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Abstract

Dynamic reconfiguration is the process of making
changes to software at run-time. The motivation for this is
typically to facilitate adaptive systems which change their
behavior in response to changes in their operating environ-
ment or to allow systems with a requirement for continuous
service to evolve uninterrupted. To enable development of
reconfigurable applications, we have developed OpenRec, a
framework which comprises a reflective component model
plus an open and extensible reconfiguration management
infrastructure. Recently we have extended OpenRec to ver-
ify whether an intended (re)configuration would result in an
application’s structural constraints being satisfied. Conse-
quently OpenRec can automatically veto proposed changes
that would violate configuration constraints. This function-
ality has been realized by integrating OpenRec with the AL-
LOY Analyzer tool via a service-oriented architecture. AL-
LOY is a formal modelling notation which can be used to
specify systems and associated constraints. In this paper,
we present an overview of the OpenRec framework. In addi-
tion, we describe the application of ALLOY to modelling re-
configurable component based systems and highlight some
interesting experiences with integrating OpenRec and the
ALLOY Analyzer.

1. Introduction

Dynamic reconfiguration is the process of making
changes to software systems at run-time. The motivation for
dynamic reconfiguration spans many application domains
and more fundamentally is driven by a need for either adap-
tive behaviour or very high availability. Adaptive software
changes its behaviour at run-time in response to a volatile
operating environment. Highly available systems need to
execute in an uninterrupted manner for extended periods.

Mobile and ubiquitous systems are a widely cited [20,
22, 9] example of a class of system which requires adap-
tive behaviour. In particular, the execution environment of

a handheld device is subject to fluctuation in resources that
include power supply, network bandwidth, and available
memory. Changing from a mains power supply to battery
power might cause the software running on the device to
make conservative use of the power supply. Similarly, the
software could detect a move from a wired to a wireless
network; in response to this the software might reconfigure
itself to compress data before transmitting it to reduce the
payload.

Systems with a requirement for high availability tend
to be diverse but often mission-critical. A requirement of
the Space Station’s software control system, for example,
is that it regulates oxygen to crew members. Clearly, this
system cannot be shutdown for maintenance, without some
other arrangements being made. Similarly, telecommuni-
cations switching systems cannot simply be shutdown as
doing do so would withdraw critical functionality for han-
dling emergency calls. Moreover, with many businesses
adopting 24/7 modes of operation, there is a growing de-
mand for high availability. A recent study [1] has revealed
that outages are estimated to cost brokerage companies and
banks US$4.5M and US$2.6M respectively. Regardless of
the consequences of service unavailability, whether they en-
danger human life or be economic in nature, the challenge
is to provide technology which enables software systems
to necessarily evolve in order to remain useful [19], but to
do so in a way that does not incur downtime as traditional
maintenance processes do.

In recent years, a number of techniques have been de-
veloped which enable varying kinds of software reconfigu-
ration. Primitive techniques include conditional statements
and function pointers as mechanisms to develop “closed”
adaptive systems, in which all adaptive behaviour is known
at system design time [21]. More recently, Strategy ob-
jects and middleware interceptors have been used, in Dy-
namic TAO [26] and ACT [24] respectively, to support vary-
ing degrees of adaptation. To enable unanticipated run-
time change, both for adaptive systems and for those with
a requirement for continuous service, approaches based on
reflection [7] and dynamic AOP [23, 25] look promising.
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These mechanisms promote openness and allow systems to
acquire and offer new functionality and to change their non-
functional characteristics in ways unforeseen at design time.

Regardless of the choice of mechanisms used to realize
dynamic reconfiguration, there are a number of fundamen-
tal issues that need to be addressed when making run-time
changes to a system. First, the presence of a dynamic re-
configuration capability should not compromise application
integrity/correctness. In general, causing a system to fail or
enter an erroneous state would negate any benefit brought
about from dynamic reconfiguration. Second, the run-time
overhead introduced by a reconfiguration management fa-
cility should be insignificant and acceptable. Third and fi-
nally, dynamic reconfiguration should be transparent to ap-
plication developers. Non-transparent approaches introduce
additional complexity and their correctness is dependent on
contribution from application developers.

In our work, we are particularly concerned with pre-
serving an application’s integrity during periods of run-
time change. OpenRec [13] is a framework for developing
component-based reconfigurable applications. The frame-
work is open and extensible with respect to reconfiguration
management and allows a range of techniques for manag-
ing change to be implemented. In general, these techniques
handle interactions between components during reconfig-
uration and ensure, for example, that components do not
deadlock and that inter-component communications are not
discarded. However, a significant limitation of OpenRec
has been its lack of support for enforcing architectural con-
straints. For example, a configuration may be correct only if
particular components are present or if there is a particular
pattern of connectivity among the components.

During the past decade, formal modelling techniques
have been applied to software architecture descriptions [8].
Early work by Abowd, Allen, Garlan and Shaw [2, 27] in-
volved the use of the Z notation to formalize the compu-
tational data/state aspects of software architectures. How-
ever, automated verification support was lacking. Subse-
quently, Allen and Garlan [4] developed Wright, a CSP-
like notation, to formalize the interactive communication
aspects of software architectures. In this case, a transla-
tion tool was developed to generate CSP descriptions from
Wright ADL, allowing the FDR model checker to be used to
carry out consistency and completeness checking [3]. More
recently, Georgiadis, Magee and Kramer [11] have used the
ALLOY [15] language to specify constraints for Darwin ar-
chitecture descriptions. However, detecting and recovering
from constraint violations at run-time requires that code is
manually prepared from the ALLOY specifications.

Our approach to modelling and enforcing an applica-
tion’s architectural constraints offers a more integrated and
automated solution. Specifically, we have used ALLOY
to specify architectural constraints. Moreover, we have

integrated its tool support with OpenRec using a service-
oriented architecture. At reconfiguration time, a proposed
application configuration can be automatically verified with
the result that the reconfiguration is either performed, in
cases where all constraints will be preserved, or vetoed
where it is detected that at least one constraint would be
violated.

This paper is structured as follows. In Section 2, we
present an overview of the OpenRec dynamic reconfigura-
tion framework. In Section 3, we describe how ALLOY
can be used to model both generic and application-specific
constraints of component-based applications. In Section 4,
we explain how we have integrated ALLOY Analyzer with
OpenRec and report on some transferable experiences. Sec-
tion 5 concludes the paper and identifies avenues for further
work.

2. The OpenRec framework

OpenRec [13] has been developed to support automated
reconfiguration of component-based applications. Figure 1
presents the framework’s architecture and shows that it is
organized by three layers: Change Driver, Reconfiguration
Manager and Application.

Figure 1. The OpenRec architecture.

For systems with a requirement for high availability,
change is generally initiated by a third party. In this case,
the Change Driver simply provides an interface enabling
OpenRecML reconfiguration scripts to be submitted. Open-
RecML is an XML-based language which is used to de-
scribe component configurations and alterations to existing
configurations (i.e. reconfigurations). For adaptive appli-
cations, the Change Driver is a container which is intended
to host a developer-provided implementation which deter-
mines when and what changes are required. In determining
when to reconfigure, the Change Driver may use meta in-
terfaces at the Application layer to dynamically insert mon-
itoring code. For both highly available and adaptive sys-

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00  © 2006



tems the Change Driver outputs an OpenRecML script for
processing by the Reconfiguration Manager.

The Reconfiguration Manager layer is also a container
into which a particular implementation of a reconfiguration
algorithm can be plugged. The algorithm determines how
the reconfiguration will be managed so that a system’s in-
tegrity will be preserved. The remaining layer, Application,
is a configuration of applications components written by de-
velopers.

2.1. Reflective component model

Each of the layers is constructed using a reflective com-
ponent model, described more fully in [13]. Components
conform to Szyperski’s definition of a component [28], be-
ing a unit of composition with well-defined interfaces. In
addition to having provided interfaces, which specify the
services offered to others, OpenRec components also have
explicit required interfaces. Required interfaces make clear
the services a component expects of others in order to sat-
isfy its own contract.

Components are also interconnection independent,
meaning that they have no knowledge of their connections
with other components. To respond to an incoming commu-
nication, a component uses its provided interface without
knowing which component actually initiated the commu-
nication. Similarly, to make an outgoing request, a com-
ponent uses its required interface but does not know the
component whose provided interface is bound to its own re-
quired interface. A configuration of components is thus a set
of components where provided interfaces are bound to re-
quired interfaces. The loose coupling between components
means that, in principle, the configuration can be changed
by adding, removing, replacing and migrating components,
and by changing the connectivity structure.

Being reflective, the component model provides two lay-
ers, a base layer and a meta layer which are causally con-
nected [17]. With OpenRec, the base layer corresponds
to application components and interfaces. The meta layer
provides interfaces to discover and modify the configura-
tion (cf. structural reflection) and to insert/remove intercep-
tors on connectors (cf. behavioural reflection). Interceptors
can be used for monitoring purposes and to introduce or
withdraw arbitrary code which is executed during an inter-
component communication.

To illustrate OpenRec and subsequent material on for-
malizing architecture, we introduce a simple case study
which runs through the remainder of this paper. The system
is a network of routers which carry messages from source
nodes to destination nodes. Figure 2 shows a network router
configuration. It involves a source node, two destination
nodes and four intermediate router nodes.

Using OpenRec’s component model, three Component

Figure 2. The Router component configura-
tion.

subclasses have been developed: Source, Destination and
Router. Source does not have any provided interfaces but
defines one required interface, ISend, enabling Source in-
stances to send messages. Similarly, Destination does not
have any required interfaces but implements a IReceive
provided interface allowing it to receive messages. Com-
ponent Router both provides the ISend interface and re-
quires the IReceive interface. Connectors in this applica-
tion implement asynchronous messaging, essentially pro-
viding message queues.

Key non-functional requirements of the router applica-
tion include availability and reliability. Informally, mes-
sages should be sent on demand with guarantees on de-
livery. To help meet these requirements, redundancy has
been used so that there are (at least) two separate (distinct)
communication paths between any Sender and Receiver
nodes. Should an individual Router fail, a message can still
be routed to its destination. For example, Figure 2 shows a
configuration with the required redundancy, whereas if the
connection between the Router 3 and the Destination 2
were removed, the configuration of Figure 2 would involve
single points of failure.

2.2. Reconfiguration management

Using OpenRec’s component model to develop an ap-
plication offers rich possibilities for reconfiguration using
the meta-level interfaces. However, arbitrary use of these
interfaces can easily cause an application’s integrity to be
compromised. With regard to the router application, break-
ing connections (through disconnect()) with a Router and
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removing it would cause a message to be lost if these ac-
tions were performed after the Router had taken a message
from its input queue but before it had forwarded the mes-
sage. More generally, this problem is referred to in the lit-
erature as synchronizing reconfiguration with the ongoing
execution of the application [18].

Many approaches to synchronization have been pro-
posed in the literature and include abstract reconfigura-
tion protocols [18] where application components must
be programmed to respond to reconfiguration commands1.
Kramer and Magee’s seminal work involves components
communicating via transactions which can be multi-
message exchanges between a pair of components. Other
techniques have been developed for request-reply commu-
nication semantics and implemented as extensions to popu-
lar middleware, for example Java RMI [9] and CORBA [5].
In general these approaches involve establishing a safe state
prior to and during reconfiguration where components oper-
ate in degraded mode. We refer the interested reader to [12]
for a comprehensive review of synchronization techniques.

Part of the OpenRec framework is an interface named
IReconfigurationAlgorithm which is intended to be imple-
mented with a particular synchronization technique. This
interface plays the role of strategy in the Strategy pat-
tern [10]. The Reconfiguration Manager layer can be con-
figured with any component providing the IReconfigura-
tionAlgorithm interface. A basic implementation of the in-
terface, ReconfigurationAlgorithm implements start() as
a template method [10] which defers specific steps to sub-
class implementations:

• doCheckConstraints() gives an algorithm the oppor-
tunity to determine whether it is able to handle the re-
configuration. For example, Kramer and Magee’s al-
gorithm requires that a change management interface
be implemented by components - and this can be de-
termined using reflection.

• doSynchronise() should be implemented to carry out
the specific actions of the algorithm to synchronize re-
configuration with the application. This typically in-
volves calling change management operations on af-
fected components or blocking interfaces to prevent a
component from initiating or processing further com-
munications.

• doReconfigure() is implemented to carry out the ac-
tual structural changes necessary to effect the recon-
figuration. This step involves invoking the adaptation
operations defined in the meta interfaces of application
components.

1This is a case where a synchronization technique lacks transparency
because contribution is required from application developers.

Many well-known synchronization techniques have been
implemented in OpenRec. However, for the router applica-
tion, we have developed a custom algorithm, based on [14]
which incurs less overhead than a general purpose algo-
rithm. Essentially, the algorithm delays reconfiguration of
a Router component in cases where the Router has read a
message until it has output the message to another Router
or Destination node. The algorithm involves blocking a
Router’s provided interface to prevent it from reading fur-
ther messages. Once blocked and it has output any expected
message, the Router is deemed to have reached the safe
state.

2.3. Discussion

OpenRec is inherently open and extensible with respect
to the component model and reconfiguration management.
With the former, new kinds of components and connectors
with different semantics can be introduced. For reconfigu-
ration management, new algorithms can be developed and
made available at run-time.

OpenRec also promotes a healthy separation of con-
cerns. Application developers are able to focus on appli-
cation functionality separately to reconfiguration manage-
ment. This is particularly true where reconfiguration al-
gorithms are transparent, in other words where they need
no contribution from developers. Developers may associate
metadata with components to decorate them with informa-
tion that algorithms may find useful. For example Chen [9]
has proposed an algorithm which relies on knowledge of
which operations of a component change its state. For adap-
tive systems, decision logic is encapsulated in the Change
Manager and interceptors can be registered on connectors,
all independently to core application logic.

Reconfiguration management is itself reconfigurable in
OpenRec. The actual algorithm used by the Reconfigu-
ration Manager layer can be substituted at run-time as it
is simply a Strategy component. Adaptation logic can be
changed at run-time since the Change Driver layer is also
implemented using OpenRec’s reflective component model.
These features make possible some interesting capabilities
such as self-learning and self-optimizing reconfiguration
management.

However, based on the description of OpenRec in this
section, it is clear that OpenRec is unable to enforce an ap-
plication’s structural constraints. Until recently, OpenRec
has offered no way of expressing structural constraints or
verifying them at reconfiguration time. Interestingly, we
have been able to dynamically evolve OpenRec’s dynamic
reconfiguration management to offer this functionality - in
a similar way that applications hosted by OpenRec can be
reconfigured.
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3. Formal constraint expression and verifica-
tion

Traditionally, architecture descriptions are specified us-
ing diagrammatic notations or textual languages. However,
configurations defined in this manner are likely to be in-
consistent or error prone since there are no means of rigor-
ously verifying their correctness. As a result, formal mod-
elling techniques have been applied to the design, verifica-
tion and development of more reliable and effective soft-
ware architectures [2, 4]. The well-defined semantics and
syntax of formal modelling languages make them suitable
for precisely specifying and formally verifying architecture
requirements. One of the most promising advantages in us-
ing mathematical and logic based techniques is that formal
reasoning of the architecture properties can be achieved.
Consequently, the correctness of architecture configurations
can be guaranteed. In this section, we demonstrate formal
modeling and verification of OpenRec architecture models
using the ALLOY specification language and its tool sup-
port.

3.1. ALLOY and its Analyzer

ALLOY [15] is a structural modeling language based on
first-order logic. It is suitable for expressing complex struc-
tural constraints and behaviors of software and hardware
systems. The ALLOY language treats relations as first class
citizens and uses relational composition as a powerful op-
erator to combine various structured entities. The essential
constructs of ALLOY are as follows:

• A signature (‘sig’ in ALLOY syntax) describes the
properties of a set of entity objects. It introduces a
given type, which consists of a collection of relations
(called fields) and a set of predicates representing the
constraints on the fields. A signature may extend fields
and constraints from another signature.

• A fact (‘fact’ in ALLOY syntax) is a constraint on re-
lations and objects that is always true within the spec-
ification. It is a formula that takes no arguments and
does not need to be invoked explicitly.

• A predicate (‘pred’ in ALLOY syntax) is a template
for a parameterized constraint. It can be applied else-
where by instantiating the parameters. A predicate is
always evaluated to either true or false.

• A function (‘fun’ in ALLOY syntax) is a template for
a parameterized expression. It can be applied else-
where by instantiating the parameters. A function eval-
uates to a value.

• An assertion (‘assert’ in ALLOY syntax) is a con-
straint that is intended to follow from the facts of a
model. It is a formula whose correctness needs to be
checked, assuming the facts in the model.

The ALLOY Analyzer [16] is an automated tool support
for the ALLOY formal modeling language. It translates AL-
LOY specifications with a finite scope into prepositional
formulas and generates instances that satisfy the proper-
ties expressed in the specifications by exploiting the SAT
solvers. ALLOY Analyzer provides two kinds of automatic
analysis, i.e., simulation and checking. Simulation refers
to generating a snapshot of the system based on the facts
or predicates defined in the model. Checking is preformed
through attempting to generate a counterexample for an as-
sertion. The former is good at showing the feasibility of
a specification, where conflicting constraints could be de-
tected. The latter is good at checking the correctness of a
certain property in the system, where the assertion could be
proved based on the facts defined in the model and within
a finite scope of instants. When the ALLOY Analyzer suc-
ceeds in finding a solution to a formula, it produces both
graphical and textual output of the solution.

3.2. Formalizing the OpenRec configura-
tions

In this subsection, we first present a ALLOY formal def-
inition of the OpenRec architecture description. Based on
such a semantics, we demonstrate how the ALLOY Ana-
lyzer can be used to automatically verify OpenRec archi-
tecture configurations.

3.2.1 The OpenRec architecture style

An architecture description represents the high level struc-
ture of a system, which consists of the software components
involved, the external visible properties of the components,
and the communication patterns among the components [6].
We define the OpenRec architecture description in ALLOY
as follows.

abstract sig Interface {}
abstract sig Component {
provided : set Interface,
required : set Interface
}

The above defines a typical component structure in the
OpenRec architecture framework. It consists of a set of
provided interfaces for offering services to other compo-
nents; as well as a set of required interfaces for receiv-
ing services from other components in the system. The
provided/required interface pattern describes the potential
communications inside an architecture description. It is
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when two components having a matching provided and re-
quired common interface pair, then a connection can be
established between the components. A connection in the
OpenRec framework is defined in ALLOY as follows.

abstract sig Connection {
mapping: Component -> Component,
interface: one Interface
}{
one mapping
no (mapping & iden)
interface in (Component.˜mapping).required
interface in (Component.mapping).provided
}

The above states that a connection consists of a mapping
from the source component to the target component through
a common interface. The constraints define that there is
only one such mapping in a connection, and a component
can not connect to itself. Most importantly, the common
interface for a connection must be both in the provided in-
terface set of the target component as well as in the required
interface set of the source component. Therefore, an Open-
Rec system configuration can be modelled in ALLOY as a
set of components communicating through their set of con-
nections.

abstract sig System {
components : set Component,
connections : set Connection
}

3.2.2 OpenRec configurations in ALLOY

Based on the above ALLOY architecture style description,
the components in a specific system can be extended. For
example, the network router components from Section 2 can
be presented in ALLOY as follows.

one sig NetworkRoute extends Interface{}
abstract sig SrcNode extends Component{}{
no provided
required = NetworkRoute
}
abstract sig DestNode extends Component{}{
provided = NetworkRoute
no required
}
abstract sig Router extends Component{}{
provided = NetworkRoute
required = NetworkRoute
}

The above defines 3 types of components in the system:
(1) source nodes that only transmit data, (2) destination
nodes that only receive data and (3) routers that are capa-
ble of both receiving and transmitting data. Furthermore,

specific system requirements (constraints) can be expressed
as ALLOY assertions, such as:

assert noCircle {
all s:System, rt:Router |
(rt in s.components =>
(rt !in rt.ˆ(Connection.mapping)))

}
check noCircle

The above assertion states that a router should not have
outgoing data transmitted back to itself. This is to prevent
any circular structure in the network configurations. Let
us consider the more reliable network structure (Figure 2),
where the data sent from the source is almost certain to
reach the destination. As introduced in Section 2, this re-
quires that all network configurations have at least two dis-
tinct paths between a source and a destination. This prop-
erty can be interpreted as at least two paths should not have
any routers in common. Therefore, if an internal failure oc-
curs in a router on one path, an alternative path can still be
used to transmit data, which further ensures the fault tol-
erance property during a dynamic reconfiguration. We can
define a ALLOY assertion to achieve this as follows.

assert multiPath {
all s:System, src:SrcNode, dst:DestNode |
(src+dst) in s.components =>
(some cn:Connection, rt1,rt2:Router |
getSource(cn) = src and (rt1+rt2) in
src.(Connection.mapping) and
(no ((rt1.ˆ(Connection.mapping)-dst)
& (rt2.ˆ(Connection.mapping)-dst))))

}
check multiPath

The user expects these assertions (constraints) to be held
across all configurations applied to the system. Suppose we
have a network configuration defined in Figure 2 as follows.

one sig source extends SrcNode{}
one sig dest1,dest2 extends DestNode{}
one sig rt1,rt2,rt3,rt4 extends Router{}
one sig cn1 extends Connection{}{
mapping = source -> rt2
interface = NetworkRoute
}
one sig cn4 extends Connection{}{
mapping = rt2 -> rt4
interface = NetworkRoute
}
......
one sig RouterSystem extends System{}{
components = source+dest1+dest2

+rt1+rt2+rt3+rt4
connections = cn1+cn2+cn3+cn4+cn5+cn6+cn7
}
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Note that there are 7 connections in the model. By run-
ning the ALLOY Analyzer for this configuration, the as-
sertions hold, which ensures that the configuration in Fig-
ure 2 is valid. In the case of a reconfiguration, for example,
suppose the user modifies the system by removing the con-
nection between Router 3 and Destination 2 and adding a
connection between Router 3 and 4 in the above example,
the ALLOY Analyzer will automatically detect there is a
violation of the assertion multiPath in the model, and report
an inconsistency (with a counter example). After careful in-
spection, we found that such a change will cause only one
distinct path to exist between the Source node and the Des-
tination 2 node, which indeed violates our original fault tol-
erance requirement - if Router 4 fails, there will be no data
transmission from the Source to Destination 2. However,
such an error could not be detected by the OpenRec frame-
work without the formal verification support. This could
result in an undesired system configuration that the user is
not aware of.

4. Software integration through web service

In the previous section, we presented a formal ap-
proach to the verification of OpenRec architecture con-
figurations. We found that the ALLOY Analyzer could
provide functionality to validate models based upon user-
constraints. Specifically it can be used to verify OpenRec
(re)configurations prior to applying them to the system un-
der execution.

OpenRec and ALLOY are clearly two useful tools that
if combined would offer a powerful combination to realize
structural constraint expression and automatic verification.
However, OpenRec has been developed in Python in order
to benefit from its support for rapid prototyping while AL-
LOY is a Java application. Integrating these tools thus re-
quires the use of a mechanism which masks programming
language heterogeneity.

4.1. Integration using a web service

Two obvious integration solutions include using a mid-
dleware platform such as CORBA or a more lightweight
web-service mechanism. We have opted for the latter to
avoid the relatively high software development costs asso-
ciated with CORBA and to enjoy the deployment simplicity
of a web-service, such as being able to use HTTP to avoid
firewall difficulties. Furthermore, web service technology is
sufficient as there is no requirement for CORBA services.

A web-service client component has been developed for
OpenRec and registered dynamically as an interceptor on
the connector between the Reconfiguration Manager and
current algorithm component. The interceptor is thus able
to intercept all start() requests which it does by introducing

the new initial step of verifying the proposed configuration
with respect to structural constraints. Depending on the out-
come of verification, the interceptor either allows control to
proceed to the algorithm component or vetoes the reconfig-
uration.

ALLOY provides a quite a complex API which we have
simplified using the Facade design pattern [10]. The result-
ing interface, exposed as a web service, provides the follow-
ing operations: compile an ALLOY model, execute a com-
mand on a compiled model, iterate over any solutions for
the most recently executed command, get an XML repre-
sentation of a solution, and renew a lease on the service. The
service thus provides a generally reusable service which ca
be used by any web-service client of which OpenRec is one.
The service has been implemented using the Apache Axis
toolkit.

The process of validating dynamic reconfigurations
based upon a set of user constraints can be broken down
into two key steps, (1) generating the model representing
the specified system configuration, and (2) consuming the
service to perform the validation using the generated model.
A high-level overview of the process is shown in Figure 3.

Figure 3. The system integration.

4.2. Generation of ALLOY models

As we mentioned earlier, in order to perform validation
using the ALLOY web service, it is necessary to first create
the ALLOY model that represents an OpenRec configura-
tion. Upon each reconfiguration request, the correspond-
ing OpenRecML script must be translated into an ALLOY
model and sent to the web service for validation.
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As we can see from Figure 3, an OpenRec configura-
tion model can be divided into three sub-models, i.e., sub-
model 1, sub-model 2 and sub-model 3. Sub-model 1 rep-
resents the high-level architecture style which is common to
all OpenRec systems. Sub-model 2 is specified by the users
and describes the specific components, interfaces, connec-
tions and constraints that are based upon the system being
hosted on the OpenRec framework. User constraints are
expressed as assertions such as in section 3.2.2. For ex-
ample, in the network router, sub-model 2 contains defini-
tions for 3 types of nodes and the connectivity constraints
for source and destination nodes. Sub-model 3 specifies the
information about a configuration itself. This is unique to
each (re)configuration, but it can be automatically generated
from the information in the OpenRecML script. An algo-
rithm was developed to convert the OpenRecML elements
into their corresponding ALLOY specifications. For ex-
ample, consider the following segment of an OpenRecML
script of the network example in Figure 2:

<add>
<component

uniquename="source"
...

</component>
<component

uniquename="rt1"
...

</component>
<connection

sourcename="source"
targetname="rt1"
interfaceclass="NetworkRoute"
...

</connection>
</add>

From this the following ALLOY segment can be auto-
matically generated:

one sig source extends SrcNode{}
one sig rt1 extends Router{}
one sig cn1 extends Connector{}{
mapping = source -> rt1
interface = NetworkRoute
}

Once an OpenRec configuration is successfully trans-
lated into a ALLOY representation, it can be verified.

4.3. Validating the router reconfiguration

As shown in Figure 3, step 1 and 2 involves automati-
cally generating the complete ALLOY configuration model
from a user input. Steps 3 and 4 are accomplished by using
the ALLOY web service. It compiles the generated ALLOY

model and executes each user-specified assertion to check
whether the reconfiguration is valid. Step 5 involves taking
actions based on the outcomes of the checking. For a con-
figuration to be valid and to be applied by OpenRec, all the
assertions within the model must pass. If any of the checks
in step 4 fail, then the reconfiguration is deemed to be in-
valid. The OpenRec interceptor receives a counter-example
and halts the reconfiguration being applied. For example,
if an attempt is made to remove the connection between
Routers 3 and Destination 2 and to add a connection be-
tween Router 3 and 4 from its original formation shown
in Figure 2, OpenRec is able to detect the modification as
invalid and prevents the system from being modified.

4.4. Performance overhead

The performance of the service was evaluated by com-
paring the times taken to invoke common operations
through the ALLOY web service against those for ALLOY
Analyzer. Only compile and execute command instructions
were considered, and the results are summarised in Table 1.
All measurements were obtained by calculating the average
time to perform the operation 200 times. The process was
repeated 5 times for each operation in order to reduce any
random variations and to obtain reliable results. The same
ALLOY model involving the router configuration was used
across all the measurements.

Table 1. Average latency for remote and lo-
cal invocations of compile and execute oper-
ations

Average compile Average execute
latency (ms) latency (ms)

Local 86 2008
Remote 132 2129

overhead 46 121

4.5. Lessons learned

A basic design decision we made was to make the web
service a stateful service such that the service retains state
across operation invocations. The motivation for this was
to reduce the run-time overhead at reconfiguration time in-
curred by interacting with the service. With a stateless
implementation, every command executed by the service
would require an ALLOY model to be sent as a param-
eter and compiled before executing the command. Not
only would this involve unnecessary server processing but
it would waste bandwidth too.

However, we faced three difficulties in developing a
stateful web service. First and fundamentally, web-services
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typically run over the stateless HTTP protocol which does
not recognize the concept of session. Second, the service
is intended for simultaneous use by multiple clients which
requires that different state be maintained for each client.
Third, as with any web-based application it is generally not
known when the service has been finished with and hence
when resources associated with a client can be freed.

The first problem was solved using Axis’ service objects.
A service object represents a connection and has one of
three lifetimes: request, session or application. A request-
type service object is created for every new incoming re-
quest, regardless of whether the request is from a client that
has already made a recent request. A session-type service
object is created for a particular client and reused when the
client makes a subsequent invocation. An application-type
object is a singleton shared by all clients. For our purposes,
a service object of type session solves the stateless protocol
problem.

The second problem, supporting concurrent clients, is
not solved completely through the use of session-type ser-
vice objects. ALLOY makes liberal use of static variables
- for which there is one value per JVM. Hence, multiple
clients sharing a common server JVM would likely con-
flict with each other by overwriting the values of static vari-
ables during interleaved calls. To solve this problem we
employed one JVM per client. For each new client, a new
JVM is launched and dedicated to that client, thus avoiding
use of shared variables. The service object for a particular
client delegates processing to the client’s JVM using Java
RMI. To simplify the process of spawning JVMs and inter-
acting with them we used the ProActive library. The JVM-
per-client solution is attractive in that it improves scalability
and fault tolerance, particularly where the JVMs are physi-
cally distributed.

The solution to the third problem, determining when re-
sources held for a client can be released, has been solved
by a leasing technique. Periodically, the client proxy calls
the renew operation of the web service. If a client fails to
renew its lease, the server destroys the service object and
JVM allocated to the client. This solution is more fault tol-
erant than the client making a finished call on the server
since the call may never be made by a non-altruistic client
or where a process, machine or network failure prevents the
call from being received. This technique is commonly used
for garbage collection in distributed object middleware.

One final difficulty we experienced was that ALLOY
is multithreaded with some ALLOY API calls being non-
blocking. Rather than return a result, these calls return im-
mediately but cause an event to be subsequently fired. To
hide this complexity, the Facade implementation made the
calls, handled thread synchronization and event listening,
and returned the response to the initiating service object.

5. Conclusions

In this paper we have described the addition to OpenRec
of functionality which automatically verifies the structure
of an application during periods of dynamic reconfigura-
tion. OpenRec is a framework for managing reconfigura-
tion of component-based applications, and is open and ex-
tensible with respect to reconfiguration management. The
work described in this paper addresses a previous limita-
tion of OpenRec in that until recently it has not been able
to enforce an application’s architectural constraints. Such
constraints contribute to an application’s integrity. Our ap-
proach has revolved around modelling constraints using the
ALLOY language and using its tool support to verify them.
To verify constraints automatically at reconfiguration time
we have integrated OpenRec with ALLOY Analyzer using
a service-oriented architecture.

In terms of established issues for dynamic reconfigura-
tion, our work contributes to ensuring the integrity of ap-
plications as they are reconfigured. OpenRec delegates for-
mal verification prior to reconfiguration to the remote AL-
LOY web service. While this incurs additional overhead
(in the form of delay) before synchronising reconfigura-
tion with the executing application, it does not interfere in
any way with the application’s operation. Only where all
constraints are satisfied by a proposed reconfiguration does
OpenRec proceed to actually carry out the reconfiguration.
For adaptive systems, where the period between detecting
the need for change and effecting the change often needs to
be short, the additional overhead may be too costly. How-
ever, in more general cases where an evolution is neces-
sary, but without urgency, the overhead of verifying an AL-
LOY model is more likely to be acceptable. Automated for-
mal verification thus involves a trade-off between integrity
preservation and overhead. With regard to transparency,
our approach requires that developers contribute to one part
of formal modelling, namely modelling the constraints spe-
cific to their applications.

Our experience with integrating two heterogeneous sys-
tems through a web-service involved a number of seemingly
general problems, stemming from the stateful nature of the
service. We used proprietary session-type service objects to
provide a session for each distinct client. ALLOY’s use of
static (global) variables precludes simulanteous access by
multiple clients and so a separate instance of the ALLOY
application is spawned for each client. Although having
each instance run as a heavyweight process consumes addi-
tional resources, instances can be physically distributed to
improve performance and fault tolerance. To ensure server
resources are released when no longer required, we used
a leasing mechanism. To help expose an essential web-
service interface, and to hide undesirable complexity, we
applied the Facade design pattern.
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In the future we plan to further investigate the relation-
ship between model size and the time required for verifi-
cation. To reduce verification time, one technique we are
interested in pursuing is partitioning a model into smaller
parts or sub-compositions that can be checked in parallel us-
ing a distributed computation service. In addition to explor-
ing possibilities for developing a scalable approach for large
systems, we are also interested in modelling other architec-
tural characteristics such as QoS requirements. Finally, we
are working on modelling other popular architectural styles
so that applications which are expected to conform to these
styles can be checked for actual conformance during recon-
figuration.
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