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ABSTRACT 
 
This work proposes a floating-point to fixed-point 
conversion (FFC) methodology for digital VLSI signal 
processing systems. The past techniques used to facilitate 
FFC are first reviewed, followed by a description based on 
a statistical approach and global optimization which 
allows a high degree of automation.   

 

1. INTRODUCTION 
 

The algorithms used by communication systems are 
typically specified as floating-point (infinite precision) 
operations.  On the other hand, digital VLSI 
implementations of these algorithms rely on fixed-point 
(finite precision) approximations to reduce cost of 
hardware while increasing throughput rates.  One essential 
step of top-down design flow is to determine the fixed-
point data type of each signal node, namely the word-
length, truncation mode and overflow mode [1-7].  
However conventional approaches are typically both time-
consuming and error-prone since ad-hoc assignments of 
fixed-point data type are performed manually and 
iteratively [3].   

 
In section 2 the FFC problem is first formulated into an 

optimization framework.  The optimization variables are 
defined by the fixed-point data-types to be determined.  In 
this unified point of view the past techniques are 
compared.  A primary goal is to make the optimization 
automatic and fast which required an understanding of the 
relationships between optimization functions and variable.  
A critical step is the identification of the right metric that 
judges the quality of an FFC that is sufficiently general.    
 

2. PROBLEM FORMULATION OF FFC 
 
The first part of this section formulates FFC as an 
optimization problem.  The drawbacks of some past 
techniques are discussed in this unified framework in the 
second sub-section. 

 
2.1. Optimization Formulation 
 
The optimization variables are the fixed-point data-types 
to be determined, including integer word-lengths WInt,i, 
fractional word-lengths WFr,i, overflow modes oi, and 
quantization modes qi.  In our formulation word-lengths 
should be integers; overflow mode can be 0 (wrap-around) 
or 1 (saturation); quantization mode can be 0 (2’s 
complement truncation towards lower value) or 1 (round-
off).  The objective to be minimized is the hardware cost 
as a function of these variables, with the constraint 
functions as specifications that depend on the behavioral 
quality of the fixed-point system, such as bit-error rate or 
signal-to-noise ratio.  In general, longer word-lengths 
improve (or keep) the system performance with an 
increase in hardware cost.  Putting all of the functions 
together, FFC can be transformed into the following 
optimization problem 

minimize hardware-cost  
    f(WInt,1, WFr,1; WInt,2, WFr,2; … ; o-modes, q-modes) 
subject to specifications      
   Sj(WInt,1, WFr,1; WInt,2, WFr,2; … ; o-modes, q-modes)  
   < 0, ∀ j 
stopping criteria 
  f < (1 + a) fopt  where a > 0. 
The stopping criteria means the optimization iteration 

stops when the hardware-cost f is within a small difference 
a away from the optimal hardware-cost fopt.  In section 3 
the choices of hardware-cost function and specification 
functions will be discussed in detail.  In general the 
constraint functions should be chosen such that they are 
feasible, i.e. there exists a point in the optimization space 
that satisfies all the constraints. 
 
2.2. Review of the past techniques 
 
Recently a few strategies have been proposed to automate 
FFC for communication systems described in C/C++ [2-4].  
While the integer-part word-length and overflow modes of 
the fixed-point operands are commonly determined by 
avoiding signal overflow, the determination of the 



fractional word-lengths relies on different methods.  In 
both [2] and [3] there is no gross hardware-cost function 
given; neither is the problem treated as an optimization.  
However the implicit goal is to minimize all the word-
lengths at the same time.  The task of minimizing multiple 
objective functions is unrealistic unless the constraints are 
special so that they all can be minimized simultaneously.  
This is done in [3] by having one constraint function for 
each word-length: the input word lengths are pre-assigned; 
for the rest of the word lengths the integer part should be 
sufficiently large to cover the signal ranges it governs 
(same for both [2] and [4]), and the fractional part should 
be sufficiently large so the local quantization noise power 
is much smaller than the one caused by quantizations of 
the inputs.  These strongly decoupled constraint functions 
are always feasible and can minimize all word lengths at 
the same time.  However, the gross quantization effects 
from these locally justified quantization sources altogether 
can still be much greater than the one induced by input 
quantizations.   Therefore it is still necessary to have a 
final constraint on system performance (e.g. SNR or bit-
error rate) as a function of all the word lengths.  This 
becomes the reason for unbounded number of iterations. 
 

In [2] the unjustified pre-assignments of date-types on 
certain signal nodes provide a number of constraint 
equations.  The deterministic propagation methodology 
yields inequalities among the fractional word lengths, e.g. 
the fractional word length at the output of a multiplier 
should be no less than the sum of those of the two inputs, 
while the output fraction word length of a delay 
component should be no less than the input one.  Besides 
the overly pessimistic consideration of quantization 
effects, feedback loops such as the one in an accumulator 
can yield contradictive inequalities.  This is solved in [2] 
by possible user interaction using engineering decisions, 
which results in undetermined design time. 
 

Work in [4] implies similar problem formulation to 
ours, and again has the same treatment on integer word 
lengths.  The constraints are chosen to be the system 
specification functions directly.  However the lack of 
investigations on the closed form specification function 
limits their optimization algorithm to be heuristic and 
time-consuming search.  In addition, the Monte Carlo 
simulations among iterations can be inconsistent which 
adds further complications.  

 
3. PRACTICAL, RELIABLE AND COST-

EFFICIENT FFC 
 
The same constraint functions as in [2-4] are adopted in 
the current work for integer word lengths.  The assumption 
that overflow noise hurt the quality of the design greatly is 
reasonable in general.  However be aware that in some 

special situations occasional overflows in saturation mode 
are acceptable and even expected, which won’t be covered 
in this work.  Only one behavioral simulation is needed to 
estimate the ranges of signal nodes.  With all WInt and o-
modes can be determined separately, these variables are 
dropped out from the optimization problem in Section 2.1.  
In the following subsections the hardware-cost function 
and constraint functions will be studied.  
 
3.1. Analytical form of hardware-cost function 
 
Only one hardware cost function is to be minimized.  This 
could be area, power consumption, etc. High-level 
estimations of hardware resources such as area, energy and 
delay have been studied extensively, e.g. [1,7].  For system 
level optimization, it often suffices to adopt the 
parameterized library based approach [1].  The area of 
each block of the library can be modeled as a function of 
parameters related to fixed-point data types as well as 
other important technology factors such as feature size and 
voltage.  Provided the architecture choice with all other 
parameters fixed, the area cost of a library block is 
uniquely characterized as a function of the fixed-point 
data-type parameters.  The total area of the system can 
then be estimated as a sum of all the required blocks plus a 
certain routing overhead.  This usually yields a hardware-
cost that is a quadratic function of WFr,i and qi. 
 
3.2. Choices and analytical forms of constraint 
functions 

 
Unlike in  [3] where a number of additional constraint 
functions are created to solve the multiple-objective-
function situation, only the system specifications (such as 
bit-error rate and SNR) that are eventually used to judge 
the quality of the design are first considered as the 
constraints.  Furthermore instead of employing the system 
specifications directly as the optimization constraints as 
used in [4], a more robust specification scheme is 
proposed based on the statement that the fixed-point 
system is expected to deviate only little from the floating-
point origin.  One natural alternative specification 
replacing (NOT in addition to) the system specifications is 
their relative changes between floating and fixed point 
systems.  An innovative perturbation theory is developed, 
and shows that the change to the first order is a linear 
combination of all the first and second-order statistics of 
the quantization noise sources.  With the widely used 
theoretical models of quantization noises [5,6], this 
alternative specification function can further be written 
into closed form 
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as defined in Section 2.1, function fxpt(c, d) means the 
value among the set {integer × d} that is the closest to c, 
and ci’s are the constants (e.g. filter coefficients) that 
appear in the floating-point design. 
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Figure 1. Simulation results of a 12-tap LMS filter. Both the 
alternative specification (in a) and MSE specification (in b) 
follow the perturbation theory. Note y-axis in b is the change of 
MSE, instead of MSE, in order to show the linear characteristics. 
 
Moreover this perturbation theory works on general 
criterions, as long as they can be represented as large 
ensemble averages of functions of the signal outputs.  For 
example, convergence time of a LMS system also follows 
the perturbation theory above.  
 
The linear coefficients M  and ei’s can be data-fitted by 
running polynomial numbers of Monte-Carlo simulations.   
However an unacceptably large sample size may be 
needed for each simulation to detect the small perturbation 
of a large value, who suffers its own estimation error.  
This important issue is resolved by choosing the mean-
squared error (MSE) as the specification function.  The 
MSE is the output difference between the floating-point 
and the fixed-point system.  Following the perturbation 
theory, it can be written as   
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where B is a positive semi-definite matrix, denoted as 

B f 0, and Ci ≥ 0.  Simulations are generated for a least-
mean-square adaptive filter (LMS), as shown in Figure 1 
(a) and (b).  It verifies that both the alternative 
specification and MSE follow the provided formula.  Since 

MSE directly measures the deviation between floating-
point and fixed-point systems, the sample size to estimate 
MSE is indeed orders of magnitude (4 orders in this LMS 
example in Figure 1) less than that to estimate the 
perturbation of a general specification, which in this case 
is the output residue error power.  Essentially similar 
results on the LMS are obtained in [5] by complicated 
analysis, which also provides the analytical expressions for 
the constant B and C matrices.  However it is clear pure 
analysis is limited to special cases only.  In stead our 
perturbation method applies in general, with the 
expressions of B and C left to Monte-Carlo simulations.   
 

 
Figure 2. Comparison between analytical form and Monte-

Carlo simulation for biquad system. 
 

A separate study on general multiple-input-multiple-out 
linear-time-invariant (MIMO LTI) systems based on 
transfer function method has been conducted in [6] and 
yield the following result: 

HH HHHH YQQQYQYXXXYX ⋅⋅+∆⋅⋅∆= RRR OO , 

where OOR is the MSE matrix at the multi-dimensional 

outputs at a given frequency; XXR  and QQR are the 

power spectrum matrices of inputs and quantization 
sources, respectively; and H and H∆  are the transfer 
function matrix and its perturbation due to quantizations of 
coefficients (see [6] for details).  A closer inspection 
shows that the formula above gives exactly the MSE 
formatted early in this sub-section; in addition it provides 
the analytical expression of B and C matrices.  Based on 
the LTI theory, a simple Biquad IIR system is examined.  
Theoretical result of the power spectrum density at the 
output matches very well to the simulation result as shown 
in Figure 2.  This verifies the LTI theory above and 
therefore the perturbation theory. 
 



Now the FFC problem is safely reduced to 
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Here vector µ  is defined in the same way as before, and 
Ak is the tolerance of the kth MSE error.  The problem is 
feasible because as all WFr increase, the left sides of the 
constraint functions asymptotically converge to -Ak’s 
which are always less than 0.  Physically that means the 
fixed-point system becomes infinite precision. 
 
3.3. Design automation 
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Figure 3. FFC design flow graph. 

 
An essential part of a practical FFC is to automate the 
process of obtaining the analytical hardware cost function 
and the analytical specification function.  This is achieved 
following the design flow in Figure 3.  First the signal 
ranges need to be estimated automatically by running one 
simulation.  This simulation also provides us the MSE 
tolerance vector, A.  Secondly, a number of simulations 
can be conducted following the MSE formula to find out 
matrix B and C.  The analytical hardware-cost function 
can be achieved by automatically reading the system 
parameters, provided the hardware-cost formula for each 
block.  Our current design environment is Mathwork 
SimulinkTM, in which all the tasks above can be 
automated.  The number of Monte-Carlo simulations need 
to be done is approximately [dim(B)2 + dim(C) + 1].  
Finally the optimization algorithm specifically suitable for 
this problem should be preprogrammed.   

 
3.4. Scalability 
 
A partition of the system MSE specification into block-
wise MSE specifications can factorize the problem into 
smaller optimization problems.  Moreover as in [2], many 

of the word lengths along forward-directional data path 
can be pre-related to reduce the number of optimization 
variables.  These two strategies ensure the applicability of 
the proposed methodology on large systems. 
 

4. CONCLUSION 
 
This work formulates FFC into an optimization problem. 
The past techniques are reviewed in this new scenario.  An 
automatic FFC methodology is presented and validated.  
The work provides new insights on finite-word-length 
effects in a stochastic environment.  Besides digital ASIC 
communication systems, the approach is readily applicable 
to other statistical signal processing systems and hardware 
platforms (e.g. FPGA). 
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