-time emulation of heterogeneous systems composed

of electrical machines, controllers, drive systems, and protec-

tive devices. In order to achieve hardware platforms able to

accurately modeling of the system under evaluation, several ap-

proaches rely on field programmable gate array (FPGA) devices

[9]. Thanks to their reconfigurable hardwired architecture, these

devices can embed a large amount of logic, as well as customized

digital signal processing modules, thus they are able to satisfy

the demand of high precision emulation [10].

The role of FPGA in today’s hardware-in-the-loop (HIL)

emulation is extremely growing. Several approaches are based

on computational acceleration only, such as fixed-point com-

putations [11] or floating-point hardware emulation used as

computing estimators [12]. FPGA can be effectively used also

to perform fault injection during the emulation of the system.

In this case, the fault injection mechanism is based on the

insertion of errors within the configuration memory of the device

[13]. FPGA-oriented fault injectors are very popular since they

allow us to perform the insertion of errors into a specific area

of the device and to control accurately the precision of the

process. Even if efficient and accurate, previously developed

FPGA-based fault injection has limitations with the type of
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emulated systems. Generally, the system under emulation is a

stand-alone computational unit not including other heteroge-

neous components. Therefore, in order to perform the overall

emulation or simulation of the entire system, it is necessary to

create an ad hoc interface module between other platforms. This

aspect limits the effective usage of FPGA accelerators in context

where heterogeneous components are used. One key concept

of our approach is acting this limitation. Thus, we create an

agile method to perform interoperability between the emulated

hardware systems, the overall HIL platform and the simulation

engine.

The concept of agile methods has progressively taken its pop-

ularity in software engineering as well as in the area of embedded

system design. The adoption of eXtreme Programming and CI

could speed up the development process and tighten the commu-

nication among developers of different roles comparing to the

traditional waterfall model [14] to allow more flexible and faster

response to requirement change and customer feedback (which

includes test report from test engineers as for designers). There

are already plenty of research works and user reports of adopting

agile methods in embedded system design, as described by Kaisti

et al. [14]. Due to the diversity of different characteristics posed

by various embedded system applications, such as real-time

constraint and reliability requirements, certain practices in agile

methods need to be tuned when applied in the embedded environ-

ment. For instance, Ronkainen and Abrahamsson [15] pointed

out that the beginning phase of architectural design could not

be avoided, and documentations and specifications have to be

managed in a suitable way. When hardware is involved, Lima

et al. [16] argue that at the beginning of the project constraining

the availability of usable resources through early-stage software

and hardware co-design experiments using prototyping tech-

niques could help to avoid the later stages being affected by

whole-project changes.

In the automotive field, component and/or system behavioral

modeling for simulation or emulation has already been used

for a long time to tackle problems such as vehicle emission

control [17]–[20], energy optimization [20]–[22], etc. HIL could

be used at a later stage when (part of) hardware is available to

verify the result of simulation/emulation from an earlier stage

and/or to validate the software implementation, for example,

in [23]–[25]. Similarly, in the aerospace field, model-based

system engineering is a widely adopted methodology for ef-

ficient system analysis and test rules insertion as proposed by

Zhang et al. [26].

Meanwhile, as the development of a complex and compli-

cated system usually involves a team consists of designers and

engineers acting in different roles, tools, and services have

been developed to manage the collaboration among the team

members. One type of such tool is Version Control which allows

multiple developers to work on the same or different parts of the

design simultaneously. One of the most popular open-source

version control systems (VCS), at the time of writing, is Git

which supports branches, multiple workflows, etc. Based on

Git, there are several options for repository hosting and more

importantly the features for supporting CI, such as GitLab

and GitHub. Also, there exist standalone automation servers

such as Jenkins, where automation jobs could be configured

to bind with the Git repository and configured using Jenkinsfile

describing CI pipeline in different stages and steps as proposed

by Liscouet-Hanke et al. [27].

There are also research works of applying them for appli-

cations in the area of embedded system design. Smart [28]

presented the application adopting test-driven development and

CI for the embedded system, in which with the test software de-

veloped in Ruby, they are able to interact with the real hardware

to apply input stimuli and gather output data for testing.

The main contribution of the proposed article is the develop-

ment of a unified testing infrastructure for the automatization of

the CI test of complex systems. The unified testing infrastructure

allows the application of identical input stimuli to the system

under evaluation and to extract the behavior of the system

at different implementation levels: software emulation level,

hardware level, and HIL. The proposed platform improves the

testing capabilities of previously developed approaches thanks

to the flexibility of applying test algorithms at different imple-

mentation levels and to compare the system output responses.

Our approach is filling the gap by combining several testing

platforms and techniques into a single integrated platform where

it is possible to compare the tests and to obtain meaningful data.

The proposed approach allows us to discriminate the source of

the failure (software emulation, hardware emulation, or HIL)

and to perform an investigation within the specific platform.

Furthermore, the tests can be executed simultaneously since the

developed platform adopts a CI approach, therefore providing an

evident reduction of the overall requested testing and debugging

time of the full system.

III. PROPOSED TESTING INFRASTRUCTURE

In this article, we propose a new testing infrastructure that

unifies different platforms targeting different stages of develop-

ment, taking advantage of existing CI tools in software develop-

ment. The utilized platforms include a reference model imple-

mented in Python, an emulation-based validation environment

(EVE), an FPGA-based validation platform (VP) as presented,

and the final HIL testbench. The proposed testing infrastructure

is able to generate test cases targeting different systems taking

into account the availability of different features of each platform

and gather test results to provide feedback to designers. The

overall architecture is illustrated in Fig. 1.

The proposed framework is based on a unified interface for

multiple test platform working at three different levels: software

emulation level, hardware emulation, and HIL. The first level is

supported by software emulation tools also known as Virtualizer

tools. These kinds of tools provide an architectural simulation of

the system under evaluation and they are generally programmed

by the software application. The framework may be applied to

any kind of electronic system characterized by heterogenous

hardware modules, such as electronic systems with high depend-

ability requirements. For the sake of this work, we rely on the

Synopsys Virtual Development Kit tool which has a full model

of the Renesas 850 processor core architecture and its analog

and discrete components. This abstraction level is effective for
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Fig. 1. Overall architecture of the proposed system test framework. Please
note that the blue arrows identify test and software engineer’s input and output
controls, while the black arrows are related to an automatized flow.

analyzing the behavior of software routines, but it does not

provide any evidence of malfunctions at the hardware level. The

second level is implemented by the FPGA VP. This platform

is adopting a hardware description of the system that will be

executed on an effective hardware device with tunable timing

resolution capability. The main advantage of this platform is the

possibility to observe the behavior of the portion of the system

when the hardware is used, thus considering effective timing.

Besides, this level has the possibility to perform hardware-based

fault injection thus forcing through the FPGA platform localized

and specific faults into the running circuit. Finally, the last level

is the HIL which consists of the higher level implementation of

the system using effective hardware (not the emulative device)

and discrete modules. At this level, it is possible to observe the

effective behavior of the system. All the three different abstrac-

tion levels are managed by the unified test infrastructure, this

means that each platform will receive a similar input test pattern

and will produce test results that can be directly compared or

analyzed considering the effect of the faults and behavior on the

different abstraction level platforms.

A. Testing Requirements

The goal of testing is to verify and validate the implementation

of the system against the requirement document that defines

not only the features of the target system but also the expected

correct responses from the system under different scenarios.

Furthermore, regarding automotive applications, standards such

as ISO-26262 [1] need to be complied with to guarantee road

safety.

However, such requirement documents are usually handwrit-

ten by system architecture designers, which cannot be pro-

cessed directly by software without the aid of natural language

(NL) processing algorithms. Regarding this, there have been

research specifically for requirement engineering for decades,

which not only includes the methodologies for identification

and definition of requirements but also for the communication

of requirements across the development team [30], [31]. Several

Fig. 2. Requirements represented in the tree structure, each path is a specific
requirement item, each node can contain the value or range or profile of a specific
input, output, or variable.

steps were introduced for structural analysis of requirements

definition for system design by Huang et al. [23]. Ross and

Schoman et al. [32] proposed a method to automatically convert

requirement documentations to a formal language using NL

methods. However, the automated conversion is not in the scope

of this article, instead, the test engineers are in charge of such

conversion, and in this way, the product of conversion can be

guaranteed to be consistent with the original requirements and

standard-compliant, for example, the traceability required by

ISO-26262 [1].

To extract the test cases from the requirement documentation,

the system is modeled as a box with inputs, outputs, and variables

with different values that define the state of the system. As an

application involving both hardware and software, the inputs

include both the hardware signal and software input; the same

goes to outputs; while variables are referring to all the internal

data indicating the status of the system (or certain module of

the system) including register in the concept of hardware or data

in software (though eventually they are also stored in hardware

structures).

We looked into the file formats used in nowadays software

development. The JSON file format was determined to be used

for storing processed requirements and test cases. The format is

quite straightforward and could be used to express the require-

ments as a tree as shown in Fig. 2.

After the requirements are processed, test cases are generated

to cover each requirement item and stored in the JSON file. The

generation of the test cases is performed by the test manager

Automatic Test Pattern Generator (ATPG). It elaborates the

required input data file and it generates a requirement on the

basis of coverage metrics on the tree structure. An example of

the generated test case is the profile of a synchronization signal

characterized by a duty cycle of 40%, a maximum voltage value

of 2 V and a resolution of 150 µs. In our proposed framework,

multiple test platforms could be utilized to allow tests in different

abstraction levels which correspond to different stages of appli-

cation development. However, one thing needs to keep in mind

is that different abstraction level means different controllability

and observability of the input, output, and variables in the target

application. So, when the test cases are generated, depends on

the specific requirement item, not all test platforms could be
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Fig. 3. Multiple platforms available at different stages of system development.
Please note that the bold azure arrows report the user translation from documen-
tations to computational models and tools control. The black and blue arrows
are instead related to the automatic data flow for the hardware and software
interface, respectively.

utilized for such test cases. Though for those test cases where

multiple test platforms can be utilized, the comparison of the

results brings in new and further insight into the behaviors of

the target application.

B. System Reference Model

Once the requirements are processed, a reference model could

be built as shown in Fig. 3. The reference model in the case study

of this article has been implemented in Python, considering only

the inputs and outputs specified in the requirements to provide

the golden reference data to be compared with test results from

other platforms. The developed platform is applicable to any

kind of system where the three description levels of the sys-

tem, which are software emulation level, hardware emulation,

and HIL, are available. However, the approach can be applied

also when two of them are available, specifically the software

emulation level and the HIL. In case the hardware description

model is not available, it will not be possible to inject faults at the

hardware level, however, it will be still possible to perform a fault

injection campaign to simulate hardware faults at the software

level. Besides, please note that HIL and FPGA-VP platforms

can be replaced by each other or eventually excluded if a specific

model of the system is not available (e.g., it is possible the VHDL

or hardware description for FPGA is not available).

For the purpose of this article, we selected the engine control

unit (ECU) as a case of study. For this purpose, we defined a ref-

erence system that in the case of the ECU includes the reference

system for generating the input signals, such as Crankshaft and

Camshaft signals, and the outputs including an injection pulse

and a PWM signal. The model is using the following parameters.

1) Revolutions per minute (RPM): It indicates the engine

speed. The current model supports static (single value)

and dynamic (acceleration or deceleration speed profile)

RPM as input.

2) Crankshaft mode: Normal, missing, and spurious tooth:

the normal Crankshaft signal is a periodical pulse signal

with a certain number of pulses (teeth) per revolution of the

engine and a gap between each revolution. However, due to

possible abnormal behavior of the sensor, the Crankshaft

signal could be erroneous, with one or more tooth missing,

noted as missing tooth. The spurious mode allows users

to inject glitches in the Crankshaft signal.

3) Missing tooth index: This parameter can be settled in order

to indicate which tooth is missing. It is used during the

missing tooth functional model of the system.

4) Spurious tooth index/duration: It is a parameter used to

model the glitch in the Crankshaft signal.

5) Injection pulse mode: Time-based or angular. It is a pa-

rameter used to select the operational model on a timing

or angular reference.

6) Injection pulse angle/time/duration: It allows to control

the different parameters related to the injection pulses.

The controlled parameters include the multiple pulses that

can be generated, the time or angular property, the pulse

starting position, and the duration.

C. Emulation-Based Virtual Environment

When the target system involves both hardware and software

design, which is quite common in the embedded system world,

an emulator for hardware platform is beneficial as it enables

the software developers to start without being held back by

the hardware availability and to be able to identify potential

hardware or systemic problems at an early stage as the cost of

re-design/re-manufacture hardware is much higher than the cost

of software development.

There exist plenty of emulators commercially or as an open-

source project. For example, QEMU is a widely-used open

source machine emulator and virtualizer [33]; the gem5 sim-

ulator provides a modular platform for computer-system archi-

tecture research [34] which could be used in co-simulation with

SystemC providing more flexibility and extendibility.

As shown in Fig. 3, the integration of EVE could be utilized

once the hardware platform is determined to allow software

developers to start immediately without waiting for the real

hardware platform to become available. Furthermore, EVE

usually provides more controllability and observability over

HIL solutions, especially the features for software debugging.

Thus, it provides a low-cost solution for preliminary stress tests.

The functionality of the EVE platform is based on the virtual

platform tool and the interface module with the other parts of

the validation framework. A conceptual scheme of the virtual

platform environment is illustrated in Fig. 4. The execution of

virtual tools requires a system description in input which is

transmitted as a set of resource locations. The resource locations

are then used to perform the selective injection of faults into

the emulation of the system. The control of the simulation

is performed by a scripting language (e.g., typically TCL or

Python) that is parametric and configured for each test case

dispatch generated by the test manager. During the elaboration

of each test, two logs are generated: one related to the system

trace, which reports the value of the signals observed by the

user; the second is a fault injection log, which reports the clas-

sification of each test with respect to the specific fault affecting
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Fig. 4. Conceptual representation and interface of the virtual platform and the
interface with the multiple platform environment.

Fig. 5. HIL platform for input stimuli application and MDF signal probes
extraction.

the system. In order to perform this mechanism, we developed

a fault injection environment on the basis of [35] in order to

evaluate the reliability of an automotive application regarding

single event upset (SEU) in the memory. Though such injection

is also possible with real hardware with the aid of a debugger,

the EVE solution still provides an easier approach to enable the

designer to have an early-stage assessment of the application

regarding both hardware and software which could eventually

affect the decision-making of the system architecture and reduce

the cost by moving possible hardware/software architectural

modification to an earlier stage of development.

D. HIL Platform

When the hardware platform or at least part of it is available,

HIL could be utilized along with software for testing to identify

possible issues that have not been caught by EVE as certain

aspects of the system, such as environment noises, process

variations either mechanical or electrical, which are difficult to

model accurately in the simulator or emulator.

In this article, the used HIL solution is able to put the device

under test in a close loop, provide stimuli input and record

the output (measurement) values in measurement data format

(MDF). As mentioned before, the proposed framework includes

a unified interface to apply test inputs, collect outputs, and

perform test result analysis. The MDF files collected from HIL

platform are converted to a common log format as in other test

platforms to ease the effort for comparison later. In our case study

based on the ECU, we considered input signals, the Camshaft

and injection pulse signals, that were extracted adopting signal

probes connected to the hardware under test relevant nodes

within the ECU board, as illustrated in Fig. 5.

Fig. 6. FPGA-based VP for automotive applications.

E. FPGA-Based VP

Comparing to commercially available HIL solutions, FPGA-

based solution as proposed by Kim et al. [29], i.e., FPGA-based

VP, has the advantage of flexibility and is fully controllable

by the developer. Though the time cost for developing such a

platform has also to be considered, once the base system is im-

plemented, it is quite straightforward to add custom components

for more features. The developed platform is illustrated in Fig. 6.

Since the automotive microcontroller with the timer module

is the target under test, the VP emulates input stimuli signals

coming from Crankshaft and Camshaft position sensors to driver

software and monitors the fuel injection pulse signals driven

by the software. The platform can generate the signals under

different scenarios, according to different profiles customized

by the user, which include the normal static speed test, dynamic

(acceleration/deceleration) speed test as well as faulty signals

such as jitters, corruption, and missing signals. Similar to the

reference model, the VP is implemented in such a way that the

user could send parameters to the MicroBlaze processor in the

design to configure the peripherals to generate Crankshaft and

Camshaft signals in different conditions.

Since the automotive microcontroller with the timer module

is the target under test, the VP emulates input stimuli signals

coming from Crankshaft and Camshaft position sensors to driver

software and monitors the fuel injection pulse signals driven

by the software. The platform can generate the signals under

different scenarios, according to different profiles customized

by the user, which include the normal static speed test, dynamic

(acceleration/deceleration) speed test as well as faulty signals

such as jitters, corruption, and missing signals. Similar to the

reference model, the VP is implemented in such a way that the

user could send parameters to the MicroBlaze processor in the

design to configure the peripherals to generate Crankshaft and

Camshaft signals in different conditions.

Besides, a host PC application has been developed to retrieve

test results from VP through UART (RS232) connection and

MATLAB scripts for automatic test report generation. For ex-

ample, one of the generated test reports could be directly used

to verify if the injection pulse signal is still in the acceptable

window when a faulty Crankshaft signal is generated.
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TABLE I
EXAMPLE OF CAPABILITIES OF INPUTS, OUTPUTS, AND VARIABLES IN

DIFFERENT TEST PLATFORMS

1.: Input, 2: Variable, 3: Output.

In the developed framework, VP could be used as part of

the HIL solutions to provide support for abnormal test cases to

verify the system reliability under different faulty conditions,

i.e., fault injection capability. One of the possible faults when

targeting the ECU is the missing tooth in the Crankshaft signal.

In this case, the ECU is able to decode the exact position of

the engine, i.e., the position of the piston of each cylinder.

By the (mechanical) specification, fuel injection needs to be

triggered within certain temporal or angular windows which

are crucial to the overall performance of the engine. However,

the Crankshaft sensor could behave erroneously either due to

the sensor itself or environmental factors, e.g., vibration and

radiation effects, leading to unstable output, such as missing

teeth or even complete loss of signal.

Under such conditions, one of the important tests is to verify

whether the ECU is still able to synchronize the engine position

(with only the Camshaft signal) and generate the injection pulse

within a reasonable error margin or not. With the proposed

VP, such input conditions could be generated with the ability

of static RPM or dynamic RPM profile. Please note that with

EVE, such tests could also be performed as Zhang et al. [34],

even with higher controllability and observability of the internal

behavior of the microcontroller and software. However, the two

platforms are utilized at different stages that the VP needs to be

in a close loop with real hardware platforms to get high fidelity

test results with software running at speed. This is exactly the

purpose of the proposed framework: to allow certain tests to be

executed as early as possible so that early test result analysis

could tune the hardware platform and software development at

an earlier stage to reduce overall cost, as shown in Fig. 3, while

the more realistic and accurate result could be obtained later

using real hardware.

F. Unified Test Platform Interface

In different test platforms, it requires different implementa-

tions to control and observe inputs, outputs, and variables in the

target design which are also subject to different accessibility (or

availability). In the proposed framework, a unified interface is

designed to generate test cases targeting multiple platforms if

possible, thus increase test efficiency and allow tests as early

as possible. The framework identifies which platform could be

used by checking the compatibility with the inputs, outputs,

and variables involved in the test case against each platform.

Table I gives an example regarding the compatibility. When

two test cases, as shown in Fig. 7, are to be executed, each

of the involved inputs, outputs, and variables is checked against

Table I, so that available test platforms could be determined.

As in this article, only EVE is capable of logging the number

of missed injection windows as such information is stored in

a variable in the software under test; HIL does not have the

capability for injecting faulty Crankshaft signal. Please note that

in reality, such a table contains more detailed information for the

same input, variable, and output, different platforms may have

different levels of controllability and/or observability. One of

such cases is the limitation of the clock frequency of the FPGA

design, while in EVE, the time resolution could be much finer

than that in the FPGA-based VP, this parameter can be tuned in

relation to the kind of test.

However, one should keep in mind that along with develop-

ment progress, the compatibility table will be changed as first,

the inputs, outputs, and variables could change due to modifica-

tion of hardware or software, or even the requirements; second,

the controllability and observability of each test platform could

change, for example, with aid of debugger and software instru-

mentation, the log of the injection miss number could be avail-

able in the VP and the HIL system modules. The unified interface

provides a way to identify those test cases to be executed as early

as possible, and a centralized database for the availability of each

test platform, which should be continuously updated by design-

ers and test engineers along with the application development.

From the interface to each individual test platform, the middle-

layer has to be developed as each has its own way of executing the

test cases: providing input stimuli, monitoring the variables and

outputs, test results collection, and postprocessing. For example,

the Crankshaft signal is configured by a tcl routine in EVE while

it is configured by sending corresponding parameters via UART

connection in VP.

G. ATPG Module

ATPG is widely used for complicated and complex circuits

where the manual generation of test patterns is infeasible in

terms of cost. Besides, the methodologies to achieve high fault

coverage for well-structured design components have been well

studied over the years, such as for the arithmetic logic unit and

memory elements in microcontrollers. However, in IC testing,

with the commonly used fault model such as stuck-at fault,

the term fault coverage is well-defined, so ATPG is often im-

plemented with the goal of maximizing fault coverage with

minimal test patterns. As the functional test is concerned, the

ATPG proposed in the framework is quite preliminary where

it generates test cases according to the processed requirement

document.

For the specific purpose of this article, the input conditions

specified in the processed requirement items should contain

condition coverage. For example, if a value range is provided,

depending on whether there is also a resolution provided: in the

positive case, multiple test cases will be generated to cover all

the values in the range with step equals to the given resolution;

otherwise, then depends on the exact input (and determined by

test engineer), one or multiple test cases could be generated,
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Fig. 7. Example of preliminary analysis of test results generated by report in the case a missing tooth is causing timing failure of the injection pulse signal.

for example, random value interpolation could be an effective

solution. If a profile is provided, then one test case is to be

generated with input following the exact profile. However, if the

profile is parameterized, then multiple test cases are to be gener-

ated. For example, when acceleration is to be tested, requirement

items could specify an acceleration profile (of RPM) with initial

RPM not fixed (i.e., value range), then multiple test cases are

generated with different initial RPM values but following exact

acceleration profile.

H. Automated Continuous Integration Platform

The proposed framework adopted the VCS and the automated

continuous integration (ACI) modules. They are adopted to-

gether to optimize the efficiency for parallel work among team

members and more importantly the utilization of the multiple test

platforms. Designers with different roles could work on different

aspects of the application: requirements, hardware, software,

and test. Besides, developers could divide the application into

modules; each could be implemented and tested without inter-

locking the others to make the highest usage of resources.

Due to operating system limitations at the beginning of this

article, we chose Windows as the target platform which leads

to the choice of VCS to be GitBlit [35] and ACI tool to be

Jenkins [36]. The application repository was hosted in the GitBlit

server, with a Jenkinsfile implementing the steps for building

the software and launching test cases generated from processed

requirement items (stored in a JSON file). The Jenkins server was

used to host the CI jobs, which was bound to a specific branch

of the application repository in the GitBlit server. The job in

the Jenkins server has been configured to detect any commit in

the application repository branch and then automatically launch

the building and testing phases using the Jenkinsfile in the

repository. The reason framework has been configured in the

way that, in our case, the target application is the ECU, which

has several different configurations with a similar code base with

some modules shared. Therefore, different configurations have

been organized into different branches to enable efficient code

reusage. However, in this way, it means that for different config-

urations, requirements could be different so that the building and

testing could be different. In this case, each branch will track its

own test suite and Jenkinsfile for the ACI. An example of such

a Jenkinsfile is shown in Listing 1. As could be seen that each

step is implemented by a separate Python script.

1) Build launches building process that could happen in a

dedicated remote server.

2) Flow generates the test cases through the unified interface

and launches tests across different test platforms; for each

Listing 1: An example of the test management sequence.

Test_sequence {

agent any

stages {

stage (‘build’) {

steps {bat “““python -u Build.py”””}

}

stage (‘launch_test’) {

steps {bat “““python -u Flow.py”””}

}

stage (‘pack’) {

steps {

bat “““python -u Report.py”””

archiveArtifacts artifacts: ‘reports/∗∗/∗/∗/’,

fingerprint:true

}

}

}

}

platform, different initial steps have to be performed. For

instance, when using the FPGA-based VP, the FPGA

platform has to be initialized by downloading the bitstream

file, and proper parameters have to be sent to the VP

through a serial connection.

3) Report gathers data generated by the test platforms, per-

forms preliminary result analysis, and generates test re-

ports. An example of such preliminary analysis is shown

in Fig. 6, regarding injection pulse timing verification. The

red marks indicate erroneous behaviors in either input sig-

nal or output signals. In this case, there is a tooth missing

from Crankshaft signal which causes timing failures in

the injection pulse signal and missing PWM signals due

to synchronization failure. Thus, the test case is marked

as FAIL in the final summary report.

At the end of the Jenkins job, artifacts are collected as the

result of the run. In our case, all the files in the reports folder

as shown in Listing 1 includes not only the raw data gathered

during the test but also the preliminary analysis reports as shown

in Fig. 6. Artifacts then could be directly downloaded by team

members to review and verify from the Jenkins server.

Another benefit of using ACI is to manage multiple (same) test

platforms to further reducing time cost, as shown in Listing 1, in

line 2 “agent any” is used to specify the target machine (agent)

the job is to be executed could be anyone that is available. When

there are multiple machines with multiple test platform setups
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(EVE, VP, and HIL, etc.) available, this could be used to au-

tomatically boost resource utilization. Furthermore, parallelism

is managed by the Flow.py to utilize different test platforms

by issuing the execution of test cases as soon as the target test

platform is available.

I. Report Generation

For the tests generated and dispatched to different platforms,

different test results data could be collected and should be

processed accordingly. As in the examples mentioned above,

besides FAIL or PASS of each test case, further test data, raw or

pre-processed such as in Fig. 6, are also used by developers to

better perform failure analysis. Besides some trivial verification

procedures such as checking injection pulse location in Fig. 6

could be directly done through the unified interface using the

output signal monitoring features, complicated analysis of test

results requires the involvements of test engineers for generating

automated procedure to be integrated into the ACI environment

which is out of this article’s scope.

IV. EXPERIMENTAL RESULTS

We performed the experimental analysis of the proposed test

framework in order to evaluate efficiency, performance, and

testing capabilities compared with traditional approaches. In

this section, we will present some information for the tests

we carried out using the proposed framework. In particular,

with the EVE platform, we were able to execute fault injection

campaigns regarding faults inside memory and I/O peripherals.

The performance measurements of the proposed platform were

done using a workstation Dell Alienware Aurora R8 equipped

with an Intel Core i9, an NVIDIA GeForce RTX2080 GPGPU,

and 32GB RAM. The VP and the HIL were executed at speed

with specific settings for controllability and observability.

A. Case of Study: ECU RH850

The developed multitest platform has been applied on an

industrial reference as the automotive gearshift control system

based on the Renesas Electronics RH850 microprocessor sys-

tem. The system has been tested while executing the application

consisting of the gearshift open-loop configuration. In order to

emulate the realistic application execution, the gearshift open-

loop application was tested using a round per minutes (RPM)

signal configured as a triangular waveform input. The input was

connected to the analog module of the D-space analog to digital

converter (DS-ADC) in order to compare the results directly on

the analog device modeled by the virtualization system.

The system is characterized by a 32-bit RISC processor core

using 32 registers and working at 240 MHz. The main memory

consists of 64 K cells of 32 bits. The tested application is mapped

into the memory segments as reported in Table II. The applica-

tion has been tested with a functionality test pattern having a

real-time duration of 56 s.

TABLE II
GEARSHIFT OPEN-LOOP APPLICATION GLOBAL MEMORY SEGMENTS

Fig. 8. Test cases generation for multiple test platforms: left test case could
only be executed in EVE, while the right one could be executed in both EVE
and VP.

B. Fault Injection Architecture

The experimental analysis has been performed using the fault

injection architecture illustrated in Fig. 8. The fault injection is

executed in two phases: golden response and faulty execution.

During the first phase, a fault-free execution is performed. A

golden reference was generated by storing the voltage transition

of the monitored signals into a golden result database. While in

the case of the fault simulation, the execution phase is interleaved

with a fault injection execution. The comparison with the system

under injection has been performed by voltage transition com-

parison. In the case of the golden execution, the following phases

were performed: initialization, execution, and data collection.

During the second phase, a fault is selected considering its

time, location, type, and duration. The fault injection manager

controls the characteristics of the injected fault and defines the

time features of the fault injection campaigns such as the start,

pause, and end of the emulation/simulation platform executions.

In detail, the fault injection manager supports the synchroniza-

tion between the input and the core functionalities and the

simulation execution steps. The commands generated by the

Fault Injection Manager are linked to the Renesas Core model

through a proper hardware interface, in the case of the HIL and

EVE testing environments, and with a software module when

the VP platform is adopted. Please note that, even if the applica-

tion software is synchronized with the fault injection manager,

the fault injection process is not intrusive with respect to the

behavior of the software under test since it affects exclusively

its execution time.

The fault injection environment has been settled to perform

injections of different types of faults at different levels. In partic-

ular, the VP platform is dedicated to the injections of physical
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TABLE III
GLOBAL MEMORY FAULT INJECTION RESULTS

level permanent fault models such as stuck-at, coupling, and

delay faults; and transient models such as SEUs or bit-flips. In

detail, the tool can simulate hardware fault injection within the

memory modules and the network infrastructure. Furthermore,

depending on the availability of the system’s processor cores

the environment is able to inject faults also within registers and

arithmetic cores.

For the purpose of this article, we injected faults within the

user register and memory adopting two methods: access-based

and time-based triggers. In the first case, the fault injection is

triggered when the CPU is accessing a specific memory resource.

While in the second case, the injection starts when the timer of

the fault injection manager reaches the desired time. The EVE

platform is instead dedicated to the injection of functional faults

model such as missing signals when a rising or falling edge

of a specific signal is not generated properly; spurious signals,

when a glitch with a given amplitude and duration is added to

the normal signal behavior and jitter signals, in case rising or

falling edges undergo to a timing modification with respect to

the original ones.

C. Memory Modules Injection Results

The fault injection performed in the memory modules con-

siders the RH850 Global RAM block that consists of 64 K

32-bits cells. The application under test uses around 80% of the

data segment for executing the application. The overall Global

RAM cells have been selected as the fault location for the fault

injection campaigns. The model adopted for the first campaign

is the stuck-at fault. For each run, a random cell and a random

bit are selected and then changed in a stuck-at status for the

whole duration of the application. The fault injection has been

performed up to 1M times throughout the campaign.

The permanent fault injection results are shown in Table III,

where we reported the percentage of faults generating errors

for each specific location. A stuck-at fault is contributing to the

wrong answers count if an error on the system output signals is

generated during the application execution. The fault injection

experiment required around 82 h to be completed. The monitored

signals considered for the applications are the main ECU system

output pins.

D. System Register Injection Results

A second fault injection experiment has been performed in-

jecting specifically into the ECU system registers. The injection

Fig. 9. Scheme of the fault injection architecture used to evaluate the perfor-
mance of the developed multitest platform.

has been performed on the user register and a signals mapping

module. One register is selected randomly, and the fault injection

is performed on a random bit within the selected register.

The fault injection experiment results are illustrated in Fig. 9

where we report the percentage of injected faults per register

generating errors on the main ECU system output pins. The fault

injection experiment required approximately 9 h to complete.

Interestingly, register 2, which is related to the DS-ADC cylinder

control register is critical for all the stuck-at fault injected within

his values during the application execution time.

E. System Architecture and Functional Injection Results

A third fault injection experiment has been performed to

evaluate the system architecture robustness versus the injection

of functional faults. For this purpose, the main control signals

have been extracted using the EVE and VP environments. Fur-

thermore, the fault injection campaigns have been performed

evaluating the impact of the fault among the application time,

thus faults have been injected every 30 µs. For the purpose

of this fault injection campaign, we adopted a functional fault

model able to inject missing signals, spurious signals, and jitters.

In details, the missing signal has been configured in order to

remove an entire tooth of the signal; the spurious signal condition

has been configured in two cases, a 5-ns glitch and a 30-µs

pulse; finally, the jitter has been configured as anticipated and

postponed with respect to the rising edge of the original signal for

a duration of 10µs. All the cases were injected into the four ECU

engine synchronization signals such as the PWM signal, the

Fuel Injection signal, the Camshaft, and the Crankshaft. These

signals are the ones generated directly by the engine sensors on

the basis of the engine speed and revolutions. For the purpose

of this experiment, we adopted an engine speed of 2000 RPM.

In the case of this fault injection experiment, the EVE platform

required around 2 h to be completed. The monitored signals

considered for the applications are the main ECU system output

pins. The functional fault injection experimental results are

illustrated in Table IV.

In order to evaluate the impact of the injected fault versus

the engine speed and also to evaluate the capability of the

environment to detect faults with the dynamic behavior of the

system, we also evaluated the injection within the crankshaft

signal of a specific engine cylinder (A) at the start-angle con-

dition which determines the synchronization of the ECU with
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TABLE IV
FUNCTIONAL FAULT INJECTION RESULTS

Fig. 10. Fault injection experiment results on the system registers.

Fig. 11. Fault injection experiment results on the system registers.

respect to the position of the engine cylinders. The results are

illustrated in Fig. 10 , where we reported the average error on the

measured synchronization signals of cylinder A considering a

normal behavior condition. As it is possible to notice, in normal

condition, the measured average error is below 0.1%, please

note that the evaluation has been performed at 80, 100, 400,

800, 1000, 2000, 4000, and 8000 RPMs.

F. Performance Analysis

The performance of the developed multitest platform has

been compared with respect to state-of-the-art tools adopted to

simulate and emulate the behavior of a heterogeneous system.

Please note that our development platform is, to the best of our

knowledge, the first platform capable to integrate different tests

at different levels but using a unified testing infrastructure.

The developed platform has been compared in timing perfor-

mance on executing a functional system test and resolution of

the monitored signals. In order to elaborate a fair comparison,

we developed the functional test performed and described in

Section IV-B with other four different platforms.

1) Virtual platform: The VP platform has been configured

for generating, applying stimuli, and comparing the results

TABLE V
TESTING PLATFORM PERFORMANCE COMPARISON

using exclusively a virtual platform. For the purpose of this

article, we adopted the Synopsys Virtual Platform tool.

2) System C simulation: A SystemC model of the ECU

and peripheral has been described using the SystemC

language. Due to the complexity of the case study, we

only prepared a simplified version of the system using a

MIPS core as ECU configured with a memory of 64 K

words of 32-bits. Please consider that even in the case of a

simplified architecture, SystemC simulation is drastically

slower than the Virtual Platform tool.

3) Emulation Debugging: A hardware setup adopting a Lau-

therbach debugging cable and a system consisting of an

Andorra STMicroelectronic microprocessor has been used

to inject faults using the debugging port.

4) DSpace HIL: A HIL platform equivalent to the developed

study case has been used for system test.

The obtained performance comparison results are described

in Table V. We evaluated the execution time of the developed

platform in case of execution of a test case without fault injection

and in case of fault injection. Please consider that for the devel-

oped platform, the total execution time in case of fault injection is

computed considering the average time related to the injection of

an SEU into each individual platform. Clearly, the total execution

time drastically varies between the different platforms since the

tools have different natures. However, it is possible to notice,

the proposed multitest environment has the best compromise

between execution time and resolution. The HIL platform is the

fastest way to test a system. However, it is necessary to take into

account the elevated amount of time in order to prepare the test

condition and the impossibility to reduce the resolution due to

the provided hardware control mechanism. The resolution has

not been provided for the Virtual Platform and SystemC since

both the approaches adopted a simulation engine that cannot

be compared with a system emulation. The proposed approach

results in at least three times faster than traditional emulation and

debugging approaches and at least five times better in resolution

steps. Moreover, our approach has a resolution that is 20 times

better than HIL platform. Therefore, it can be suitable to perform

a fine detection of critical events and conditions that cannot be

observed with HIL tests.

V. CONCLUSION

In this article, we presented a new test platform framework for

automotive applications, utilizing multiple test platforms with
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different levels of observability and controllability at different

stages of application development. Furthermore, a unified inter-

face is introduced to distribute the test cases among different

test platforms including EVE, FPGA-based VP, and HIL to be

executed as earlier as possible. Together with the ACI solution

adopted from software engineering, the proposed framework is

able to automatically generate test cases from test requirement

items and launch the test cases across different test platforms

as soon as available. The case study presented in this article

demonstrated that such a framework is feasible and could be

integrated with further team collaboration tools such as VCS and

cooperate with different test platforms to increase application

development and test efficiency. Dedicated methodologies for

automating requirement documentation parsing and ATPG for

increasing test coverage, which, in turn, requires better defini-

tion in the context of requirement-driven tests in safety-critical

applications, are under investigation.
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