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This paper presents an automated tool for floating-point to fixed-point conversion. The tool is based on previous work that was
built in MATLAB/Simulink environment and Xilinx System Generator support. The tool is now extended to include Synplify DSP
blocksets in a seamless way from the users’ view point. In addition to FPGA area estimation, the tool now also includes ASIC area
estimation for end-users who choose the ASIC flow. The tool minimizes hardware cost subject to mean-squared quantization error
(MSE) constraints. To obtain more accurate ASIC area estimations with synthesized results, 3 performance levels are available
to choose from, suitable for high-performance, typical, or low-power applications. The use of the tool is first illustrated on an
FIR filter to achieve over 50% area savings for MSE specification of 10−6 as compared to all 16-bit realization. More complex
optimization results for chip-level designs are also demonstrated.

1. Introduction

Modern DSP systems are usually implemented from infinite-
precision algorithms, generally represented in decimal-point
numbers. For example, in the equation

a = π + b, (1)

if b = 5.6 and π = 3.1416, we can compute a with relative
ease, but most of us would prefer not to compute using
binary numbers, where b = 101.1001100110 and π =

11.0010010001. With this abstraction, many algorithms are
developed without too much consideration of the binary
representation in actual hardware, where something as
simple as 0.3 + 0.6 can never be computed with full
accuracy. As a result, the designer may often find the actual
hardware performance to be different from expected or that
large hardware costs are required for implementation with
sufficient precision [1]. The hardware cost depends on the

application, but it is generally a combination of performance,
energy, or area [2] for most VLSI and DSP designs. Designing
hardware with sufficient quantization accuracy and mini-
mal hardware cost is often an iterative process, requiring
numerous computer simulations to determine the accuracy
and logic synthesis to determine the hardware cost. This
greatly impacts both man-hour and time-to-market, as
each iteration is a change in the system level and system-
level specifications ought to be frozen months before chip
fabrication.

To avoid iterative changes in achieving optimal word-
lengths, an automated optimization tool is discussed in
this paper. This tool operates within the MATLAB/Simulink
environment and is publicly available for download. Some
knowledge of floating-point to fixed-point conversion (FFC)
is useful for efficient usage of this tool and is discussed in
Section 2. Section 4 reviews wordlength optimization tech-
niques. Modeling and optimization theory is presented in
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Section 3, followed by usage optimization flow in Section 5.
Section 6 demonstrates few design examples of different
complexity, and Section 7 concludes the paper.

2. Floating-Point to Fixed-Point Conversion

As explained in [3], floating-point arithmetic with large
mantissa and exponent often approximates the infinite-
precision algebraic algorithm with acceptable accuracy. In a
modern computing language, floating-point arithmetic with
32 bits or 64 bits is often employed. The accuracy of floating-
point calculation is an important and diverse subject in itself,
yet it is common for an algorithm to go through a simulation
in floating-point arithmetic with the assumption that the
numerical errors caused by floating-point representations
are negligible. This assumption is often benign, especially
for communication systems and most signal processing
systems to be implemented in a hardware solution. In these
cases, the algorithm is to overcome more significant effects
caused by imperfect modeling, estimations, and subjective
interpretations of the physical world. Examples of these
kinds are the modeling loss of a communication channel,
treating front-end circuit uncertainty as thermal electronic
noise, fussiness in judging how similar two objects appear
to a human, and so forth. These algorithmic imperfections
hide the smaller numerical errors caused by quantization.
Therefore, “floating point” in our context really means high-
precision representation of a system that can be abstracted
as an infinite-precision system. This high-precision design is
used as a reference in our optimizations.

In most hardware designs, a high-precision floating-
point implementation is often too much of a luxury. Hard-
ware requirements such as area, power consumption, and
operating frequency all demand more economical represen-
tations of the signal. A lower-cost (and higher-performance)
alternative to floating-point arithmetic is fixed point, where
the binary point is “fixed” for each data path (Figure 1), and
the bit-field is divided into the sign bit (if needed), the integer
wordlength (WInt), and the fractional wordlength (WFr). The
maximum representable precision is 2−WFr , and the dynamic
range is limited to 2WInt . While these limitations may seem
unreasonable for a general-purpose computer (unless very
large wordlengths are used), they are acceptable for many
dedicated hardware designs in specific applications where the
input range and precision requirements are well defined. In
a communication receiver design, for example, this is often
ensured by performing automatic gain control (AGC) up
front. Although many well-specified design environments for
fixed point exist, we use the Simulink environment because
the designer can easily specify wordlength variables, along
with overflow mode for saturation or wraparound, and
quantization mode for rounding or truncation. It should
be noted, however, that selecting rounding and saturation
modes usually increases hardware usage.

When sufficiently large wordlengths are chosen in a fixed-
point representation of the algorithm, it becomes another
high-precision version of the infinite-precision algorithm.

0 0 0 01 1 0 01 1

WInt WFr

Sign

(a)

0 0 0 01 1 0 01 1

WInt WFr

(b)

Figure 1: A fixed-point (a) signed number and (b) unsigned num-
ber.

From a design perspective, efficiently converting a high-
precision design to fixed point requires careful allocation of
wordlengths as well as overflow and quantization modes. For
example, while excessive wordlength leads to slower perfor-
mance, larger area and higher power, insufficient wordlength
introduces large quantization errors and can heavily degrade
the precision of the system. Finding the best tradeoff point
in the design space related to fixed-point representations of
the original algorithm in an automated way is a topic of
great interest. In the literature, this problem is sometimes
referred to as wordlength optimization. We, and some others,
prefer to call it floating-point to fixed-point conversion, or
in short FFC, to emphasize that there should be an initial
high-precision reference design and that our tool is to aid
in producing its fixed-point version. Besides wordlengths,
fixed-point data type also includes other information such
as quantization and overflow mode. The high-precision
design should already contain all the detailed architectural
information. To explore the architectural design space, FFC
should be performed on each architectural solution, and
the resulting fixed-point design may already show sufficient
information to make a design decision; otherwise pushing
further into the design flow might be necessary. In fact, one
ultimate goal of an efficient and fully automated FFC is to
allow such high-level design exploration. More subtle design
decisions such as how many taps to include in an adaptive
filter are also within this class of problem. It is not hard
to imagine that, by introducing more taps in a filter, global
system specifications can potentially be satisfied with fewer
restrictions on quantization errors. To study all these types
of smaller variations to the system, an efficient FFC becomes
even more critical.

This section reviews key research results in wordlength
optimization. The issues addressed include analytical meth-
ods for modeling quantization errors and integrated tool
support. The main challenge is to realize a practical tool for
an automated wordlength optimization that is built on sound
theoretical foundations. We first emphasize the advantages
and disadvantages of various techniques and then outline our
research approach to address the challenges of an automated
wordlength optimization.

2.1. Early FFC Tools. In the recent 15 years or so, much
attention was given to addressing the FFC problem. Before
the investigation of analytical approaches, early efforts
focused on building practical FFC tools in specific design
environments. Here we review representative approaches.
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One notable past technique for determining both WInt

and WFr is Fixed-point pRogrammIng DesiGn Environment
(FRIDGE) [4]. In FRIDGE, WFr is optimized through
deterministic propagation, in which the user specifies WFr at
every input node, and every internal node is then assigned
a sufficiently large WFr to avoid any further quantization
errors. For example, WFr of an adder is the maximum
of its input WFr and is the sum of its input WFr for a
multiplier. However, this propagation approach based purely
on static structure of the design is often overly conservative
and has other drawbacks as well. First, the input WFr is
chosen by the user, which is unjustified by the optimization,
so different WFr at the input leads to completely different
results. In addition, not all WFr can be determined through
propagation; some logic blocks (e.g., a feedback multiplier)
require user interaction. Due to these issues with the
FRIDGE technique, we will only recommend it for WInt

optimization, and methods of WFr optimization are still to
be determined.

Another approach for WFr optimization is through itera-
tive bit-true simulations by Sung et al. [5, 6]. The fixed-point
system can be described in software models or Simulink
blocks where WFr for every node is described as a variable.
With each simulation, the quantization error of the system
(e.g., bit-error rate, signal-to-noise ratio, mean-squared
error) is evaluated directly along with a predefined hardware
cost (e.g., area, power, or delay) that is computed as a
function of wordlengths. Since the relationship between
wordlength and quantization is not characterized for the tar-
get system, the wordlengths in each iteration are determined
in an ad hoc fashion, and numerous iterations are often
needed to locate the wordlength-critical blocks [7]. Such
iterative search for large systems can be impractical when
stringent performance specifications (e.g., a very small bit-
error rate in a communication system) are required.

Though impractical for automation, the work by Sung
et al. shows the power of bit-true simulations that include
architectural descriptions of the system. This simulation
environment is not easy to set up. Creating an environment
that incorporates the detailed architectural description often
becomes the focus of separate research teams, even though
the work was originated or targeted as practical FFC tool [8].
We aim to avoid this difficulty by adopting a simulation and
design environment in MATLAB Simulink. Companies such
as Xilinx and Synopsys, as well as academic research groups,
recognize the advantage of this simulation and architectural
description environment and invested large resources to
support it. The benefit of Simulink is the allowance of bit-
true and cycle-true simulations to model actual hardware
behavior using functional blocks and third-party blocksets
such as Xilinx System Generator and Synopsys Synplify DSP
(now called Synphony HLS). This environment also allows
direct mapping into hardware description language (HDL),
which eliminates the error-prone process of manually con-
verting software language into HDL. Simulink environment
practically allows one-to-one mapping between the high-
level design and the final low-level logic gates. Each block in
the system description is even self-aware of its neighboring
connections. This level of structural cognition could be

implemented in procedural languages such as C, C++, and
MATLAB, but by leveraging this mature Simulink design
environment, we could then focus on building an efficient
FFC tool.

Another important optimization concept proposed by
[5, 6] is “cost efficiency”; where the goal of each iteration is
to minimize the hardware cost as a function of wordlengths
while meeting the system requirement for quantization
error. This implies an optimization framework that we
later explicitly proposed [9, 10]. To achieve a wordlength-
optimal design, it is necessary to locate the logic blocks that
provide the largest hardware cost reduction with minimal
increase in quantization error. The formulation for fixed-
point data type optimization is founded on this concept, but
a nonautomated approach is required to achieve acceptable
results within a reasonable timeframe. Simple models for
hardware cost were proposed for basic design blocks, but
the cost function is created separately by the designer, which
could be a tedious work caused by frequent design changes.
The importance of grouping various blocks to have the same
fractional wordlength to reduce the design complexity was
proposed by [6], but grouping was performed manually.
Recent similar approaches include [11, 12]. The work in
[13] uses simplified noise propagation but otherwise similar
approach to address the FFC problem.

2.2. Analytical Work. A large body of past literature studied
the quantization effects analytically. The studies range from
the fundamental topic of quantization noise of individual
quantizer to specialized studies based on individual prob-
lems. An extensive survey of such research results prior to
2004 was provided in [3].

Being able to utilize these rich and often mathematically
involved research results would certainly provide valuable
insights and simplification to the FFC problem. But since
these results are done in a system-specific way, it is difficult
to utilize them in a general automated tool. Therefore
it is important to formulate a rather general theoreti-
cal understanding of quantization effects. We pushed the
research direction in this front first by generalizing the
quantization effect for all linear time-invariant (LTI) systems
under stationary stochastic input [14]. While basic signal
processing blocks such as FIR, IIR, and FFT are all LTI
systems, to have a useful theory for general signal-processing
system consisting of a large number of signal-processing
blocks, a deeper understanding of quantization effect is
necessary. Based on deep understanding of the quantization
effects combined with our original “perturbation theory,”
we were able to abstract quantization noise effects into an
elegant formulation which applies to a broad range of designs
[15–17]. This will be illustrated in later sections.

In parallel with Shi et al.’s work, Constantinides utilized
a “perturbation analysis” to understand quantization effects
for nonlinear systems [18]. Both his perturbation analysis
and our perturbation theory start with somewhat similar
ideas of linearizing smooth nonlinear systems. However, the
perturbation analysis [18] remains as a high level observation
of quantization noise behavior. Not much attention was paid
to mathematical rigor; the only mathematical relationship
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was later shown in [19] without proof and missed the impor-
tant contribution from the nonzero mean of truncation
noises.

In contrast to Constantinide’s work, the foundation
of Shi’s theory is the use of the small-signal nature of
quantization noises (thus the validation of system lineariza-
tion). The theory involves a detailed understanding of
global quantization effects of a general system under general
input environment. Assumptions such as the noncorrelation
between data and quantization noise were clearly stated
and studied. The perturbation theory explicitly takes into
account the decision-making blocks (which turn a small
quantization noise to a large logic error), time-varying input
signal, nonzero mean of the quantization noise (such as
truncation effects), and the fixed-point effects of constant
coefficients in a design. In applying the theory to FFC
problem, Shi et al. also emphasized the reason to use
the mean-squared quantization errors between the high-
precision design and fixed-point design as the specifications.
It also showed the relationship of such MSE errors to the
original system specification such as signal-to-noise ratio
and bit-error rate. Therefore it is our understanding that
the perturbation theory and Constantinides’ perturbation
analysis are largely different research efforts. To date we
believe that our perturbation theory gives the most general
yet still concrete description of quantization effects. Its
effective usage in FFC problem is just one of its many
applications.

2.3. Design Automation. The early analytical works spent
their main effort on mathematically understanding an algo-
rithm or architecture’s gross quantization effects. Although
interesting, it is not an automated way to perform FFC.
Later, the usage or digital computing allows one to do
bit-true simulations to have concrete understanding of the
performance of a fixed-point system, which allowed the
designer to do iterative simulations to explore FFC problem.
The treatment of integer wordlength by FRIDGE can be
viewed as an example. Sung et al. noticed the importance of
abstracting hardware information and grouping wordlengths
together to more efficiently explore the design tradeoffs, but
at a manual level. They and other groups also attempted to
organize the search for optimal fixed-point data types based
on bit-true simulations, so that the number of simulations
can be reduced and made suitable for automation. The pitfall
there is that with very limited insights into the hardware cost
function and the statistical performance of the system as a
whole, the depth of such efforts is limited.

A high level of automation and fast conversion are key
requirements for an efficient FFC tool. Shi and Brodersen
[15–17] formulated and implemented an automated FFC
framework. First, it explicitly formulates the problem as
an optimization: to minimize the hardware cost function
with wordlength, overflow, modes and quantization modes
as variables. The optimization is subject to the constraints
such that the resulting fixed-point system should be close
to the given high-precision system under the typical test
vectors. Thus the adoption of mean-squared error (MSE)
between the two systems becomes a natural specification.

It utilizes perturbation theory for an efficient estimation
of quantization effects. An automated hardware resource
estimation is used to propagate low-level design information
to the MATLAB level, as opposed to creating a separate
resource estimation file manually. It explores the self-
awareness of the Simulink design at block level to automati-
cally group different wordlengths together (deterministically
and heuristically) to reduce the design space. It also lays
out the detailed treatments of quantization modes in the
optimization framework. In general, the implemented FFC
tool was applied extensively (and is continuously being
used) by the authors and collaborators to optimize complex
communication systems or signal processing blocks. The
original FFC tool was implemented specifically for Xilinx
FPGA design in 2004. With constant modification and
improvement, it now applies to different target designs
(Synplify DSP and ASIC), and it includes refinements based
on user feedback. For example, while the original tool
focused on wordlength design and did not include features
specifically for quantization mode optimization, we now
(again based on the perturbation theory) improve the tool to
also optimize the quantization modes in a practical way. The
current tool presented in this paper remains the state-of-the-
art in many aspects. We also believe that different research
teams should examine the source code and consider porting
the tool to their design environments.

Constantinides et al. took similar approach to ours
in [18–21]. They also start from Simulink environment.
It utilizes certain theoretical guidance, called perturbation
analysis, for FFC. While the perturbation analysis was fairly
limited, the whole FFC approach was a good direction to
take. They later extended the work to optimizing the power
of a design in [19]. Many of the similarities between these
two distinct research groups may be raised from the fact that
both teams use Simulink as the design editor. It is not clear
to us what level of automation was offered in Constantinides’
tool. Nevertheless, we feel it is of readers’ interests to have a
careful look of his and his colleagues’ work [18–21].

In the rest of this paper, we summarize key results of
the FFC perturbation theory and then discuss new research
results. The emphasis is on the automation, efficiency, and
further extension of the FFC tool to cover more design tar-
gets. Together with the rest of design flow automation, all the
way to the final chip, it demonstrates that design automation
for chips is rapidly approaching the level of automation that
high-level software language compilation had enjoyed for
years. The paper contributes by documenting our updates
of the tool and shows its application to different systems
and design targets. Interested readers can find extensive
explanation of FFC theory and related work in [3, 14]. These
two works remain a rich review of FFC as many important
results and discussions were not published elsewhere.

3. Automated Wordlength
Optimization—Theory

The details of the theory behind our FFC approach are
given extensively in [3]. Here we summarize key results used
in practice. The framework of the wordlength-optimization
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problem is formulated as follows: a hardware cost function
is created as a function of every wordlength (actually every
group of wordlengths, Section 5.3), and such function ought
to be minimized subject to meeting all quantization-error
specifications (Figure 2) [6, 7]. Such specification may be
defined for more than one output, in which case all j
requirements need to be met. Since the optimization focuses
on wordlength reduction, it is required to start with a design
that meets the quantization-error requirements. Since a spec-
meeting design is not guaranteed from users, a large number
N is initialized for the WFr of every block, where N is a
chosen in such a way as to make the system practically full
precision. This leads to the feasibility requirement where a
design with wordlength N must meet the quantization-error
specification, else a more relaxed specification or a larger N
is required. As with most optimization programs, a tolerance
a is required for the stopping criteria. A larger a decreases
optimization time, but in wordlength optimization, simula-
tion time far outweighs the actual optimization time, so the
default value of a is generally used. Since WInt and overflow
mode can be determined from onesimulation, similar to
FRIDGE and most other tools, the remaining optimization
is only required to determine quantization modes and WFr.

3.1. Modeling Quantization Error. To avoid iterative simula-
tions, which sometimes can be very long themselves when the
statistics to be estimated are small error-rates, it is essential
to understand that our design problem at the FFC step is to
create a fixed-point system that mimics the high-precision
system that was already verified extensively, separately. The
natural measure of the similarity between these two systems
is the mean-squared error of their difference under various
input vectors. Based on the original perturbation theory
[16], we observe that such MSE follows an elegant formula
for the fixed-point data types. The theory, in essence,
linearizes a smooth nonlinear time-varying system, and the
result is highlighted here;

MSE
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4. Techniques for Wordlength Optimization

The result states that the MSE error, as defined in (2), can be
modeled as a function of all the fractional wordlengths, all

Minimize hardware cost:

Subject to quantization-error specifications:

Feasibility:

Stopping criteria:

f < (1 + a) fopt where a > 0.

f (WInt,1,WFr,1;WInt,2,WFr,2; · · · ; o-q-modes)

S j(WInt,1,WFr,1;WInt,2,WFr,2; · · · ; o-q-modes) < spec,∀ j

∃N ∈ Z+, s.t.S j(N ,N ; · · · ; any modes) < spec,∀ j

Figure 2: Framework for the automated wordlength optimization
tool.

the quantization modes, and all the constant coefficients to
be quantized in the system. The only unknown variable is the
B matrix that captures the interplays of all the means among
nonzero-mean quantization-noise sources. The C vector
captures how the random nature of the quantization noise
sources further contributes to the MSE. The nonnegative
nature of MSE implies that B is positive semidefinite and
C is nonnegative. Both B and C depend on the system
architecture and input statistics in a complicated way—often
too complicated to understand theoretically.

Fortunately, we can estimate the B and C numerically.
We can first specify a high number, for example, 50 bits, for
all fractional wordlengths and determine the high-precision
outputs at the points of interest in the design. Let us first
ignore the quantization of constant coefficients, then when
only round-off mode is considered, we can just use p number
of simulations to identify the C vector, where p is the
total number of quantizers along the datapath. Each of the
simulations is to decrease one of the fractional wordlengths
to a much smaller value (e.g., from 50 to 16). This would
expose the contribution to the MSE of the corresponding
Ci. To characterize each element of B, we need to introduce
truncation mode and use smaller wordlength for only the i
and j quantizers.

It is important to notice that while a large design
could originally contain hundreds or thousands independent
wordlengths to be optimized at the beginning, the design
complexity can be drastically reduced by grouping of related
blocks to have the same wordlength. In practice, after
reducing the number of independent wordlengths, a complex
system may only have a few or few tens of independent
wordlengths. The reduced wordlength variables form a new
matrix B and vector C that are directly related to the original
B and C by combining the corresponding terms. The new B
and C have considerably less number of entries to estimate,
which reduces the number of simulation required.

The locations where the MSE between fixed-point and
floating-point models need to be monitored are discussed
in detail in [3]. Most of the time, the MSE requirement can
be derived from the original system specifications, such as
SNR, BER or other types or decision error rates. However, it
may require additional nodes where so called hard decision
making blocks are present. A hard decision-making block is
the one which would amplify the small quantization noise
accumulated at its input to a large decision error, and the
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decision errors turn out to alter the system MSE error
behavior considerably. Not all decision-making blocks are
hard. Under soft-decision making blocks, the system may
not be directly linearizable using small-signal perturbation
theory, yet the MSE can still be formulated [3]. One
example of a hard decision block is the frequency and time
synchronization units, since a wrong decision there will
surely have a hard decision impact to the rest of the data
path.

Due to modeling errors and estimation errors, it is often
practical to use a more stringent MSE requirement than what
appeared necessary in early stages of design. Since MSE is
related to wordlength in an exponential way, a moderately
more stringent MSE often will not result in a much larger
wordlengths. It is still important to test the resulting fixed-
point system against the original system specification, if
any, as the last verification step. Many details, including the
reason for adopting an MSE-based specification, along with
justifications for the assumptions used in the perturbation
theory are explained in [3].

Once the B and C are estimated, the MSE can be
predicted at different combinations of practical wordlengths
and quantization modes. This predicted MSE should match
closely to the actual MSE as long as the underlying assump-
tions used in perturbation theory still apply reasonably. The
actual MSE is estimated by simulating the system with the
corresponding fixed-point data types. Figure 3 demonstrates
the validity of the noncorrelation assumption. Shown is a
jitter compensation design [29] where simulations are used
to fit the coefficients B and C, which in turn are used to
directly obtain the “computed” MSE. The actual MSE in x-
axis is from simulation of the corresponding fixed-point data
types. By varying the fixed-point data types we see that the
computed MSE from the once estimated B and C fits well
with the actual MSE across the board range of MSEs. This is
a special-case verification of the perturbation theory, and [3]
explained a number of examples supporting this result from
various angles.

4.1. Modeling Hardware Cost. Having an accurate MSE
model alone is not sufficient for wordlength optimization.
In Figure 2, the optimization goal is to minimize the
hardware cost (as a function of wordlength) while meeting
the criteria for MSE, therefore hardware cost is evaluated
just as frequently as MSE cost, and need to be modeled
efficiently. When the design target is an FPGA, hardware
cost generally refers to area, but for ASIC designs it is
generally power or performance that defines the hardware
cost. Traditionally, the only method for area estimation is
design mapping or synthesis, but such method is very time
consuming. The Simulink design needs to be first compiled
and converted to a Verilog or VHDL netlist, then the logic
is synthesized as look-up-tables (LUTs) and cores for FPGA,
or standard cells for ASIC. The design is then mapped
and checked for routability within the area constraint. Area
information and hardware usage can then be extracted from
the mapped design. This approach is very accurate, for it
only estimates the area after the design is routed, but the
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entire process can take minutes to hours and needs to be re-
executed with even the slightest change in the design. These
drawbacks hinder it from being used in our optimization,
where fast and flexible estimation is the key, as each resource
estimation cannot consume more than a fraction of a second.
Therefore, a model-based resource estimation is developed
to provide area estimations based on cost functions. Each
cost function returns an estimated area of a logic block based
on its functionality and design parameters such as input and
output wordlengths, overflow and quantization modes, and
number of inputs. These design parameters are automatically
extracted from the Simulink-based design to obtain the area
cost, and the cost of each block is accumulated to provide a
total area.

For FPGA applications, area is the primary concern,
but for ASIC applications, the cost function can also be
changed to model energy or logic delay. The exact FPGA cost
functions for Xilinx System Generator blocks are proprietary
to Xilinx [23], but the end-user may create similar cost
functions for ASIC designs by characterizing synthesis
results. The details of ASIC area estimation are covered in
the next section.

Since each individual cost function is a quadratic func-
tion of WFr, the total cost function of the design can be
modeled as

f (W) ≈WTH1W + H2W + h3

where W =
(

WFr,1,WFr,2, . . .
)T
.

(3)

From Figure 4, it is apparent that a quadratic fit provides
sufficient accuracy for both FPGA and ASIC area estima-
tions. A linear fit is subpar and is only recommended
when the quadratic fit takes too long to complete. It is
important to note that the fit function satisfies the property
that its derivative to all wordlengths is nonnegative for all
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Figure 4: Actual versus computed hardware cost for (a) FPGA and (b) ASIC area-estimation on two designs.

nonnegative wordlengths. This means the cost must mono-
tonically increase in response to any wordlength increase
for all nonnegative wordlengths. The area should always be
nonnegative as well, meaning all entries of H1, H2, and H3

should be nonnegative. However, this function is not convex
in general, as H1 is often not positive semidefinite.

4.2. Area Estimation for the ASIC Flow. One key advantage
of Synopsys Synplify DSP blocksets (now called Synopsys
Synphony HLS, but we chose to retain the abbreviation
SynDSP in this paper) over XSG is their advantage to
create synthesizable Verilog for ASIC synthesis, which greatly
expands the scope of this tool beyond FPGA applications.
However, the area estimations from [17] are all constructed
for the FPGA flow. Due to core usage and LUT structures on
the FPGA, the logic area of the FPGA may differ significantly
from that of an ASIC, where no cores are used and all logic
blocks are synthesized to standard-cell gates. This means an
area-optimal design for the FGPA flow is not necessarily
optimal for the ASIC flow. It is therefore a key task to
provide an accurate area estimation for designs targeting
ASIC synthesis.

Most ASIC logic is synthesized given a timing constraint,
and the synthesized areas can differ greatly based on the per-
formance criteria. For example, area of a ripple-carry adder is
roughly linear to its wordlength, but the area of a carry-look-
ahead adder tends to be on the order of O(N · logN). There-
fore for each area characterization, 3 performance criterions
will be evaluated. The “high-performance” synthesis reflects
the fastest possible synthesized logic, while the “low-power”
synthesis reflects the smallest possible synthesized logic. The
“typical” synthesis aims to minimize area given a 30–50%

performance slack between the high-performance and the
low-power designs (roughly representing the minimum area-
delay product) [23]. The area function for each performance
mode can be fitted into a quadratic function of its design
parameters by using a least-squared curve fit in MATLAB.

To accommodate a large variety of DSP blocks, area
of adders, multipliers, and registers is characterized first,
and many other logic macros can be modeled based on
the area information of these low-level primitives. Adder
area is a multidimensional function of its input and out-
put wordlength, along with rounding/truncation options.
Choosing a signed or unsigned option does not have a
significant impact on area (other than the extra bit), but
choosing a rounding mode may add, on average, 30% area
overhead.

Adder area is more sensitive to the longer of its two
input wordlengths, along with its output wordlength—
it is approximately linear to these variables, as shown in
Figure 5(a). The multiplier area, however, is not as sensitive
to its output wordlength; instead, it is sensitive to the shorter
of its two input wordlengths. This means a 4-bit by 4-bit
multiplier consumes significantly more area than a 2-bit by
6-bit multiplier, even though the outputs for both multipliers
are 8 bits. The multiplier area shown in Figure 5(b) indicates
that increasing the wordlength of one input only impacts
the total area by a small amount, but once the wordlength
of the other input is also increased, total area increases
quadratically.

Once the area information for each block is collected for
a variety of wordlengths, a least-squares fit is used to build
an area estimation function for each block (and performance
level). The accuracy of the estimated area is then compared
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Figure 5: (a) Adder area against its input- and output-WL and (b) multiplier area against its input-WLs.

against actual synthesized area, and the results have shown
good fidelity of the model [24].

4.3. Standard-Cell-Based ASIC Area Estimation. Running
detailed synthesis for different wordlength combinations is
a time-consuming task and is not always feasible for many
users. In this case, a simpler alternative is to model area based
on standard cell documentation available for chip synthesis.
In Figure 6, some snapshots of a standard-cell document are
shown, where the dimensions of the gates are marked.

From the area information of each standard-cell, some
area estimations can be modeled. For example, an N-bit
accumulator can be modeled as the sum of N full-adder cells
and N registers, an N-bit, M-input mux can be modeled
as N ·M 2-input muxes, and an N-bit by M-bit multiplier
can be modeled as N · M full-adder cells. The gate sizes
can be chosen based on performance requirements. Low-
power designs are generally synthesized with gate sizes of
2× (relative to a unit-size gate) or smaller, while high-
performance designs typically require gate sizes of 4× or
higher. Using these approximations, ASIC area can be
modeled very efficiently. Although the estimation accuracy
is not as good as the fitting from the synthesis data, it is often
sufficient for wordlength optimization purposes.

With adequate models for both MSE cost and hardware
cost, we can now proceed with automated wordlength
optimization. The next section covers both the optimization
flow and usage details of the wordlength optimization tool,
which is publicly available for download [25].

5. Automated Wordlength
Optimization—Usage Flow

The optimization tool is built in the MATLAB Simulink
environment. The original tool from [17] supports only the
XSG blockset, but now XSG and SynDSP blocksets are both

supported in separate versions of the tool for ASIC support.
The user therefore needs to create the design using one of
these blocksets. Since generic Simulink blocks cannot be
automatically mapped to hardware, it is not supported.

The optimization flow is shown in Figure 7. The bold-
faced steps require user interaction. This section describes
each of the major steps in the flow, as labeled in the flow
graph.

5.1. Initial Setup. Before proceeding to the optimization, an
initial setup is required. A setup block (FFC Tool, Figure 8)
needs to be added from the optimization library, and the
user should open the setup block to specify the parameters.
The area target of the design (FPGA, or ASIC of HP, MP, or
LP) should be defined. Some designs have an initialization
phase in simulation that should not be used for MSE
characterization, so the user may specify the portion of
the outputs (Output Range) to consider. The optimization
rules apply to wordlength grouping and are introduced in
Section 5.3. Default rules of [1.1 3.1 4 8.1] are a good start
for most users.

The user needs to specify the wordlength range to use for
MSE characterization, discussed in Section 3. For example,
[8,40] specifies a WFr of 40 to “full precision,” and each
MSE iteration will “minimize” one WFr to 8 to determine
its impact on total MSE. Depending on the application, a
“full precision,” WFr of 40 is generally sufficient, though
smaller values improve simulation time. A “minimum” WFr

of 4 to 8 is generally sufficient, but designs without high
sensitivity to noise can even use minimum WFr of 0. If
multiple simulations are required to fully characterize the
design, the user needs to specify the input vector for each
simulation in the parameter box.

The final important step is the placement of specification
markers. The tool characterizes MSE only at the location
where Spec Marker is placed, therefore it is generally useful
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to place a Spec Marker at all outputs, and at some important
intermediate signals as well (Section 3.1).

5.2. Wordlength Analysis. Based on the FRIDGE algorithm
in Section 4, the wordlength analyzer determines WInt from
a single iteration of the provided test vector(s), therefore
it is important that user provides input test vector(s) that
covers the entire range of input, otherwise the unused bits
may be mistaken as unnecessary and removed. Here a range
detector is a customized block that is used to collect signal

statistics. During wordlength analysis, a “Range Detector”
is automatically inserted at each active node (Figure 9).
Passive nodes such as subsystem input and output ports,
along with constant numbers and nondata path signals (e.g.,
mux selectors, enable/valid signals), are not assigned a range
detector.

The range-detector block gathers information such as the
mean, variance, and the maximum value at each node. The
number of integer bits is determined to be able to cover the
mean with ±4 times the standard deviation (by default) or
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its maximum value, whichever requires more bits. With each
test vector, if the calculatedWInt is greater than the previously
determined WInt, the new WInt is used. WInt of constants are
determined based on their values directly to ensure no loss of
information.

5.3. Wordlength Connectivity and Grouping. With WInt deter-
mined by the wordlength analyzer, the remaining effort aims
to optimize WFr in the shortest timeframe possible. Since
the number of iterations for optimizing WFr is proportional
to the number of wordlengths, reducing the number of
wordlengths is attractive for speeding up the optimization.
The first step is to determine the wordlength-passive blocks,
which are blocks that do not have physical area, such as input
and output ports of submodules in the design, and can be
viewed as feedthrough from the wordlength perspective.

The second step is wordlength grouping, which locates
wordlength dependencies between blocks and groups the
related blocks together under one wordlength variable.
Deterministic wordlength grouping includes blocks whose
wordlength is fixed, such as mux-select, enable, reset, address
bus, and comparator signals, along with constants. These
wordlengths are marked as fixed. Some blocks implicitly
do not alter its input fixed-point data-type; examples are
registers, shift registers, and up- and down-samplers. These
wordlengths can be grouped with their source blocks to share
the same wordlength information (shown in gray-shaded
blocks of Figure 10).

Some wordlengths can be grouped heuristically, such as
muxes: allowing each data input of a mux to have its own
wordlength group may result in a slightly more optimal
design, but it can generally be assumed that all data inputs
to a mux have the same wordlength. The same applies to
adders/subtractors. Grouping these inputs into the same
wordlength can further reduce simulation time, though at a
small cost of design optimality. These heuristic wordlength
groupings are defined as eight general types of “rules” for the
optimization tool, with each type of rules being subdivided
to more specific rules. Currently there are rules 1 through
8.1. These rules are defined in the tool’s documentation [25]
and can be enabled or disabled in the initialization block.
We should emphasize that once the rules are chosen, the
rest of connectivity and grouping are done automatically by
the tool. Users only see the reduced number of independent
wordlengths after the groupings have been made.

This level of automation would be much more difficult if
Simulink lacked the support of dereferencing among ports,
wires, blocks and their properties. If our FFC tool is to be
ported to other design environments, considerable attention
may be necessary on environment specifics to allow the same
level of automation of the connectivity and groupings. We
believe grouping is an important level of automation in FFC,
for in a complicated system, it is too much burden to the
designer to accurately group wordlengths by hand.

5.4. Creating Hardware Cost Function. XSG did not origi-
nally have support for high-level resource estimation needed
for FFC. One of the authors spent a summer and worked

out a version with the XSG team to help implement this
feature, which in turn allowed the successful demonstration
of FFC methodologies in [23]. The current paper further
extends this resource estimation tools to SynDSP and ASIC
design.

The hardware cost function is the sum of the hardware
costs of individual logic blocks, discussed in Section 4.1.
The constructed function is then evaluated iteratively by
the hardware cost analyzer. Since each wordlength group
defines different logic blocks, they each contribute differently
towards the total area. It is therefore necessary to iterate
through different wordlength combinations to determine the
sensitivity of total hardware cost to each wordlength group. A
quadratic number of iterations is usually recommended for a
more accurate curve fitting of the cost function (Figure 4).
However, if there are too many wordlength groups (e.g.,
more than 100), then a less accurate linear fit will be used to
save time. There are continuous research interests to extend
the hardware cost function to include power estimation and
speed requirement. Currently these are not fully supported
in our FFC tool, but can be implemented without structural
change to the optimization flow.

5.5. MSE Specification Analysis. The MSE-specification anal-
ysis is based on Section 3, in which the perturbation theory
allows the MSE contribution of each block to be examined
individually. There we also explained the efficient way to
estimate matrix B and vector C. While the full B matrix and
C vector are needed to be estimated to fully solve the FFC
problem, this would imply an order of O(N 2) number of
simulations for each test vector, which sometimes could still
be too slow to do. However, it is often possible to drastically
reduce the number of simulations needed by exploring
design-specific simplifications. One such example is if we
are only interested in rounding mode along the data path.
Ignoring the quantization of constant coefficients for now,
the resulting problem is only related to the C vector, thus
only O(N) simulations are needed for each test vector. For
truncation modes, a new approach highlighted in Section 5.7
avoids O(N 2) simulations.

For smaller designs and short test vectors, the analysis
is completed within minutes, but larger designs may take
hours or even days to complete this process, though no
intermediate user interaction is required. Fortunately, all
simulations are independent of each other, thus many runs
can be performed in parallel. Parallel simulation support
is currently being implemented. FPGA-based acceleration
is a much faster approach, but requires mapping the full-
precision design to an FPGA first and masking off some
of the fractional bits to 0 to imitate a shorter-wordlength
design. The masking process must be performed by pro-
gramming registers to avoid reperforming synthesis with
each change in wordlength. This approach is also under
development [26].

5.6. Wordlength Optimization—Rounding Mode. After the
MSE-analysis, both MSE and hardware cost functions are
available. The user is then prompted to enter an MSE
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requirement. If more than one Spec Marker exists in the
design, a vector of MSE specification is required: 1 element
for each Spec Marker. The MSE requirements are suggested
to be obtained from various system specifications [3].

Following Figure 2, the MSE requirement is first exam-
ined for feasibility in the “floating-point” system, where
every wordlength variable is set to its maximum value. Once
the requirement is considered feasible, the tool employs the
following algorithm for wordlength reduction.

While keeping all other wordlengths at maximum, each
wordlength group is reduced individually to find the mini-
mum possible wordlength while meeting the MSE require-
ment. Each wordlength group is then assigned its minimum
possible wordlength. This is not likely to meet the MSE
requirement, so all wordlengths are then increased uniformly

until the requirement is met. The wordlength for each group
is then reduced temporarily. Since the hardware cost is
guaranteed to be nonincreasing with reducing wordlength,
the group that results in the largest hardware reduction while
meeting the MSE requirement is chosen. This procedure is
then iterated until no further hardware reduction is feasible,
and a wordlength optimal solution is created.

There are likely other more efficient algorithms to explore
the simple objective function and constraint function.
For example, a quasiconvex optimization can be used to
approach the problem, but we want to emphasize that since
we now have the analytical format of the optimization prob-
lem, any reasonable optimization procedure will yield the
near-optimal point. The important step is the process that
allowed us to abstract the original complex design problem to
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a simple mathematical optimization. Even though a guaran-
teed globally optimal point of this nonconvex optimization
problem is hard to obtain, obtaining reasonable optimality
for this concrete optimization problem is welldefined and
often fast under a chosen algorithm.

5.7. Wordlength Optimization—Truncation Mode. From Sec-
tion 3.1, the full matrix B is necessary to estimate MSE under
truncation mode, but simulation time on the order of O(N 2)
makes this approach difficult for large systems. We now
present a methodology that allows the optimization under
truncation mode without the need to explicitly estimate the
B matrix. This may introduce nonoptimality of the final
design, but we suggest that it is practically acceptable.

It is often favorable to use truncation mode along the data
path since the inclusion of rounding mode could increase the
area significantly [24]. If the user prefers to explore using
truncation mode uniformly for parts of the data path, the
optimization proceeds as follows.

(1) Find optimal wordlength vector in the rounding
mode for a given MSEspec, call it WLr

∗. The optimal
hardware cost is HW(WLr

∗), where subscript r
stands for rounding mode.

(2) Switch to truncation mode, then with the wordlength
being WLr

∗, the same MSE criteria will most likely

not be satisfied due to the introduction of the B
matrix. The truncation MSE is named MSEt .

(3) Based on (2), we know that

WLt,conservative
∗
= WLr

∗ + ceiling

(

1

2
· log2

(

MSEt

MSEspec

))

(4)

would satisfy the MSE in the truncation mode. The sum
here is to apply the latter scalar to all entries of the WLr

∗

vector that are subject to truncation. This could be a
conservative design, WLt,conservative

∗, but it will satisfy the
original MSE criteria. When there are multiple nodes for
MSE specification, then (4) becomes

WLt,conservative
∗

= WLr
∗ + max

(

ceiling

(

1

2
· log2

MSEt,i

MSEspec

))

, ∀i.

(5)

This formulation exploits the fact that even with the presence
of the B matrix, the total MSE in the truncation mode
decreases uniformly with the increase of all wordlengths.
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Figure 13: A design example of (a) a jitter compensation unit, (b) shows its original performance, and (c) shows its performance after
wordlength optimization for a MSE of 4.5× 10−9.

(4) If necessary, HW(WLt,conservative
∗) is compared

against HW(WLr
∗). If the savings in hardware

from truncation are significant, the former is a
more optimal design. But there are cases where the
difference between MSEt and MSEspec is so large (e.g.,
a chain of adders) that make round-off a preferred
choice.

The underlying assumption is that the optimal WLt
∗,

the conservative WLt,conservative
∗, and WLr

∗ are close to
each other in the abstract design space. Most times the
loss of optimality of WLt,conservative

∗ as compared to WLt
∗

in terms of hardware cost is minimal, since ceiling (1/2 ·
log 2(MSEt/MSEspec)) is logarithmic to the MSE difference.

Only one additional simulation is introduced in step 2
(for each test vector) during this new procedure. The
complete elimination of estimating B matrix means we can
only explore the design space suboptimally, but nevertheless
the procedure is very time efficient.

An alternative method for the exploration of the trun-
cation mode is to estimate the C vector as if the B matrix
does not exist, with each of the N simulations using
only truncation mode for the corresponding group. This
effectively estimates the sum of the C vector and the B
main diagonal entries. This would either overestimate or
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Figure 15: Block-level diagram of a reconfigurable digital front-end (DFE).

underestimate the actual MSE effect, so the tool would need
to either uniformly increase or decrease the obtained WL
to find WLt,conservative

∗. One additional simulation is also
needed here to adjust for the total B matrix from its diagonal.

5.8. Optimization Refinement. The MSE requirement may
require a few refinements before arriving at a satisfactory

design, but one key advantage of this wordlength optimiza-
tion tool is its ability to rapidly refine designs without restart-
ing the characterization and simulation process, because
both the hardware and MSE cost are modeled as simple
functions. In fact, it is now practical to easily explore the
tradeoff between hardware cost and MSE performance.

Furthermore, given an optimized design for the specified
MSE requirement, the user is then given the opportunity to
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Figure 16: (a) MSE to hardware cost tradeoff for the reconfigurable DFE. (b) ACPR of the wordlength-optimal design at MSE of 6 × 10−3.
(c) ACPR of the design at MSE of 7× 10−3.

simulate and examine the design for suitability. If unsatisfied
with the result, a new MSE requirement can be entered, and
a design optimized for the new MSE is created immediately.
This step is still important as the final verification stage of
the design to ensure full compliance with all original system
specifications.

6. Optimization Results—Examples

A pipelined 6-tap FIR filter in SynDSP is shown in Figure 11
as a simple design example. The wordlength at each logic
block before optimization is shown in the top label as (total,
fractional), and the wordlength after the optimization is
shown in the bottom label. The design is optimized for an
MSE of 10−6, and the area savings are greater than 60%.
The entire optimization flow for this FIR design is less than
1 minute. For more complex nonlinear systems such as
[22, 27, 28], characterization may take overnight, but no
intermediate user interaction is required.

Figure 12 shows a design example of a 1/square-root
operator in XSG to illustrate optimization of a recursive
design. The original design occupies 877 slices, and the
optimized design occupies only 409 slices. This demonstrates
that the tool is not limited to feedforward designs.

The design of a state-of-the art jitter compensation unit
using high-frequency training signal injection [29, 30] is
shown in Figure 13(a). Its main blocks include high-pass and
low-pass filters, multipliers, and derivative computations.
The designer spent many iterations in finding a suitable
wordlength, but is still unable to reach a final SNR of
30 dB, as shown in Figure 13(b). This design consumes
∼14000 LUTs on a Virtex-5 FPGA. Using the wordlength
optimization tool, we finalized on an MSE of 4.5×10−9 after a
few simple refinements (Section 5.8). Shown in Figure 13(c),
the optimized design is able to achieve a final SNR greater
than 30 dB while consuming only 9600 LUTs, resulting in
32% savings in area and superior performance.

For very complex designs, it is often difficult to per-
form wordlength optimization on the entire system due to
machine and runtime limitations. In this case, the optimiza-
tion ought to be performed hierarchically. For the MIMO
transceiver used to evaluate SVD algorithm (Figure 14) [22],
the processing elements for UΣ and V are optimized first,
and their optimized I/O wordlengths are then propagated
to top level to optimize the remaining logic in the top level.
This approach made feasible the optimization of a 1 million
gate chip. Using automated FPGA mapping from XSG, the
designer was able to immediately verify all functional modes
of the optimized design in hardware before physical chip
synthesis [31], giving designers much higher confidence
in the functionality of the fabricated chip. These chips
also demonstrate hierarchical extension of the 1/square-root
block illustrated in Figure 12, and [31] has more details about
the design.

The final detailed example is a high-performance recon-
figurable digital front-end for cellular phones (Figure 15).
Due to the GHz-range operational frequency required by
the transceiver, a high-precision design simply cannot meet
the performance requirement. The authors not only explored
the possible architectural transformations [32], wordlength
optimization was also required to make the performance
feasible. Since high-performance designs often synthesize
to parallel architectures (e.g., carry look-ahead adder), the
wordlength-optimized design results in 40% area savings.

We now explore the tradeoff between MSE and hardware
cost, which in this design directly translates to power, area,
and timing feasibility. Since this design has two outputs
(sine and cosine channels), the MSE at each output can be
adjusted independently, shown in Figure 16(a). The adjacent
channel power-ratio (ACPR) requirement of 46 dB must be
met, which lead to a minimum MSE of 6 × 10−3. The ACPR
of the wordlength optimal design is shown in Figure 16(b).
Further wordlength reduction violates ACPR requirement
(Figure 16(c)).
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Table 1: Summary of wordlength optimization results.

Design Operation frequency Gate count Chip area Area savings from WL optimization

MIMO SVD [22] 100–512 MHz 420,304 3.5 mm2 in 90 nm 30%

Sphere decoder [27] 256 MHz 85,000 0.31 mm2 in 90 nm 20%

Neural DSP [28] 0.4–1.6 MHz 650,000 7.04 mm2 in 90 nm 15%

Jitter compensation [29] 100 MHz 9,600 LUT Xilinx Virtex V 32%

Reconfigurable DFE [32] 2.4 GHz 100,000 0.16 mm2 in 65 nm 40%

We have designed numerous chips across different sizes
and operating frequencies using this tool. Due to the length
limitation, main results from the selected chips are shown in
Table 1.

7. Conclusion and Outlook

This paper discusses the purpose and usage of an auto-
mated wordlength optimization tool and its underlying
algorithms. Numerous improvements have been made to
extend its application to ASIC designs by supporting SynDSP
blocksets and ASIC area estimations. With its model-based
optimization, it is possible to construct designs for different
quantization requirements without manual iteration. The
present paper stresses the practicality of the FFC tools and
explains the aspects in which it has been improved over
its previous version. As before, we encourage readers to
download the tool from our public website and try it on their
designs. The readers are also encouraged to further refer to
[3] for better understanding of the fundamentals of the FFC
problem.

FFC research has advanced the field considerably in the
past decade or more. Research teams like ours have been
enjoying automated FFC on large number of chip designs.
However, from what the authors experienced, semiconductor
companies who face FFC on a daily basis are still using
largely ad hoc and manual methods. This is can be caused
by both lack of familiarity with the advanced topics and the
resistance to new tools. We are confident that the public
availability, and further documentation of our tool will help
the industry’s adoption of the advanced approach. Tool
support groups such as Synopsys, XSG, or even Simulink are
the first step toward this realization. Adopting the concepts
and techniques in other tool design environments may be
less straightforward, but not difficult. Once the tool becomes
an integrated and preincluded part of existing tool flow, the
semiconductor industry would adopt it more readily.

Due to constant updates in Xilinx and Synopsys blockset,
some version compatibility issues may occur, though we
aim to provide updates with every major blockset release
(support for Synopsys Synphony blockset is recently added).

Disclosure

It is open-source, so feel free to modify it and make sug-
gestions, but please do not use it for commercial purposes
without the authors permission.
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channel spike-sorting DSP chip,” in Proceeding of the IEEE
Asian Solid-State Circuits Conference, pp. 289–292, November
2009.

[29] Z. Towfic, S. K. Ting, and A. Sayed, “Sampling clock Jitter
estimation and compensation in ADC circuits,” in Proceeding
of the IEEE International Symposium on Circuits and Systems
(ISCAS ’10), pp. 829–832, June 2010.

[30] S. K. Ting and A. Sayed, “Reduction of the effects of spurious
PLL tones on A/D converters,” in Proceeding of the IEEE
International Symposium on Circuits and Systems (ISCAS ’10),
pp. 3985–3988, June 2010.
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