
AN AUTOMATED FLOATING-POINT TO FIXED-POINT CONVERSION
METHODOLOGY

Changchun Shi and Robert W. Brodersen

Berkeley Wireless Research Center, Department of EECS, University of California, Berkeley, USA

ABSTRACT

This work proposes a floating-point to fixed-point
conversion (FFC) methodology for digital VLSI signal
processing systems. The past techniques used to facilitate
FFC are first reviewed, followed by a description based on
a statistical approach and global optimization which
allows a high degree of automation.

1. INTRODUCTION

The algorithms used by communication systems are
typically specified as floating-point (infinite precision)
operations. On the other hand, digital VLSI
implementations of these algorithms rely on fixed-point
(finite precision) approximations to reduce cost of
hardware while increasing throughput rates. One essential
step of top-down design flow is to determine the fixed-
point data type of each signal node, namely the word-
length, truncation mode and overflow mode [1-7].
However conventional approaches are typically both time-
consuming and error-prone since ad-hoc assignments of
fixed-point data type are performed manually and
iteratively [3].

In section 2 the FFC problem is first formulated into an

optimization framework. The optimization variables are
defined by the fixed-point data-types to be determined. In
this unified point of view the past techniques are
compared. A primary goal is to make the optimization
automatic and fast which required an understanding of the
relationships between optimization functions and variable.
A critical step is the identification of the right metric that
judges the quality of an FFC that is sufficiently general.

2. PROBLEM FORMULATION OF FFC

The first part of this section formulates FFC as an
optimization problem. The drawbacks of some past
techniques are discussed in this unified framework in the
second sub-section.

2.1. Optimization Formulation

The optimization variables are the fixed-point data-types
to be determined, including integer word-lengths WInt,i,
fractional word-lengths WFr,i, overflow modes oi, and
quantization modes qi. In our formulation word-lengths
should be integers; overflow mode can be 0 (wrap-around)
or 1 (saturation); quantization mode can be 0 (2’s
complement truncation towards lower value) or 1 (round-
off). The objective to be minimized is the hardware cost
as a function of these variables, with the constraint
functions as specifications that depend on the behavioral
quality of the fixed-point system, such as bit-error rate or
signal-to-noise ratio. In general, longer word-lengths
improve (or keep) the system performance with an
increase in hardware cost. Putting all of the functions
together, FFC can be transformed into the following
optimization problem

minimize hardware-cost
 f(WInt,1, WFr,1; WInt,2, WFr,2; … ; o-modes, q-modes)
subject to specifications
 Sj(WInt,1, WFr,1; WInt,2, WFr,2; … ; o-modes, q-modes)
 < 0, ∀ j
stopping criteria
 f < (1 + a) fopt where a > 0.
The stopping criteria means the optimization iteration

stops when the hardware-cost f is within a small difference
a away from the optimal hardware-cost fopt. In section 3
the choices of hardware-cost function and specification
functions will be discussed in detail. In general the
constraint functions should be chosen such that they are
feasible, i.e. there exists a point in the optimization space
that satisfies all the constraints.

2.2. Review of the past techniques

Recently a few strategies have been proposed to automate
FFC for communication systems described in C/C++ [2-4].
While the integer-part word-length and overflow modes of
the fixed-point operands are commonly determined by
avoiding signal overflow, the determination of the

fractional word-lengths relies on different methods. In
both [2] and [3] there is no gross hardware-cost function
given; neither is the problem treated as an optimization.
However the implicit goal is to minimize all the word-
lengths at the same time. The task of minimizing multiple
objective functions is unrealistic unless the constraints are
special so that they all can be minimized simultaneously.
This is done in [3] by having one constraint function for
each word-length: the input word lengths are pre-assigned;
for the rest of the word lengths the integer part should be
sufficiently large to cover the signal ranges it governs
(same for both [2] and [4]), and the fractional part should
be sufficiently large so the local quantization noise power
is much smaller than the one caused by quantizations of
the inputs. These strongly decoupled constraint functions
are always feasible and can minimize all word lengths at
the same time. However, the gross quantization effects
from these locally justified quantization sources altogether
can still be much greater than the one induced by input
quantizations. Therefore it is still necessary to have a
final constraint on system performance (e.g. SNR or bit-
error rate) as a function of all the word lengths. This
becomes the reason for unbounded number of iterations.

In [2] the unjustified pre-assignments of date-types on
certain signal nodes provide a number of constraint
equations. The deterministic propagation methodology
yields inequalities among the fractional word lengths, e.g.
the fractional word length at the output of a multiplier
should be no less than the sum of those of the two inputs,
while the output fraction word length of a delay
component should be no less than the input one. Besides
the overly pessimistic consideration of quantization
effects, feedback loops such as the one in an accumulator
can yield contradictive inequalities. This is solved in [2]
by possible user interaction using engineering decisions,
which results in undetermined design time.

Work in [4] implies similar problem formulation to
ours, and again has the same treatment on integer word
lengths. The constraints are chosen to be the system
specification functions directly. However the lack of
investigations on the closed form specification function
limits their optimization algorithm to be heuristic and
time-consuming search. In addition, the Monte Carlo
simulations among iterations can be inconsistent which
adds further complications.

3. PRACTICAL, RELIABLE AND COST-

EFFICIENT FFC

The same constraint functions as in [2-4] are adopted in
the current work for integer word lengths. The assumption
that overflow noise hurt the quality of the design greatly is
reasonable in general. However be aware that in some

special situations occasional overflows in saturation mode
are acceptable and even expected, which won’t be covered
in this work. Only one behavioral simulation is needed to
estimate the ranges of signal nodes. With all WInt and o-
modes can be determined separately, these variables are
dropped out from the optimization problem in Section 2.1.
In the following subsections the hardware-cost function
and constraint functions will be studied.

3.1. Analytical form of hardware-cost function

Only one hardware cost function is to be minimized. This
could be area, power consumption, etc. High-level
estimations of hardware resources such as area, energy and
delay have been studied extensively, e.g. [1,7]. For system
level optimization, it often suffices to adopt the
parameterized library based approach [1]. The area of
each block of the library can be modeled as a function of
parameters related to fixed-point data types as well as
other important technology factors such as feature size and
voltage. Provided the architecture choice with all other
parameters fixed, the area cost of a library block is
uniquely characterized as a function of the fixed-point
data-type parameters. The total area of the system can
then be estimated as a sum of all the required blocks plus a
certain routing overhead. This usually yields a hardware-
cost that is a quadratic function of WFr,i and qi.

3.2. Choices and analytical forms of constraint
functions

Unlike in [3] where a number of additional constraint
functions are created to solve the multiple-objective-
function situation, only the system specifications (such as
bit-error rate and SNR) that are eventually used to judge
the quality of the design are first considered as the
constraints. Furthermore instead of employing the system
specifications directly as the optimization constraints as
used in [4], a more robust specification scheme is
proposed based on the statement that the fixed-point
system is expected to deviate only little from the floating-
point origin. One natural alternative specification
replacing (NOT in addition to) the system specifications is
their relative changes between floating and fixed point
systems. An innovative perturbation theory is developed,
and shows that the change to the first order is a linear
combination of all the first and second-order statistics of
the quantization noise sources. With the widely used
theoretical models of quantization noises [5,6], this
alternative specification function can further be written
into closed form

...,2 M

|)flptsys.spec.(-)fxpt(spec. sys.|

Path} Data{

2WT ,Fr ++= ∑
∈

−

i
i

ie

µ

where ei’s are constants and M is a constant column
vector, the ith entry of vector µ is



 −

=
ii

-
i

-
i

i
ccc

q
i

i

constant for -)2,(fxpt
datapathfor 2

 ,W

 ,W
2
1

Fr

Fr

µ ,




=
n truncatio1,
off-round if 0,

iq

as defined in Section 2.1, function fxpt(c, d) means the
value among the set {integer × d} that is the closest to c,
and ci’s are the constants (e.g. filter coefficients) that
appear in the floating-point design.

One internal fractional word lengthLo
g 2(M

SE
 c

ha
ng

e)

Different lines
correspond to
different word
lengths of other
nodes

(a)

(b)

Figure 1. Simulation results of a 12-tap LMS filter. Both the
alternative specification (in a) and MSE specification (in b)
follow the perturbation theory. Note y-axis in b is the change of
MSE, instead of MSE, in order to show the linear characteristics.

Moreover this perturbation theory works on general
criterions, as long as they can be represented as large
ensemble averages of functions of the signal outputs. For
example, convergence time of a LMS system also follows
the perturbation theory above.

The linear coefficients M and ei’s can be data-fitted by
running polynomial numbers of Monte-Carlo simulations.
However an unacceptably large sample size may be
needed for each simulation to detect the small perturbation
of a large value, who suffers its own estimation error.
This important issue is resolved by choosing the mean-
squared error (MSE) as the specification function. The
MSE is the output difference between the floating-point
and the fixed-point system. Following the perturbation
theory, it can be written as

 ,2CB MSE
Path} Data{

2W ,Fr∑
∈

−
+=

i
i

T iµµ

where B is a positive semi-definite matrix, denoted as

Bf 0, and Ci ≥ 0. Simulations are generated for a least-
mean-square adaptive filter (LMS), as shown in Figure 1
(a) and (b). It verifies that both the alternative
specification and MSE follow the provided formula. Since

MSE directly measures the deviation between floating-
point and fixed-point systems, the sample size to estimate
MSE is indeed orders of magnitude (4 orders in this LMS
example in Figure 1) less than that to estimate the
perturbation of a general specification, which in this case
is the output residue error power. Essentially similar
results on the LMS are obtained in [5] by complicated
analysis, which also provides the analytical expressions for
the constant B and C matrices. However it is clear pure
analysis is limited to special cases only. In stead our
perturbation method applies in general, with the
expressions of B and C left to Monte-Carlo simulations.

Figure 2. Comparison between analytical form and Monte-

Carlo simulation for biquad system.

A separate study on general multiple-input-multiple-out
linear-time-invariant (MIMO LTI) systems based on
transfer function method has been conducted in [6] and
yield the following result:

HH HHHH YQQQYQYXXXYX ⋅⋅+∆⋅⋅∆= RRR OO ,

where OOR is the MSE matrix at the multi-dimensional

outputs at a given frequency; XXR and QQR are the

power spectrum matrices of inputs and quantization
sources, respectively; and H and H∆ are the transfer
function matrix and its perturbation due to quantizations of
coefficients (see [6] for details). A closer inspection
shows that the formula above gives exactly the MSE
formatted early in this sub-section; in addition it provides
the analytical expression of B and C matrices. Based on
the LTI theory, a simple Biquad IIR system is examined.
Theoretical result of the power spectrum density at the
output matches very well to the simulation result as shown
in Figure 2. This verifies the LTI theory above and
therefore the perturbation theory.

Now the FFC problem is safely reduced to

0. and 0,C 0, Bwith

 ,02CB

subject to

,...),,...;W,W(Quadratic
 minimize

Path} Data{

2W
,

212,Fr1,Fr

,Fr

>≥

<−+ ∑
∈

−

ki,kk

i
kkik

T

A

A

qqf

i

f

µµ

Here vector µ is defined in the same way as before, and
Ak is the tolerance of the kth MSE error. The problem is
feasible because as all WFr increase, the left sides of the
constraint functions asymptotically converge to -Ak’s
which are always less than 0. Physically that means the
fixed-point system becomes infinite precision.

3.3. Design automation

(hierarchical) Flpt sys in Simulink

WInt, , o-modes

H.W.-cost Info

WFr , q-modes

Simulations

Simulations
& data-fit

B, C & A H.W.-cost f

Compile

stopping
criteria

Pre-programmed
optimization

(hierarchical) Flpt sys in Simulink

WInt, , o-modes

H.W.-cost Info

WFr , q-modes

Simulations

Simulations
& data-fit

B, C & A H.W.-cost f

Compile

stopping
criteria

Pre-programmed
optimization

Figure 3. FFC design flow graph.

An essential part of a practical FFC is to automate the
process of obtaining the analytical hardware cost function
and the analytical specification function. This is achieved
following the design flow in Figure 3. First the signal
ranges need to be estimated automatically by running one
simulation. This simulation also provides us the MSE
tolerance vector, A. Secondly, a number of simulations
can be conducted following the MSE formula to find out
matrix B and C. The analytical hardware-cost function
can be achieved by automatically reading the system
parameters, provided the hardware-cost formula for each
block. Our current design environment is Mathwork
SimulinkTM, in which all the tasks above can be
automated. The number of Monte-Carlo simulations need
to be done is approximately [dim(B)2 + dim(C) + 1].
Finally the optimization algorithm specifically suitable for
this problem should be preprogrammed.

3.4. Scalability

A partition of the system MSE specification into block-
wise MSE specifications can factorize the problem into
smaller optimization problems. Moreover as in [2], many

of the word lengths along forward-directional data path
can be pre-related to reduce the number of optimization
variables. These two strategies ensure the applicability of
the proposed methodology on large systems.

4. CONCLUSION

This work formulates FFC into an optimization problem.
The past techniques are reviewed in this new scenario. An
automatic FFC methodology is presented and validated.
The work provides new insights on finite-word-length
effects in a stochastic environment. Besides digital ASIC
communication systems, the approach is readily applicable
to other statistical signal processing systems and hardware
platforms (e.g. FPGA).

5. ACKNOWLEDGEMENTS

This work was sponsored by DARPA and the SIA under
the MARCO focus centers program as well as the sponsors
of the Berkeley Wireless Research Center.

6. REFERENCES

[1] N. Zhang, B. Haller, and R. W. Brodersen, "Systematic
architecture exploration for implementing interference
suppression techniques in wireless receivers,” Proc. IEEE
Workshop on Signal Processing Systems, LA, October 2000.

[2] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE:
a fixed-point design and simulation environment,” Proceedings
of Design, Automation and Test in Europe, pp. 429 –435, 1998.

[3] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I.
Bolsens, “A methodology and design environment for DSP
ASIC fixed point refinement”, Design, Automation and Test in
Europe Conference and Exhibition 1999. Proceedings, pp. 271 –
276, 1999.

[4] W. Sung, and K. Kum, “Simulation-based word-length
optimization method for fixed-point digital signal processing
systems,” IEEE Trans. Signal Processing, vol. 43, no. 12, Dec.
1995.

[5] J. Cioffi, and M. Ho, “A finite precision analysis of the
block-gradient adaptive data-driven echo canceller,” IEEE
Trans. Communications. vol. 40, no. 12, May 1992.

[6] Changchun Shi, “Statistical method for floating-point
conversion,” 2002, Master Thesis, Department of EECS, Univ.
of California, Berkeley. (Advisor: Robert W. Brodersen).

[7] M. Nemani, and F. N. Najm, “High-level area and power
estimation for VLSI circuits,” IEEE Tran. Computer-Aided
Design of Integrated Circuits and Systems, vol 18, pp. 697-713,
June 1999.

