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An automated fitting procedure 
and software for dose-response 
curves with multiphasic features
Giovanni Y. Di Veroli1, Chiara Fornari1, Ian Goldlust1,2, Graham Mills1, Siang Boon Koh1, 

Jo L Bramhall1, Frances M. Richards1 & Duncan I. Jodrell1

In cancer pharmacology (and many other areas), most dose-response curves are satisfactorily 
described by a classical Hill equation (i.e. 4 parameters logistical). Nevertheless, there are instances 
where the marked presence of more than one point of inflection, or the presence of combined 
agonist and antagonist effects, prevents straight-forward modelling of the data via a standard Hill 
equation. Here we propose a modified model and automated fitting procedure to describe dose-
response curves with multiphasic features. The resulting general model enables interpreting each 
phase of the dose-response as an independent dose-dependent process. We developed an algorithm 
which automatically generates and ranks dose-response models with varying degrees of multiphasic 
features. The algorithm was implemented in new freely available Dr Fit software (sourceforge.net/
projects/drfit/). We show how our approach is successful in describing dose-response curves with 
multiphasic features. Additionally, we analysed a large cancer cell viability screen involving 11650 
dose-response curves. Based on our algorithm, we found that 28% of cases were better described 
by a multiphasic model than by the Hill model. We thus provide a robust approach to fit dose-
response curves with various degrees of complexity, which, together with the provided software 
implementation, should enable a wide audience to easily process their own data.

Measuring drug e�ects on biological systems is part of many scientists’ routine1,2. Observed e�ects span 
from the inhibition or agonism of proteins and other molecules3,4 to e�ects measured at the cell5, tissue6 
or whole organism levels7,8. In cancer research, cell proliferation and viability are o�en assessed in a 
panel of cell lines speci�c to a given type of cancer9. Typically, the biologist or pharmacologist compares 
populations of treated vs. untreated cells at various drug concentrations. �e data is summarized via 
a dose response curve and then �tted using an in-house program or commercial so�ware. �e �tted 
curve gives a mathematical description of measured e�ects and enables interpolating or extrapolating 
missing information. When various cell lines or drugs are also investigated, the resulting models facilitate 
comparing dose-responses by summarizing them via a few parameters10 (e.g the relative 50% e�ective 
concentration EC50).

�e �tting procedure that follows data acquisition can be challenging from several point of views. 
First of all, for most experimentalists who are not familiar with modelling, this procedure will require the 
availability of friendly so�ware to �t the data. Moreover, most available programs will attempt to �t the 
data to a standard Hill model (also called 4 parameters logistic11). �e Hill model has been used exten-
sively in the past. It can describe chemical reactions in mechanistic terms12 and enables excellent model-
ling of most cases. However, the Hill model is based on a unique point of in�ection and cannot faithfully 
describe cases where agonist (stimulatory or hormetic) e�ects are also observed13,14. Moreover, even in 
the absence of agonist e�ects, cases where there is more than one point of in�ection in the inhibitory 
phase cannot be handled15. �is can result in poorly �tted curves which can mislead data interpretation, 
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comparison to other cases, and extrapolation if such �ts are accepted. Recently, Haibe-Kains et al.16 
identi�ed the choice of an estimator for summarising drug dose-response curves as one of the reasons 
for lack of correlation of drug sensitivity in large pharmacogenomics screens17,18. At the same time, the 
importance and implications of multiphasic dose-responses have been highlighted in various contexts19,20 
including cancer therapeutics21,22.

Extensions of the Hill model for asymmetrical curves have been developed, but these do not accommo-
date several points of in�ection23–26. Alternatives have been suggested to handle biphasic dose-response 
curves27,28. �ese were tailored to the speci�c case of an initial stimulatory e�ect and are not necessarily 
equipped with a common structure and straightforward interpretation of the resulting model. �ere have 
also been a number of e�orts in improving dose-response �tting29,30 and several free so�ware products 
are available to �t dose-response curves31–34. �ese e�orts o�en focused on the standard Hill model 
and did not provide a free tool which can be used to generate multiphasic dose-response models in a 
user-friendly manner as per well-known commercial packages35–37. Note that there also exists general 
free language and environment such as R38 which easily enable cubic splines �tting (splines are curves 
generates by connecting polynomials). Nevertheless, splines �tting is not optimal due to the lack of 
model structure which a�ects the goodness of �t and prevents interpretation in mechanistic terms.

Here we present a general model which enables excellent �tting of dose-response curves with mul-
tiphasic features. From a theoretical point of view, this new model combines dependent, cooperative 
e�ects as described by a Hill model, with independent e�ects as suggested by the Bliss approach for 
combination studies39. We show that non-regular cases encountered in cancer pharmacology can be 
satisfactorily handled by this approach which combines these two classical pharmacological models. We 
have developed an algorithm which enables automated �tting of dose-response curves and have imple-
mented it in freely available so�ware (Dr-�t as per Dose-response Fitting). �is approach was successful 
in modelling dose-responses which could not be described by a standard Hill equation. We then analysed 
a large screen involving 11650 dose-response curves and found that a substantial proportion of cases 
were better described by this approach.

Results
From Hill to multiphasic models. �e Hill model is based on the following equation which describes 
the e�ect E obtained at a given concentration C:

( , , , ) = +
−

+ ( / ) ( )
∞

∞E C E E EC H E
E E

EC C
;

1 1
Hill H0 50 0

0

50

where EC50 is the relative 50% e�ective concentration, H is the hill exponent, E∞ is the maximum e�ect 
and E0 is the e�ect in the absence of drug. �is equation can also be manipulated and written under 
alternative forms or via di�erent de�nitions of its parameters. If the dose response is built by considering 
a measure of the system being studied (e.g. amount of cells or of proteins) in treated conditions over this 
same measure in untreated conditions, then the baseline value E0 is �xed to unity (the dose-response 
can also be expressed in terms of percentage as it is done here). Figure 1a shows the typical sigmoidal 
curve that is obtained with the Hill model. �e �gure also shows that varying the EC50 shi�s the curve in 
log-space while varying the E∞ changes the e�ect level obtained at high concentrations (Fig. 1b). Finally, 
the hill exponent H can be used to account for various degrees of steepness (Fig.  1c). �is model can 
therefore be used to �t typical dose-response curves encountered in pharmacological studies (Fig. 1d).

In a signi�cant number of cases, dose-response curves show stimulatory e�ects (notably at low con-
centration; Fig. 2a), or two point of in�ections (Fig. 2b), or even a combination of these features (Fig. 2c). 
In these cases, it is obvious that attempting to �t the data to a Hill model cannot result in a satisfactory 
description of the data (red lines in Fig. 2a–c). Here we propose a modelling approach that is based on 
breaking down each one of the observed phases into independent, separate processes. �en each of these 
distinct processes is considered as the observed e�ect of closely related sub-processes. �e mathematical 
formulation of this approach is as follows.

We �rst consider each phase separately and model it using a standard Hill model. For each phase i 
we write:

( , , ) = +
−

+ ( / ) ( )
∞

∞E C E EC H
E

EC C
; 1

1

1 2
i i i i

i

i
Hi50

50

�en we consider each one of these phases as being part of successive reactions which independently 
converge toward the same phenotype, thus resulting in the total e�ect E:

∏( ) = ( ) ( )E C E C 3i

n
i

where E(C) is the observed dose-response curve, and Ei(C) is the dose response curve corresponding to 
the underlying ith independent process. Note the well-known similarity between this formulation and 
the probability of independent events. �is leads to the following model when considering all phases:
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Note that this formulation is only correct when the response in the absence of drug is unity. Alternative 
formats can nevertheless be obtained by scaling this equation appropriately. Using this model with n =  2 

Figure 1. Standard Hill model. (a) �e Hill model enables generating sigmoidal dose-response curves. 

It can be shi�ed in concentration space by varying its EC50 parameter. (b) �e E∞ parameter (also called 

Emax) can be used to modulate e�ects at high concentration. (c) �e Hill coe�cient modulates the slope of 

the curve. (d) �e �exibility of this model captures dose-response data in most cases (here an example of 

Gemcitabine in the Panc-1 cell line is shown).

Figure 2. Non-monophasic cases. (a) In a number of instances, observed dose-responses are not 

monophasic. In this example (Gemcitabine in the K8484 cell line), an initial stimulatory e�ect can be 

observed. (b) �ere are also instances where two points of in�ection are observed in a dose-response with 

purely inhibitory features (here an example of PF477736 in the Skov3 cell-line is shown). (c) In some cases, 

both the presence of an initial stimulatory e�ect and two phases in the inhibitory range can be observed 

(here an example of CHK1i in the Panc-1 cell-line is shown). In all these cases, the dose-response cannot be 

captured with the optimization of a standard Hill model (red lines).
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two phases of inhibition (Fig. 3a) or one stimulatory and one inhibitory phase (Fig. 3b) can be described. 
Using n =  3, a multiphasic dose response with one stimulatory and two inhibitory phases can be described 
(Fig. 3c). �ere is no theoretical limit and for instance using n =  5, we can also describe more complex 
dose-response curves such as one that involves two stimulatory and three inhibitory phases (Fig. 3d).

It is important to realize that the higher the number of process incorporated (i.e. the greater is n), 
the more it is di�cult to experimentally discern the presence of each process due to inherent biological 
variation and experimental error. Also, the inclusion of each additional phase requires 3 parameters, so 
for n =  3 phases, 9 parameters are required. �erefore we compared the classical mono-phasic case (Hill 
equation) with three con�gurations only. �ese were cases where two stimulatory (n =  2), or one stimu-
latory and one inhibitory (n =  2), or one stimulatory and two inhibitory phases (n =  3) were present. In 
our experience, these con�gurations enable to describe most cases encountered in cancer pharmacology.

Automated curve fitting. We developed an optimization process to automatically generate and pro-
vide models with either one phase of inhibition, two phases of inhibition, one stimulatory and one 
inhibitory phase, or one stimulatory and two inhibitory phases. Our approach was based on an optimi-
zation algorithm and a ranking test40 which were both incorporated in the Dr-Fit so�ware (Fig. 4; http://
sourceforge.net/projects/dr�t/). Details of the overall method, including the formulation of the optimized 
objective function and how to use the so�ware, can be found in the methods section.

Our approach was used to model the three examples of multiphasic dose-response curves shown in 
Fig. 2 and resulted in excellent descriptions of the data (Fig. 5). Each case was classi�ed as a mono-phasic 
or multiphasic dose-response based on the Bayesian Information Criterion (BIC). �e BIC criterion 
enables robust model ranking and selection and is based on a Bayesian approach40. �e BIC criterion 
was chosen here over other classical ranking methods because it penalizes over-�tting more than other 
well-known ranking criteria41–43. �us a conservative approach is used here where simpler models are 
favoured versus more complex multi-phasic ones.

Using this approach, the �rst case was recognized as a 2 processes model involving a stimulatory 
and an inhibitory phase (Fig. 5a). �e second case was recognized as a 2 processes model involving two 
inhibitory phases (Fig. 5b). �e third case was recognized as a 3 processes model involving a stimulatory 
and two inhibitory phases (Fig. 5c). We then wanted to assess what proportion of cases might be better 
described by a multiphasic dose-response curve rather than a standard Hill equation.

As an example, we analysed 11650 dose-response experimental cases available from the Cancer Cell 
Line Encyclopedia (CCLE)17,44. �is data-set was generated using High-�roughput Screening (HTS) 
technology and its analysis presents several challenges. First, the very large amount of data precludes 

Figure 3. New general multiphasic model. Our model enables description of a variety of dose-response 

cases where various phases are present. Simulated examples are shown for hypothetical cases with (a) two 

inhibitory phases, (b) one stimulatory and one inhibitory phase, (c) a combination of a stimulatory and two 

inhibitory phases. (d) A complex example involving two stimulatory and three inhibitory phases.

http://sourceforge.net/projects/drfit/
http://sourceforge.net/projects/drfit/
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visual inspection of each case. Second, the noisy nature of HTS generated data complicates model identi-
�cation. Our approach was successful in analysing this data-set and showed that (Fig. 6a), based on our 
BIC ranking test, overall 72% of cases could be explained using a monophasic standard Hill equation 
(e.g. Fig.  6b). �us, a substantial proportion of dose-responses were found to be better described by a 
multiphasic approach (28%). Most of these were appropriately described by a biphasic model with an 

Figure 4. Dr-Fit so�ware. Dr-Fit (Dose-response �tting) is freely available so�ware which implements our 

model and algorithm. It enables �tting dose-response curves with complex multiphasic features. (a) User-

friendly interface enables data access, option selection, running the algorithm and saving the results. (b) 

Experimental data is saved in .xls �le (in this example one replicate and three concentration points). (c) 

Several replicates and various concentration points can be used (here the example has been expanded to 

four replicates and seven concentration points). (d) �e uploaded data is displayed in the top-right panel.  

(e) Following the model-building process, the resulting curve is also displayed in the same panel. (f) 

�e �gure legend and limits can be modi�ed through the centre-right panel. (g) �e plot can then be 

automatically saved in high quality .png �gures (resulting �gure is shown) or accessed and saved in 

alternative formats. (h) Model’s parameters can also be saved in the project’s folder. (i) E�ects can be 

interpolated or extrapolated via the bottom le� panel. (j) Additionally, e�ective concentrations can be 

computed for any desired e�ect (e.g. EC50). Here the EC90 which is the e�ective concentration that gives a 

90% e�ect has been calculated.
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Figure 5. Modelling non-monophasic cases. Our new model and method enable to also describe 

experimental dose-responses which are not monophasic. (a) Our �rst (initial stimulatory e�ect), (b) second 

(two inhibitory phases) (c) and third example (initial stimulatory e�ect and two inhibitory phases) are well 

described by the resulting model in each case (red line).

Figure 6. Large scale analysis of dose-response types. We analysed 11650 dose-response experimental 

cases available from the Cancer Cell Line Encyclopedia (CCLE). (a) Histogram showing the distributions 

of models which better described each case. (b) An example of monophasic case. (c) An example where an 

initial stimulatory phase is present (also termed hormesis). (d) An example where two inhibitory phases are 

present. (e) An example where both an initial stimulatory phase and two inhibitory phases are present.
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initial stimulatory e�ect (16%, e.g. Fig. 6c). A substantial number (8%) was appropriately described with 
two point of in�ection (e.g. Fig. 6d) and only 4% required a triphasic model (e.g. Fig. 6e).

Discussion
Dose-response curves are routinely generated in the laboratory environment to assess the e�ect of drugs 
and other agents on molecular, cellular and other models. In most cases, a single in�ection dose-response 
is observed which can be modelled using a classical Hill model. Nevertheless, there are instances where 
dose-responses show an initial stimulatory e�ect (also termed hormesis20) or is fully inhibitory but with 
two point of in�ections (bi-phasic). In a number of instances, a combination of these features can be 
observed. It is o�en desirable to model the observed dose-response in order to obtain a mathematical 
description which can also be used to interpolate, extrapolate or derive metrics such as EC50 or maxi-
mum e�ects.

�e challenge in identifying and modelling multi-phasic dose-response curves can be attributed to 
the increased complexity and decreased interpretability of potential approaches to model multiphasic 
dose-responses. Increased complexity is o�en associated to poor �tting or di�culty in generating appro-
priate �tting, particularly for experimentalists who are not necessarily familiar with these procedures. 
We have therefore developed a general model which we encapsulated in a �tting-ranking procedure and 
so�ware, producing a robust, user-friendly tool.

Most advances in modelling dose-response data have focused on hormetic e�ects and have been made 
in the �elds of toxicology and environmental science28,45–49. Our approach is based on simply combining 
the classical Hill and Bliss models and enables describing dose-response data with complex multipha-
sic features. �us we explain observable in�ections as the result of perturbing underlying independent 
processes (Fig. 7). Each Hill model term in our formulation can be interpreted as the e�ect of the drug 
interacting with a series of converging, cooperative processes12 (e.g. interaction with a speci�c biological 
pathway). �e product of these Hill model terms can then be interpreted in terms of perturbed processes 
(e.g. pathways) which are independent50. �erefore our approach enables describing dose-response data 
in a robust manner and it also o�ers interpretation in broad mechanistic terms.

It should be noted that dose-response curves, including those with two or more in�ections, can in 
theory be �tted using splines51,52 or other polynomials-based approaches53,54. �e question therefore 
arises to why an alternative approach such as ours would be useful. We believe that the answer to this 
question is rooted in the same reasons which make the use of the classical Hill model popular for 
traditional monophasic dose-response curves. �e �rst reason is that the number of parameters used 
with splines �tting increases linearly with the number of knots (the points where the polynomial pieces 
connect). �is adversely a�ects the goodness of �t as measured via a maximum likelihood approach. �e 
second reason is that when using splines, the resulting dose-response model is not indicative of potential 
underlying mechanisms. �is is not the case in our approach where the resulting model structure indi-
cates if there is a stimulatory e�ect or/and a second inhibitory phase (which could indicate interference 
with distinct processes). Also, the parameters do not correspond to speci�c features of the curve (steep-
ness, half inhibitory concentration, maximum e�ect). In respect of all these points, our model is in line 
with the classical Hill model and can be viewed as an extension of it in the case of multiphasic cases.

We have also developed an algorithm which enables determination of how many processes can be 
observed (in order to tailor the model at the right level) based on statistical consideration. �e resulting 
procedure has been integrated in our newly developed user-friendly Dr-Fit so�ware. We also proceeded 
to analyse a large data-set and showed that, based on models ranking, a substantial number of cases 

Figure 7. Mechanistic interpretation of our generalized Hill model. A speci�c phenotype (for instance 

cell proliferation) is o�en the result of several converging pathways. Some pathways result in stimulating a 

phenotype while others might inhibit it. (a) A drug may inhibit a speci�c node of a stimulatory pathway, 

resulting in a monophasic dose-response as per the classical Hill model. (b) In some cases a drug may 

a�ect several nodes, possibly in di�erent stimulatory pathways and with di�erent potency. If the di�erence 

in potency is great enough, this might lead to a clearly observable bi-phasic dose-response. (c) If the drug 

inhibits an inhibitory pathway at lower concentration, a stimulatory phase can also be observed.
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do not �t the Hill model and might require multiphasic models (28%). It should be noted that sev-
eral authors already highlighted the importance and implications of multiphasic dose-response such as 
hormetic e�ects19,20. More recently, the relevance of complex dose-response mechanisms has also been 
highlighted in the context of cancer therapeutics21,22. Our �nding that a substantial proportion of a large 
data-set is better described by a multiphasic model might suggest that these e�ects are not exceptionally 
rare.

From a practical point of view, this approach enables classifying observed dose-response in a number 
of ways. It enables the user to distinguish between mono- vs. multi-phasic dose-response. It also ena-
bles the user to distinguish between various types of multi-phasic features (e.g. stimulatory +  inhibitory 
phases vs. stimulatory +  2 inhibitory phases). Moreover, more quantitative comparisons across agents 
or systems can be performed using parameters such as the EC50 for each one of the identi�ed phases. 
Parameters also provide mechanistic insight, for instance in terms of understanding at what concentra-
tion level a speci�c process is engaged (e.g. �rst inhibitory vs. second inhibitory phase).

Interpolation and extrapolation exercises are improved using this approach. �is can have impact in 
a number of instances, such as for instance in the case of assessing drug combinations55. It should also 
be noted that other important metrics such as the area under the curve (AUC) can be derived from 
the dose-response model56. For instance, the AUC together with the IC50 were considered to compare 
the results of two large-scale pharmacogenomics studies16. �e calculation of such metrics should also 
bene�t from our new approach.

�e implementation of our general model and method in Dr-Fit so�ware should enable robust pro-
cessing of both standard dose-response curves and multiphasic ones. We expect Dr-Fit to be a tool useful 
for many experimentalists and analysts interested in the study of agent e�ects on biological systems.

Material and Methods
Modelling. �e model introduced in the Results section was implemented using Matlab. A three 
processes model was implemented using the following equation:
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Dr-Fit so�ware reads the dose-response data and builds the model. �e algorithm implemented in 
Dr-Fit �rst attempts to �t the data to a one process model (i.e. a standard Hill equation). �is is followed 
by an attempt to �t the data to a two inhibitory processes model. �en Dr-�t attempts to �t the data to 
a two processes model which includes a stimulatory process. Finally, the so�ware attempts to �t the data 
to a three processes model, two of them being inhibitory (antagonist) and one stimulatory (agonist). 
�ree optimization algorithms were implemented to �nd the model parameters: the simplex constrained, 
the Trust-region-re�ective and the standard simplex. �e Simplex constrained is the same algorithm as 
per the Simplex but constrains the parameters of the stimulatory and inhibitory processes such that no 
overlap in concentration space occurs (well separated processes). For all optimization algorithms, the 
following function F is minimized:
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where cj corresponds to the jth concentration (p concentrations), Eexp i (cj) corresponds to the measured 
e�ect for concentration level cj and replicate i (n replicates), and σj is the standard deviation obtained for 
all the measures at concentration cj. For models with only two processes EC50 3, H3 and E∞3 were �xed 
to 1. For the model with only one process (i.e. a Hill model), EC50 2, H2 and E∞2 were also �xed to 1.

For normally distributed observational noise, minimizing our function F corresponds to a maximum 
likelihood estimate of the parameters. �us, when more than one replicate is available, goodness of �t 
(GOF) can be tested for and is also provided by the so�ware. �e resulting four models are then ranked 
based on the Bayesian Information Criterion (BIC) and the model with the lowest BIC score is proposed 
by the so�ware as the best model40. �e BIC is our favourite ranking score because it favours simpler 
models, thus avoiding overparmetrization41–43 (the Akaike Information Criterion57 (AIC) score is also 
provided by the so�ware if needed). In some instances, the absence of an appropriate number of rep-
licates prevents satisfactory assessment of the standard deviation. In this case the so�ware also enables 
weighting the sum of squares in the function F by unity rather than the standard deviation.

It is also important to note that, if we assume for instance that the dose-response data is normalized 
to control conditions (no drug), then measured e�ects vary from 1 at low concentration to a value o�en 
close to 0 at high concentration. In practice, it is possible that �uctuations lead to a poor estimation of 
control conditions (i.e. not enough replicates, spatial e�ects in plated experiments etc.) such that the 
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baseline may appear greater or lower than 1. �us, the option is given to also scale the model in order 
to capture a di�erent baseline and minimize these e�ects.

Software main features. Dr-Fit so�ware was developed to enable end-users to easily model their 
dose-response data without requiring any coding or scripting. �e so�ware can be downloaded from 
sourceforge.net/projects/dr�t and it is easily installed on windows-64 machines. Dr-Fit is accessible 
through an user-friendly interface (Fig. 4a). Experimental data is simply tabulated in a .xls �le (Fig. 4b) 
and there are no limits in terms of concentration points and number of replicates (Fig. 4c; each replicate 
is simply added next to the previous one). �e data for the so�ware should be ordered as follows: con-
centrations, e�ects for replicate 1, e�ects for replicate 2 etc, then concentration unit and then title. �e 
data can be ordered either in column or rows and several formats for the dose-response can be selected 
(E�ects varying from 1 to 0 or 100 to 0 or 0 to 1 etc). A template and several examples are provided 
online.

Once the data is loaded, it is displayed in the right panel of the so�ware (Fig.  4d). �e user can 
then proceed to automatically produce a model which will be also displayed in the right panel. Upon 
pressing the “Fit curve” button, Dr-Fit proceeds to automatically �t the data (Fig. 4e). �e plots can be 
further modi�ed (Fig. 4f) and saved as high quality �gures (Fig. 4g). �e models’ characteristics (param-
eters, scaling, χ 2, GOF, AIC and BIC) can also be saved in a .xls �le in the project’s folder (Fig.  4h). 
Additionally, e�ects can be interpolated or extrapolated at various concentrations (Fig. 4i) and e�ective 
concentration at 50% (i.e. EC50 of the overall) or at any other level (e.g. EC90) can be calculated via 
Dr-Fit interface (Fig. 4j). Several dose-response curves can be displayed in the right panel (with same or 
di�erent colour) and the whole �gure saved with high resolution.

Cells and reagents. �e KPC K8484 cancer cell line was established from a KPC PDAC tumour58. 
PANC-1 cells were obtained from the European Collection of Cell Cultures (ECACC; Health Protection 
Agency, Salisbury, UK) and were veri�ed by STR genotyping and tested negative for mycoplasma. Cells 
were grown in DMEM medium (Life Technologies) supplemented with 5% fetal calf serum at 37 °C and 
5% CO2. SKOV3 cells were obtained from ATCC and tested negative for mycoplasma. �ey were grown 
in RPMI medium (Life Technologies) supplemented with 5% fetal calf serum at 37 °C and 5% CO2. 
Gemcitabine was obtained from Tocris Bioscience (Bristol, UK).

Gemcitabine was dissolved in dimethylsulphoxide (DMSO) and then diluted in culture medium to 
a �nal concentration of 0.2% DMSO. PF477736 was obtained from SynKinase (Parkville, Austrailia), 
dissolved in DMSO at 10 mM, and serially diluted to the appropriate concentration.

Cytotoxicity assay. For K8484 and PANC-1, drug cytotoxicity in vitro was assessed by the means of 
Sulforhodamine B colorimetric (SRB) assay. Cells were plated with a range of concentrations. A�er 72 h 
of incubation at 37 °C, they were �xed (3% trichloroacetic acid in water (w/v), 90 minutes, 4 °C), washed 
in water and stained with a 0.057% SRB (Sigma) solution in acetic acid (w/v) for 30 minutes. �e plates 
were washed (1% acetic acid (v/v), 4 times), and the protein-bound dye was dissolved in a 10 mM Tris 
base solution (pH 10.5). Fluorescence was measured using Tecan In�nite M200 plate-reader (excitation 
488 nm, emission 585 nm). Percentage inhibition compared to solvent control-treated cells was calculated 
for each drug concentration.

For SKOV3, drug toxicity was assessed by cell titer glo. Approximately 500 cells per well in 5 uL 
was dispensed using a Multidrop Combi dispenser (�ermo Fisher Scienti�c) into 1,536 solid-bottom 
white Greiner Bio-one tissue culture-treated plates (catalog #789173-F). 23 nL of ). PF477736 was trans-
ferred to the assay plate using a Kalypsis pintool. Plates were covered with stainless steel cell culture lids 
and incubated at standard conditions for 48 hours. To assess viability, 3 uL of CellTiter Glo luminescent 
cell viability assay reagent (Promega) was added using a Bioraptor Flying Reagent Dispenser (Aurora 
Discovery-BD). �e plates were incubated for 15 minutes at room temperature and measured using a 
10-s exposure on a ViewLux (Perkin-Elmer).
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