
Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Dissertations Graduate College 

8-2010 

An Automated Framework for Defect Detection in Concrete Bridge An Automated Framework for Defect Detection in Concrete Bridge 

Decks Using Fractals and Independent Component Analysis Decks Using Fractals and Independent Component Analysis 

Fadi Abu-Amara 
Western Michigan University 

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 

Abu-Amara, Fadi, "An Automated Framework for Defect Detection in Concrete Bridge Decks Using Fractals 

and Independent Component Analysis" (2010). Dissertations. 491. 

https://scholarworks.wmich.edu/dissertations/491 

This Dissertation-Open Access is brought to you for free 
and open access by the Graduate College at 
ScholarWorks at WMU. It has been accepted for inclusion 
in Dissertations by an authorized administrator of 
ScholarWorks at WMU. For more information, please 
contact wmu-scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wmich.edu%2Fdissertations%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/491?utm_source=scholarworks.wmich.edu%2Fdissertations%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


AN AUTOMATED FRAMEWORK FOR DEFECT DETECTION IN 
CONCRETE BRIDGE DECKS USING FRACTALS AND 

INDEPENDENT COMPONENT ANALYSIS 

by 

Fadi Abu-Amara 

A Dissertation 
Submitted to the 

Faculty of The Graduate College 
in partial fulfillment of the 

requirements for the 
Degree of Doctor of Philosophy 

Department of Electrical and Computer Engineering 
Advisor: Ikhlas Abdel-Qader, Ph.D. 

Western Michigan University 
Kalamazoo, Michigan 

August 2010 



AN AUTOMATED FRAMEWORK FOR DEFECT DETECTION IN 
CONCRETE BRIDGE DECKS USING FRACTALS AND 

INDEPENDENT COMPONENT ANALYSIS 

Fadi Abu-Amara, Ph.D. 

Western Michigan University, 2010 

Bridge decks deteriorate over time as a result of deicing salts, freezing-and-

thawing, and heavy use, resulting in internal defects. According to a 2006 study by the 

American Society of Civil Engineers, 29% of bridges in the United States are 

considered structurally deficient or functionally obsolete. Ground penetrating radar 

(GPR) is a promising non-destructive evaluation technique for assessing subsurface 

conditions of bridge decks. However, the analysis of GPR scans is typically done 

manually, where the accuracy of the detection process depends on the technician's 

trained eye. In this work, a framework is developed to automate the detection, 

localization, and characterization of subsurface defects inside bridge decks. This 

framework is composed of a fractal-based feature extraction algorithm to detect 

defective regions, a deconvolution algorithm using banded-ICA to reduce overlapping 

between reflections and to estimate the depth of defects, and a classification algorithm 

using principal component analysis to identify main features in defective regions. This 

framework is implemented and simulated using MATLAB and GPR real scans of 

simulated concrete bridge decks. 

This framework, as demonstrated by the experimental results, has the 



following contributions to the current body of knowledge in ground penetrating radar 

detection and analysis techniques, and in concrete bridge deck condition assessment: 

1) developed a framework that integrated detection, localization, and classification of 

subsurface defects inside concrete bridge decks, 2) presented a comparison between 

the most common fractal methods to determine the most suitable one for bridge deck 

condition assessment, 3) introduced a fractal-based feature extraction algorithm that is 

capable of detecting and horizontally labeling defective regions using only the 

underlying GPR B-scan without the need for a training dataset, 3) developed a 

deconvolution algorithms using EFICA to detect embedded defects in bridge decks, 

4) introduced an automated identification methodology of defective regions which can 

be integrated into a CAD system that allows for better visual assessment by the 

maintenance engineer and has the potential to eliminate human interpretation errors 

and reduce condition assessment time and cost, and 6) presented an investigation and 

a successful attempt to classify some of the common defects in bridge decks. 
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CHAPTER 1 

INTRODUCTION 

Bridge decks deteriorate over time as a result of deicing salts, water 

penetration, freezing-and-thawing, and heavy use, resulting in internal defects. The 

national bridge inventory includes more than 600,000 bridges in the United States [1]. 

According to a 2006 study by the American Society of Civil Engineers, 29% of 

bridges in the United States are considered structurally deficient or functionally 

obsolete due to overdue maintenance [1]. Also, $2.2 trillion dollars over a five year 

period are required to bring the U. S. roads, highways, and bridges back to reasonable 

conditions [2], 

Bridge Deck Condition Assessment 

Bridge deck condition assessment can be used to determine the necessity for 

maintenance, predict associated costs, and to determine safety and serviceability of 

the bridge [3], The main challenge to bridge deck condition assessment is detecting 

subsurface defects before they develop into severe damage that would require a costly 

rehabilitation. Therefore, subsurface nondestructive techniques are needed to identify 

and diagnose embedded defects at their early stages. 

Different nondestructive techniques are proposed for subsurface defects 

detection in bridge decks such as Ground penetrating radar, Impact Echo, Infrared 
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Thermography, Acoustic Emission, and Ultrasonic Pulse Velocity [3, 4, 5, 6]. A 

technique that deals with inhomogeneous, unknown, and difficult to access materials 

and structures is needed. This technique should not be time consuming or labor 

intensive and must provide reliable results. 

In [3], ground penetrating radar, impact echo, and infrared thermography were 

evaluated as non-destructive evaluation techniques for subsurface defects detection in 

simulated bridge decks. Infrared thermography (IRT) provides good diagnostic 

information in real-time for near-surface targets but not suitable for targets deeper 

than 2 inches. Also, performance of IRT depends on the environmental conditions 

such as solar loading from direct sunlight and wind speed which indicates that it can 

only provide reliable results during specific times of day and year. Finally and most 

importantly, depth of the defects cannot be estimated from IRT scans which make it 

unsuitable for the problem at hand. Impact Echo (IE) was able to detect the embedded 

defects deeper than 2 inches. However, IE requires many testing points making it a 

tedious and time consuming technique. The ability of IE to detect shallow defects 

depends on surface roughness of the scanned concrete slab. Ground penetrating radar 

(GPR) is a more sophisticated technique that was able to detect depth of the 

embedded defects deeper than 1 inch. However, GPR reflections from deep objects 

are less visible than reflections from shallow objects due to the scattering and 

absorption of GPR waves at the medium boundaries and thus raw GPR data needs 

post-processing to enhance it. GPR offers rapid data collection and can be used 

anytime of the day or the year. Finally, radar waves are less sensitive to surface 
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roughness. 

In [5], Infrared thermography and ground penetrating radar were evaluated as 

non-destructive techniques for bridge deck condition assessment. Results of [5] 

indicate that the smallest air-void defect that can be detected by IRT is of size 2 x 2 . 

However, IRT is not an effective tool to detect water-filled voids. Also, IRT can only 

provide reliable results during specific times of day and year under low wind velocity. 

The 1.5 GHz antenna outperformed the 2 GHz antenna in detecting the embedded 

defects. Finally, the 1.5 GHz antenna was able to detect air-filled and water-filled 

voids with sizes of a l x l . 

Bridge Deck Condition Assessment via GPR 

Ground penetrating radar (GPR) is a promising non-destructive evaluation 

technique for assessing subsurface conditions of bridge decks. The reported work of 

using GPR in bridge deck condition assessment can be categorized into three groups: 

manual analysis, signal and image processing, and inverse scattering approaches. 

Manual Analysis of GPR Scans 

The first group involves manual analysis of GPR scans, requires using post-

processing such as RADAN (RAdar Data ANalyzer) to enhance raw GPR data for 

better visual inspection, is time consuming, and the accuracy of the detection process 

depends on the technician's trained eye [3, 5, 6, 7, 8, 9]. 



4 

Signal and Image Processing Approaches 

The second group involves using signal and image processing methods to 

detect and/or characterize subsurface defects. In [10], an algorithm was developed to 

detect and characterize subsurface defects in bridge decks where principal component 

analysis algorithm is used to identify main features from each block extracted from 

the GPR scan after removing rebar reflections combined with an Euclidean distance 

as a dissimilarity measure for classification into normal, air-void, or water-void. 

Unfortunately, the proposed work by [10] did not include delaminations, a common 

defect in bridges, in the detection and characterization process. Also, defect 

coordinates were not provided. 

In [11], an algorithm was developed based on the learning vector 

quantization-based neural network to classify subsurface defects in simulated bridge 

deck slabs into cracks, delaminations, and voids. Raw scans from healthy and 

defective traces were used to train the algorithm after subtracting a reference noise 

signal from them. The proposed algorithm in [11] utilized a single a-scan (trace) to 

characterize the corresponding embedded defect. Their detection process was manual 

and was able to characterize delaminations with flat reflections and air-voids with 

arch-shape reflections. They also concluded that even when a single trace was enough 

to detect the existence of a defect; it was not enough to characterize its type. 

In [12], a statistical framework was proposed to detect subsurface defects 

from GPR scans of bridge decks. Their framework consisted of receiver characteristic 

curve, control chart analysis, and repeatability analysis. Using this framework, they 
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were able to find an optimal threshold value at which all reflections are thresholded 

and eliminated except for those reflections associated with the embedded defects. 

Then, the contour maps were used to quantify the deterioration percentage. However, 

some defects with weaker reflections than the threshold were not detected nor they 

attempted to compute the defect location or determine the defect type. 

In [13], a framework was proposed to estimate thickness of the layers and 

depth of the embedded objects in a pavement. The framework consists of, 1) incident 

pulse removal stage, 2) noise reduction stage using an elliptic filter, 3) deconvolution 

stage using the Homomorphic deconvolution, 4) estimation of round-trip travel time 

of layers and objects, 5) dielectric constant estimation stage using the Reflections 

Amplitude method, and 6) layer thicknesses and embedded objects depth estimation 

stage. The proposed framework by [13] provided depth of all the embedded objects 

and defects without detecting and characterizing the subsurface defects. 

Inverse Scattering Approaches 

Inverse scattering approaches (ISA) use the Finite Difference Time Domain 

(FDTD) method as a subsurface modeling tool through approximating the physical 

geometry, material properties, and embedded targets. Thus, ISA are considered 

physics-based inversion techniques [14]. In case of bridge deck condition assessment, 

strong scatterers such as rebar may mask reflections from underneath objects which 

complicate the inversion approach and thus require new techniques to fit the 

traditional ISA to the problem at hand. 
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In [14], the FDTD method based on iterative computational modeling was 

used as an electromagnetic modeling to obtain simulated 2D and 3D GPR scans of a 

healthy bridge deck. By comparing the simulated healthy scans with real scans from 

the field, defective regions can be identified. In order to minimize reflections from the 

rebar that may mask underneath reflections, an excitation source was used to model 

the rebar. Characteristics of the GPR antenna were used to develop a virtual sensor 

implemented into the FDTD model to simulate the GPR antenna. Results of [14] 

indicate that the 2D FDTD modeling is more suitable than the 3D FDTD modeling 

for bridge deck condition assessment. Unfortunately, the developed model was not 

validated with real data from bridge decks to evaluate its performance in subsurface 

defects detection. Also, the developed model did not localize and characterize the 

subsurface defects. 

Research Objectives 

The goal of this research project is to automate the detection, localization, and 

characterization of bridge deck defects to provide a more accurate condition 

assessment method in a timely and cost effective manner to improve the inspection 

process. To achieve this goal, the following questions will need to be addressed: 

- Can the defect detection process in bridge decks be automated? 

- Can any type of defects be detected and characterized? 

- Can coordinates of detected defects be estimated accurately? 

To answer these questions, the following objectives are to be accomplished: 



7 

- Develop a feature extraction algorithm that can detect defective regions 

and localize them horizontally with reasonable computational complexity, 

- Develop a deconvolution algorithm to reduce overlapping between 

reflections from closely spaced objects, 

- Develop a mechanism to estimate the depth of defects, and 

- Develop a classification algorithm to characterize and identify detected 

defects. 

Overview of the Dissertation 

In this work, a novel framework is developed to automate the detection, 

localization, and characterization of subsurface defects in bridge decks. Background 

on ground penetrating radar, principal component analysis, independent component 

analysis, and fractal analysis is presented in chapter 2. Chapter 3 explores the 

pertinent literature. Chapter 4 presents the proposed defect detection algorithm while 

chapter 5 discusses and analyzes experimental results followed by conclusions, 

contributions, and future work in chapter 6. 
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CHAPTER 2 

BACKGORUND 

Defects in Bridge Decks 

Bridge decks are vulnerable to different forms of deterioration ranging from 

surface cracks to large holes. The most common defects in bridge decks are cracks, 

voids, delaminations, spalling, rebar corrosion, and accidental damage [3]. Rebar 

corrosion results from the infiltration of water and chlorides (from the deicing salt) 

through surface cracks. The corroded rebar expand causing cracks within the 

surrounding concrete. Also, the corroded rebar debones from the surrounding 

concrete reducing the structural integrity and resulting in delaminations and/or 

spalling. Cracks are caused by shrinkage tensile stresses, temperature changes due to 

freezing-and-thawing, or rebar corrosion. Detecting cracks is important as they are 

considered early signs of a physical damage. Unfortunately, longitudinal surface 

cracks cannot be detected using the GPR antenna [3, 7], Another type of defects is 

spalling which occurs due to the freezing-and-thawing process where the corroded 

part of the rebar becomes heavier than before, causing a distress to the concrete. As a 

result, some parts of the concrete falls leaving discontinuities in the concrete. 

The next type of defects is delaminations which mainly result from rebar 

corrosion that lead to the development of fracture planes. Typically, delaminations 
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will form right above or under the corroded rebar. Figure 1 shows a delamination 

defect in a core taken from a deteriorated bridge deck. 

Figure 1. A core from concrete deck showing a delamination. 

Voids can be air-filled or water-filled. Air-filled voids have a black-white-

black reflection due the phase inversion since the electromagnetic waves propagate 

from a higher dielectric constant material to a lower dielectric constant material 

(concrete-air interface) while water-filled voids have a white-black-white reflection. 

Halabe and Bhandarkar [15] found that the process of detecting voids and 

delaminations in bridge decks becomes difficult in the presence of asphalt overlays. 

Ground Penetrating Radar (GPR) 

Ground penetrating radar (GPR) is a nondestructive technique that has been 

successfully used in bridge deck condition assessment [3, 5, 6, 7, 8]. The GPR 

antenna transmits polarized pulses of electromagnetic waves through the scanned 
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medium where portion of these radiations get attenuated due to natural absorption. At 

the boundary between two electrically different materials (i.e., different dielectric 

constants or electrical conductivities), some radiations reflect back while the rest 

refract and continue their penetration. Refractive indices of the two materials affect 

amplitude, reflection angles, and refraction angles of the reflected and refracted 

signals. 

Higher contrast in the electrical properties between a target and the 

surrounding materials results in a stronger (brighter) reflection and consequently 

more visible target [16]. Higher electrical conductivity indicates higher water content 

and consequently more attenuation due to the natural absorption. Roughness of the 

scanned surface determines direction of the scattered reflections while the dielectric 

constant (real part of the dielectric permittivity normalized to air) determines 

propagation speed (and consequently penetration depth) within layers. The scattered 

reflections are detected by an antenna, recorded by the control unit against the two-

way travel time, and then the signal is amplified. Due to the attenuation resulting 

from scattering and absorption, the penetration depth is limited in GPR systems. 

Antennae with different frequencies can be used in GPR systems. If the 

antenna has a low frequency range (high wavelength), radio waves can reach a depth 

ranging from 30 to 40 feet in sandy soils [17]. In this case, the recorded scans will 

have a low resolution which can be used to locate fractures and deeply buried large 

objects. At a high frequency range, shallow surfaces can be inspected that range up to 

10 feet. The generated scans can be used to detect and locate shallowly buried objects 
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such as reinforcing steel bars (rebar) and defects in bridge decks. The GPR antennae 

are either ground- or air-coupled. Air-coupled antennae are held at a close distance 

above surface of the scanned medium while ground-coupled antennae are in full 

contact with surface of the scanned medium. Air-coupled antennae provide rapid 

surveys (about 55 mph on Highways), record clean signals, but they offer limited 

penetration capabilities. On the other hand, ground coupled antennae suffer from slow 

surveys but they provide higher penetration capabilities [17]. 

Figure 2 shows the configuration and orientation of the 1.5 GHz (GSSI model 

5100) bistatic antenna used in this project [16, 18]. The GPR system consists of an 

antenna, a system cart, a data acquisition system, and a post processing software 

called RAD AN. The 1.5 GHz antenna provides a penetration depth up to 1.5 feet with 

a range of 10-15 ns. 

Bridge decks consist of concrete slabs of varying thicknesses and may 

sometimes be covered by an asphalt overlay. Generally speaking, a bridge deck may 

consist of the following interfaces: 

• Air-bridge deck surface interface (concrete or asphalt). 

• Asphalt-water-concrete interface. 

• Concrete-rebar interface. 

• Rebar-deterioration interface. 

• Concrete-void interface. 

• Bottom of the structure interface (substrate). 
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Figure 2. (A) 1.5 GHz antenna configuration, (B) cross-polarized orientation, and (C) 
normal orientation. 

By moving the GPR antenna over bridge decks, scans can be obtained. Next, 

the three commonly used formats for raw GPR data presentation will be investigated. 

They are A-scan, B-scan, and C-scan. 

A-Scan 

The A-scan, also known as a trace, is obtained by placing the GPR antenna 

above the target surface and recording reflected signals. The A-scan is displayed as 

graph of amplitude versus round-trip travel time. Eq. 1 can be used to model raw 

GPR data if prior information about the structure of the scanned medium is not 

available. This equation indicates that a detected GPR pulse consists of a number of 
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reflected signals with each signal being a delayed and attenuated version of the initial 

transmitted signal: 

£(') = !>,•/('"<*,•) (1) 

1=1 

wherezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA f(t) represents the transmitted pulse, n represents the number of detected 

pulses, and a. and di represent the attenuation and delay time associated with the ith 

received reflection respectively. 

B-Scan 

The B-scan, also known as a line-scan, is obtained by moving the GPR 

antenna over the target surface and recording the reflected signals at regular intervals. 

Usually, the recorded data is presented as a gray scale image of size x by y where x is 

the scan horizontal locations (distances) and y is the round trip travel time. Each 

column of the B-scan is a single A-scan taken at the x th location. 

The GSSI antenna transmits a pulse with a positive peak followed by a 

negative peak and then a small positive peak due to overshoot. Therefore, a detected 

object appears as a band of white-black-white or black-white-black (due to phase 

inversion at the boundary between two layers) lines/arcs as shown in Figure 3. Since 

the GPR antenna transmits a cone-shaped beam, a target can be detected when it is 

before, under, or after the antenna's vertical position. 
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Air-concrete 

Concrete-rebar 

Concrete-platform 

Figure 3. Raw GPR scan data from a 6-inch concrete slab. 

The detected pulses by the GPR antenna will follow a travel path with either a 

single-reflection or with multiple-reflections. In case of single-reflection travel paths, 

the transmitted radar pulse reflects once of a target and travels back to the receiving 

antenna. In case of multiple-reflection travel paths, as the transmitted signal enters a 

specific layer, multiple reflections from top and bottom of that layer occur and then 

return back to the receiving antenna. It is also possible for a pulse to reflect off a 

target, reflect again off a second target, and then return back to the receiving antenna. 

Due to the attenuation of each reflection, single-reflection paths tend to be the 

strongest signals detected in a raw scan. Ringing emerge as repetitive reflection 

patterns throughout the GPR scan which may obscure the visual appearance of 

weaker reflection such as those from targets at lower depths. 

Once the transmitted radar pulse penetrates the target, it is reflected and 

refracted at every boundary between any two materials with different dielectric 

constants in its path. As Figure 3 shows, the self-coupling bands at the top of the 



15 

image represent air-concrete interface. The hyperbolic arcs represent the concrete-

rebar interface. We expect to see horizontal lines representing reflections from the 

concrete-base interface. These reflections show non-continuous segments since 

reflections from targets under rebar peaks are masked by their strong reflections. The 

interference between the hyperbolic tails causes the appearance of spurious 

hyperbolic arcs which may obscure our ability to observe the reflections from 

underneath targets. The migration method can be used to eliminate such artifacts [16]. 

C-Scan 

The C-scan can be constructed from a collection of B-scans. It is a 3D image 

used to investigate diagnostically buildings, walls, and bridges. The main advantage 

is to locate accurately fine details inside structural objects. In order to construct a C-

scan image, two points should be achieved. First, a dense grid of antennae is required 

to perform a successful 3D survey where antenna orientations and positions should be 

setup accurately. Secondly, 3D migration software is required. The slow development 

in the 3D GPR equipments is the main reason for the limited use of C-scans [16]. 

GPR Data Preprocessing 

Raw GPR data is highly subjective to degradation for two reasons. First, the 

internal structures of the scanned medium are unknown to the GPR antenna. 

Secondly, hardware limitations result in a low resolution scan (low contrast) [19]. In 

general, GPR data processing can be categorized into basic and advanced data 
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processing. The most commonly used basic data preprocessing methods are time 

gaining and temporal and spatial filtering of the data [20]. The most commonly used 

advanced data processing methods are deconvolution, background removal, and 

velocity analysis. It is worth noting that choosing the appropriate method(s) is an 

application dependent. Background removal methods include average trace removal 

and orthogonal trace decomposition [20]. In the next subsections, time gain and 

migration will be discussed. 

Time Gain (Gain Boosting) 

As radar signals spread into the scanned medium, their energies are quickly 

attenuated due to scattering and absorption. As a result, reflected signals from deep 

objects are barely visible. Time gaining is the process of equalizing signal amplitudes 

where a time dependent gain function is used in order to enhance signature of weak 

signals reflected from deep objects. The non-uniform variation of attenuation with 

depth is the main difficulty of this method since some layers have low attenuation 

while others have high attenuation [20]. A simple equation that can be used to solve 

this problem is shown in Eq. 2. 

Ae'avt 

*(f) = — (2) 

v.t 

where A represents signal amplitude, a represents attenuation factor, v represents 

velocity of radar waves, and t represents time. RADAN can provide the following 
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gain boosting methods: automatic gain, linear gain, and exponential gain. On the 

other hand, in [15] the following gain boosting equation is used. 

g(t) = 2.21 e~ 021051 (3) 

Unfortunately, the enhanced image may not be appropriate for mathematical 

analysis since the time gaining process may modify signals' amplitude and 

consequently their shape. 

Migration 

Reflections from deep objects may be obscured by diagonal components such 

as side reflections from boundaries in the scanned medium, as shown in Figure 13, 

which should be detected and eliminated. Migration can be used to reduce the 

diagonal components and diffractions by returning the detected features back into 

their accurate spatial location [21]. A general migration algorithm has been 

formulated [21, 22] to follow the following steps: 

1. An opaque filter is applied to the diagonal regions to set their pixels to zero where 

shape, angle, and size of the filter are user defined, 

2. Fourier transform is used in order to eliminate the remaining diagonal 

components while preserving the horizontal components. 

Migration can be implemented using the frequency-wavenumber (F-K) 

filtering method which can be done by cascading filters in the frequency and 

wavenumber domains where long wavelength components and high frequency 
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components are filtered out based on the assumption that most of the energy is 

concentrated in regions with small wavenumber and low frequency [22], 

Principal Component Analysis (PCA) 

The covariance can be used to measure the correlation between elements of a 

centered vectorzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA X as shown in Eq. 4. 

C = E [ ( x - { i ) ( x - < u f ] (4) 

where E is the expected value and / j is mean of the vector X. The diagonal elements 

of the covariance matrix contain variances of components of X. For two vectors X and 

Y, their covariance matrix is shown below. 

Cxy = E[(x-/l)(y~v)T] = Elxy7]-^ (5) 

When the two vectors are uncorrected (they have a zero correlation 

coefficient), the following equation holds: E[xy\ = E[x\E[y]. This implies that their 

covariance matrix is equal to the identity matrix. 

PC A is an orthogonal transform and a decorrelation method that projects the 

high dimensional data into a lower dimensional space. Since data redundancy can be 

measured based on the correlation between components of a vector, most of the 

information contained in the original vector can be represented by a much smaller 

vector after the PCA stage. PCA algorithm can be implemented by variance 

maximization, by minimum mean-square error compression, by stochastic gradient 

ascent algorithm, by subspace learning algorithm, by recursive least-squares method, 
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or by back propagation learning algorithm, [23], In variance maximization, PC A 

captures maximum variance of the data components in a finite number of orthogonal 

(uncorrelated) principal components. In minimum mean-square error compression, a 

set of orthogonal basis vectors is found that minimizes the error between the original 

vector and its projections. In general, the PCA algorithm can be summarized as 

follows: 

1. Remove sample mean of each signal vector. 

2. A linear transformation is applied in order to rotate the coordinate system 

where the first axis aims toward the maximum variance and the second axis 

contains the largest portion of the remaining variance and is orthogonal to the 

After the PCA stage, v (out of n) principal components (largest Eigenvalues) are 

retained. Eq. 6 can be used to measure the retained variance [24]. 

first axis. 

v 

(6) 

wherezxtihgecZYXTONIHGDCA At represents an eigenvalue and Ai > At  

Independent Component Analysis (ICA) 

Linear ICA Model 

Second-order statistical methods such as PCA assume a Gaussian distribution 

for the data. Unfortunately, in real life the data have non-Gaussian distribution and 

hence these methods fail to separate components of a multivariate data. In other 
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words, uncorrelatedness is not enough to separate components with non-Gaussian 

distribution while independence is enough. Thus independence implies nonlinear 

uncorrelatedness (decorrelation). 

If the joint density function of two random variables equals to the 

multiplication of their marginal density functions, they are independent. Many 

methods have been proposed in the literature to decompose source signals (impulse 

response signals) within observed signals (mixture). The most used classical 

analytical methods are Wavelets and Fourier methods. On the other hand, the most 

used statistical methods are PCA and ICA algorithms. Transforms such as Wavelets 

estimate basis vectors (mixing matrix coefficients) independently from the data while 

ICA estimates basis vectors from the data under consideration. This makes ICA a 

data-driven technique and consequently adaptable to any kind of data. The linear ICA 

model can be formulated as 

n 

xi =ansx +ai2s2 +• • -+ainsn foralli=1,2,- - -,n (7) 
j=i 

Eq. 7 can be written in matrix form as follows 

j c = As ( 8 ) 

where xe R" is the observed vector with its elements are in fact the mixture xx,---,xn, 

se R" is a zero mean vector contains statistically independent and stationary impulse 

response signals s{,---,sn, and Ae Rnxn is a full rank (i.e., nonsingular matrix) matrix 

called the mixing matrix. In other words, x contains a linear mixture of a number of 

impulse response signals (original signals to be recovered). 
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LetzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA y represents an estimate of 5 (with scaling and permutation ambiguity of 

its components) that is related to x according to Eq. 9 where W is the separating 

(demixing) matrix defined as the (pseudo) inverse of A. 

y = Wx = WAS (9) 

Since both A and s are unknown, variances of the independent components cannot be 

found since scaling 5 by a factor may be cancelled by dividing A over the same factor. 

In the same way, there is a sign ambiguity. This means that the order, sign, and 

variances of the impulse response signals cannot be determined. For this reason, 

sample variance of y is assumed (without loss in generality) equal to one. Also since 

arithmetic mean of the mixture is irrelevant to its mutual information, it can be 

removed [25], Usually, a whitening step achieves the previous two points. 

The ICA algorithm projects the data into a subspace of statistically 

independent components. Statistically independent components means that value of 

any one of the components gives no information about value of the other components. 

In other words, ICA algorithm finds a linear transformation W that maximizes the 

non-Gaussianity (super-or-sub Gaussianity) of the impulse response signals s so that 

they are as statistically independent as possible which results in obtaining the 

independent components as shown in Eq. 9. 

A super-Gaussian probability density function has a sharp peak with longer 

tails in comparison with the Gaussian density function. On the other hand, sub-

Gaussian density is flat or multimodal in comparison with the Gaussian density. The 
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uniform distribution is an example of a sub-Gaussian distribution while the Laplacian 

distribution is an example of a super-Gaussian distribution. 

The ICA decomposition holds under three assumptions. First, the impulse 

response signals must be as statistically independent as possible. Second, at most one 

impulse response signal may have a Gaussian distribution while the others must have 

non-Gaussian distribution. Third, number of observed signals should be greater than 

or equal to number of impulse response signals. On the other hand when the impulse 

response signals have a Gaussian distribution, the use of second-order statistics is 

enough to find their mean and covariance matrix which are enough to uncorrelate and 

separate the impulse response signals. This implies that uncorrelated Gaussian data is 

also independent data. 

The central limit theorem states that if a random variable consists of a sum of 

independent random variables O = 5, + s2 +.. .) , its distribution will be closer to a 

Gaussian distribution in comparison with distribution of the random variables since 

the convolution of their densities is a smoothing operation ( zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( s ) = p(s\) * /?(.s'2) *...). 

In other words, the mixing process results in more Gaussian distribution while the 

separation process increases non-Gaussianity of the mixed signals. In case of ICA, a 

mixture of the measured signals with minimal Gaussian properties has to be found. 

ICA can be implemented either on-line or off-line (batch). Batch algorithms 

assume the whole data is available for the ICA estimation phase. On the other hand, 

on-line algorithms assume that the mixing matrix may change during the ICA 
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estimation phase. In this case, stochastic gradient algorithms are the most useful 

methods [23], 

Optimization Methods 

Estimation of thezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA W matrix cannot be done in a closed form (as a function of 

the training data) since we have one equation (Eq. 9) with two unknowns. 

Fortunately, it can be done by optimizing (maximizing or minimizing) an objective 

function with respect to W. In this section, the most common optimization methods in 

the ICA field will be explored. 

Gradient Methods 

Gradient methods represent the basic optimization methods [23]. Let's assume zxtihgecZYXTONIHGDCA

g a function defined as follows 

g(w) = g(wl,w2,...,wn) (10) 

where w = [ w,, w2, • • •, wn ] . Gradient of g can be found using 

dw dwn y 

The second-order gradient (the Hessian matrix) can be found using 

(11) 

( 32 "\2 \ 
o g o 8 

3w,2 5vvj wr 

(12) 

dw2
n dw2

n 
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Taylor series expansion can also be used to derive gradient-type learning 

algorithms as shown below 

dw 2 dw 

The optimization step consists of step size (length) and its direction. Gradient 

methods can be used to estimate the w vector as follows [23]. First, we start from an 

initial value of w and compute its gradient at this point. Then, we move to the (or 

opposite in case of minimizing the function) direction of its gradient by a small value 

(step size). Then, the gradient is calculated at the new value of w and the parameter 

vector (w) is updated, and so on until w converges to a stable point (minimum or 

maximum point). In case the function to be optimized involves random variables, 

stochastic gradient algorithms can be used. Gradient descent methods can be used to 

minimize a function while gradient ascent methods can be used to maximize a 

function. In case of maximizing g(w), the positive sign is used while the negative 

sign is used to minimize it as shown in Eq. 14. 

(14) 
dw, yk 

where 77 represents the learning rate (step size) and g represents the objective 

function to be optimized. If the objective function is not simple and non-smooth, a 

local minimum (maximum) point will be reached before a global minimum 

(maximum) point. This means that the initial value of w is very important in gradient 

methods. Also, the selection of the corresponding learning rate affects the estimation 

process. In case of a small value, the convergence speed will be slow. In case of a 
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large value, an overshooting may occur that prevents the convergence to a stable 

point [23], 

The convergence speed of gradient methods can be boosted using the 

momentum method, adaptive learning rate, or choosing the initial value of w. For 

example, Amari proposed the following adaptive learning rate [26]. 

Vk+i =Vk exp(a(j8g(wk )-jjk)) (15) 

where r| is the learning rate and a and P are constants. On the other hand, the 

momentum method is defined according to Eq. 16 [27]. In case there is a narrow and 

long valley in the w surface, the gradient is roughly perpendicular to the long axis of 

that valley arid moves slowly. Then, it starts to oscillate along the short axis. The 

momentum term increases convergence speed along the long axis and average out the 

oscillations along the short axis. 

wk+l =wk± r/Awk + aAwk_t (16) 

The numerical analysis field reported different methods that offer fast 

convergence speed in comparison with the gradient methods but they are 

computationally demanding. For example, the Newton method (Eq. 17) is derived 

from the first three terms of the Taylor series (Eq. 13) [28]. This methods requires 

that the Hessian matrix to be positive definite to attain fast convergence speed. 

Unfortunately, inverse of the Hessian matrix results in an ill-conditioned or close to a 

singular matrix. To solve this problem, Marquardt-Levenberg algorithm adds a 

diagonal matrix a l to the Hessian matrix before inverting it where a should be small 

[29], 
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w
k=

wk ~TJ[ 
dg(wk) 

dw% dwk 
1 (17) 

Other methods such as the Gauss-Newton method and the conjugate gradient 

method offers compromise between gradient methods and Newton method. On the 

other hand, the FastICA method (will be shown later) approximates the Newton 

method to get fast convergence speed with less computational complexity. 

Natural Gradient Method 

Conventional gradient methods compute the gradient of the vector w in the 

Euclidean orthogonal coordinate system [30]. Since the parameter space of the 

gradient is curved and distorted, the gradient in the Riemannian metric space 

(differential geometry) of the parameters can optimize the objective function in a 

better way than being in the Euclidian space [26, 31]. 

The natural gradient provides a better steepest direction for the nonlinear 

function g( w) and consequently provides a higher performance than standard gradient 

methods. However, the gradient matrix must be nonsingular. The natural gradient 

learning rule is shown in Eq. 18 [23], 

Efficiency of gradient methods depends on structure of the optimized 

objective function. On the other hand, the natural gradient can handle large class of 

objective functions with high efficiency [31]. Comparing the natural gradient method 

dwk 

(18) 
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with the Newton method, the later one may converge to spurious local 

minima/maxima since its Hessian matrix may not be positive definite for allzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA W. on the 

other hand, Riemannian metric space is always positive definite [31]. 

Stochastic Gradient Descent Methods 

Stochastic gradient methods work with specific objective functions that are 

twice differentiable according to Eq. 19. Most stochastic gradient methods have slow 

convergence speed in comparison with the gradient methods but they have low 

computational complexity. 

d_ 

dw' 
Wk=Wk_l±ak — g(Wk_vx) (19) 

Bell and Sejnowski derived the following online stochastic gradient ascent 

learning rule [32]. 

'dyV d fdy 
AW = 

Kdxy dw \dxj 
(20) 

If the optimization step is constrained by some conditions, the Langrage 

method or the projection method can be used to meet these conditions. For example, 

if we have the constraint || w ||2= 1, we normalize w after each step as shown in Eq. 21. 

This is equivalent to orthogonal projection of w onto the unit sphere to keep the 

variance of the independent components constant. 
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(21) 

The literature reported other optimization methods such as relative gradient 

and exhaustive search by rotation [33, 34]. On the other hand, the literature reported 

different methods for ICA estimation such as non-Gaussianity maximization, mutual 

information minimization, maximum-likelihood estimation, tensorial methods, 

nonlinear decorrelation, and nonlinear PCA [23], The next sections explore the most 

used ICA estimation methods. 

ICA by Non-Gaussianity Maximization 

As mentioned before, maximizing non-Gaussianity of the independent 

components increases their statistical independence. In other words, densities of a 

mixture with dependent components are more Gaussian than densities of a mixture 

with independent components. Typically, non-Gaussianity is measured using kurtosis 

and negentropy. 

Measuring Non-Gaussianity using Kurtosis 

Kurtosis is the fourth-order cumulant which can be estimated using Eq. 22. 

Usually, fast gradient methods are used to maximize Kurtosis [23], 

k(s) =E[s*]~3(E[s2])2 = /u4 -3(u2) 
2 (22) 
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where fi4 represents the 4th moment and |j2 represents the second moment for a 

centered vector. If the data is whitened, a unity variance is obtained. Thus, the fourth 

moment can be used to characterize the whitened data as shown in Eq. 23. 

fc(s)=£[s4]-3 (23) 

On the other hand, Eq. 24 shows the normalized kurtosis. 

k(s)= E [ ( \ - 3 (24) 

In case of a normalized random variable with Gaussian distribution, its 

variance is equal to one making its kurtosis equal to zero as shown below. 

fc(s)=E[s4]-3(E|y])2 = (E[S 2 ] ) 2 -3 (0) = 0 

This implies that kurtosis can be used to measure non-Gaussianity. Sub-

Gaussian distributions have negative kurtosis while super-Gaussian distributions have 

positive kurtosis. In other words, non-Gaussianity can be measured using the absolute 

value of kurtosis. The gradient method can be used to derive a general learning rule 

by maximizing non-Gaussianity of the impulse response signals as shown below [23]. 

AW =
 d 1 x) I =4sign(k(wT x))(E[x(wT xf]-3w\\ w||2) (25) 

aw 

Since the variance of wTx must be unity, data must be whitened prior to ICA 

and then w must be normalized. Since we normalize w, its direction is the goal and 

not its magnitude. Therefore, Eq. 25 can be simplified into [23] 

wm = wk+7jsign(k(wT
kx))(E[x(wT

kx)3]) 

wk (26) 

II H>t II 
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Unfortunately, the previous rule has a slow convergence speed and totally 

dependent on value of the learning rate 77 . A more efficient fixed-point algorithm can 

be derived where effect of the learning rate is eliminated as shown in Eq. 27 which 

represents one version of the FastICA algorithm [23]. 

wt+i =wk+[x(wT
kx)3]-3wk 

w, (27) 

Measuring Non-Gaussianity using Negentropy 

Although kurtosis offer simple computational complexity but they are very 

sensitive to outliers (few large values in the mixture affects the kurtosis dramatically). 

Also, they measure tails of a distribution but not its center. 

Entropy is defined as the amount of uncertainty (randomness) a random 

variable has. For a random variable x, its entropy is defined as 

H(x) = ~Y J P(x = a i n o g P ( x = a i ) (28) 
i 

where a t are the possible values of x. on the other hand, entropy of the transformation 

y = Wx is defined as 

H (y) = H ( x ) + log | det('W) | (29) 

Since the Gaussian distribution is the least structured distribution, it has more 

randomness than a non-Gaussian distribution and thus it has the maximum entropy. 

This implies that entropy can be used to measure non-Gaussianity. On the other hand, 

differential entropy (negentropy) will be zero for a Gaussian distribution and positive 
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for a non-Gaussian distribution as defined by Eq. 30. Therefore, non-Gaussianity of 

the independent components can be maximized by maximizing their negentropy. zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J(x) = H(xg)-H(x) (30) 

where xg is a random vector with Gaussian distribution that has the same mean and 

variance as x and a covariance matrix C. Its entropy is defined as [23] 

H (xg) = | log | det C | + ̂  (1 + log IywtsronlkjihgfedcZWTSQPNLKIHGFEDCAK) (31) 

where n is the dimension of the vector x. Estimating non-Gaussianity based on 

equations 30-31 is computationally demanding. Fortunately, negentropy can be 

approximated by estimating its probability density function. For example, the Gram-

Charlier expansion can be used to approximate negentropy as shown by Eq. 32 where 

x must have a zero mean and unit variance (standardized vector) [23]. 

/(*) = — £[s3]2+—k(xf (32) 
12 48 

Unfortunately, Eq. 32 is totally dependent on the kurtosis which has 

drawbacks as mentioned before. On the other hand, Hyvarinen et al. proposed Eq. 33 

to approximate the negentropy [23]. 

^zywvutsrponmlkjihgfedcbaWVUTSQPOMJIHFEDCBA / 

where ci - £'[G(j I)] and G(y) is a nonlinear and moderately growing function. On 

the other hand, Equation 34 shows a simple method to approximate negentropy where 

y is a standardized vector with Gaussian distribution and x is a standardized vector. 

Eq. 34 offers fast, robust, and simple way of measuring non-Gaussianity [23]. 
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/(X)oc(£[G(X)]-£[G(>0])2 (34) 

The derivative ofzxtihgecZYXTONIHGDCA G (i.e., g) must be growing (or decreasing) in a non fast way 

(i.e., has a unique inverse) and sufficiently smooth even/odd function. The literature 

reported the following choices of G with better results than results of equation 32 

[23], 

G(x) = — log(cosh(«r,x)) (35-a) 

GOe) = -e  2 (35-b) 

G{X) = - X A (35-c) 
4 

where a is in the range [1, 2]. In [35], the following nonlinear function is proposed 

which is robust against outliers and works with different density functions. 

G(jc) = log(;c + 0.1) (36) 

Based on Eq. 34, a fixed-point algorithm can be derived which represents 

another version of the FastICA algorithm [23]. 

wk+1 = wk+E[zg (wT
kz)]-E[g(xvT

kz)]wk 

wk (37) 
= F l i II wt || 

where g(.) and g'(-) represents the first and second derivatives of the nonlinear 

function G(.) respectively. All the previously discussed ICA estimation algorithms 

estimate only one independent component. In order to estimate more than one 

independent component, wj is found as mentioned before. Then, W2 has to be found 



33 

such it is orthogonal to wj. In the same way, w3 must be orthogonal to w j and w2. 

The Gram-Schmidt orthogonalization or the symmetric orthogonalization can be used 

to ensure the orthogonality [23]. 

ICA by Maximum Likelihood Estimation 

It is the most commonly used approach in ICA estimation. In this approach, 

the parameters that result in the highest probability for the observations of a vector 

are kept. The probability density function of the mixturezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (x = As) is defined as 

shown below where pi represent probability densities of the independent components. 

Px(x)=\detWzxtihgecZYXTONIHGDCA\ Y\Pi(wJx) (38) 
i 

If we have T observations of x, its likelihood can be written as 

L(W) = n n Pi (w!xW Idet w I (39) 
f=i i=i 

By taking logarithm of Eq. 39, 

log L(W) = 2 J log Pi(wjx(t)) + Tlog | det W | (40) 
/=i i=i 

Eq. 40 can be further reduced into [21] 

^ l o g L ( W ) = £ [ ] h o g Pi(wjx(t)) + log | detW |] (41) 

The process of estimating p; is complex since a very large number of 

parameters have to be estimated (i.e., nonparametric estimation). The Bell-Sejnowski 
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algorithm (Infomax ICA) utilizes the gradient method to maximize the likelihood of 

Eq. 41 as follows where the functionywtsronlkjihgfedcZWTSQPNLKIHGFEDCA g is defined according to Eq. 43-B [32]. 

AW °c (W7)"1 +zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA g{Wx)xT (42-a) 

OS, Ptis,) 

Unfortunately, Eq. 42 has a slow convergence speed and computationally 

demanding due to the matrix inversion. On the other hand, the natural gradient 

method can be used to simplify the previous learning rule. If we multiply the right 

hand side of Eq. 42 by WTW , we obtain 

AW - ( / + E[g(y)yT])W = tj(I + E[g(y)yT])W (43) 

The previous algorithm converges when the actual response E[g(y)yT] is 

equal to the target response I. Regardless of the nature of the matrix W whether it is 

close to singular or ill-conditioned, the dynamic behavior of Eq. 43 still the same 

[36]. In order to obtain independent components with unit variances, the previous 

learning rule is modified into [37] 

AW - ( / - d i a g { E [ y X ~ , E [ y 2
n ] } + E[g(y)yT]-diag{E[g(y)yT]})W (44) 

The choice of the nonlinear function g depends on distribution of the 

independent components. As Eq. 45 indicates, gjCan be used for independent 

components with super-Gaussian distribution while g2 and g^ can be used for sub-

Gaussian independent components. 

g,()0 = -2tanh()0 (45-a) 
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g 2 0 0 = tanh(;y)-;y (45-b) 

g,(y) = -y3 (45" c) 

A fixed-point algorithm can be derived utilizing the approximative Newton 

version of Eq. 42 which represents another version of the FastICA algorithm [23]. 

Wk+lzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA =Wk+diag{ai)[diag{Pi) + E[g{y)yTWkwsrjfc (46) 

where B = -E\yig(y,)~\, a, = ;—I and y = Wz, and z is the whitened 
' ' E[g (w[z) + # ] 

mixture. 

In general, FastICA algorithms have the following properties [38, 39]: Easy 

implementation since they do not depend on the learning rate, have high accuracy, 

and have fast convergence speed. 

Eq. 47 can be used to select the best nonlinear function G for the ICA 

estimation among a set of nonlinear functions [23]. It states that a nonlinear function 

G that minimizes the trace of the asymptotic variance of W is chosen as the best 

candidate. This equation indicates that negentropy-based nonlinear functions are 

better than cumulant-based nonlinear functions. 

v = ( 4 7 ) 

( ^ ( ^ - g ' U ) ] ) 2 

where a is a constant. In summary, by comparing the nonlinear functions of Eq. 35, 

we conclude the following. 

1. The hyperbolic function g(s) = tanh(s)can be used regardless whether the 

independent components have sub-or super-Gaussian distribution. 
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2. The following nonlinear function produces promising results [39]. 

g(}') = r
Z T (48) 

l + y 2 

3. The exponential functionzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA G(y) = -e 2 can be used with super-Gaussian 

independent components or in case the robustness against outliers is 

important. 

4. Kurtosis can be used in case of sub-Gaussian independent components and the 

robustness against outliers is not an important issue. 

Nonnegative ICA 

Nonnegative ICA can be used in case the data has nonnegative properties as 

expressed in the following definition [40], 

If Pr(s<0) =0, then s is a nonnegative impulse response (49) 

Yuan proposed the following nonnegative FastICA algorithm [41]. 

1. The input data is whitened. This results in the whitened vector z. 

2. Initialize the weight vector, orthogonalize, and normalize it. 

n-1 

Wk +1 
= w k - £ ( w l w j ) w j 

(50) 
wk 

k+x I K I I 

where n represents number of independent components. 

3. Set wk = - w [ i f maxz ; i 0(H'[z)<0. 
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4. SetzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA wk+l = -w(r)(w(r)T wk)wk if min^0(w[z) > 0 , where w(r) represents a 

vector in the null space null (Z) withZ =: {z ^ 0 : w[z = 0}. 

5. The weight vector is updated and normalized. 

wt+1 = wk+E[(z-E[z])g(wT
kz)]-vE[8(wT

kz)]wk 

where = -min(0, y) 

6. Stop the procedure when w converges or maximum number of iteration 

reached. Otherwise, go to step 3. 

The proposed nonnegative FastICA is more computationally demanding than 

the traditional FastICA but requires less number of iterations [41]. 

Preprocessing Methods for ICA 

In this section the most used preprocessing methods for ICA algorithm will be 

explored. 

Data Whitening 

The whitening process uncorrelates components of the centered vector 

resulting in an identity covariance matrix. The whitening process may also reduce a 

full-rank mixture into an orthogonal mixture (i.e., orthogonal columns) [42], After the 

whitening process, the sample mean of the data is removed. 
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Any transformation that results in an identity covariance matrix can be used as 

a whitening method. A simple, fast, and efficient decorrelation transform is the 

Mahalanobis transformation as shown in Eq. 52 [43]. 

Z = C^ 5(X -X) (52) 

where C is the covariance matrix defined as 

( X - X X X - X ) ' ( 5 3 

N 

where X represents sample mean of the mixture X and Z is the whitened data. To 

prove that X is decorrelated after applying this transformation, we can rewrite Z as 

Z = HXC^ 5 

where H represents the centering matrix defined as 

H=I——J 
n 

where / is a matrix of all l ' s . Utilizing the centering matrix equation, the covariance 

matrix of Z can be rewritten as [44] 

1 T c = -zthz 
n 

= -(C~5XTHT)H(HXC'5) 
n 

= C'5(-XtHX)C~5 

n 

= C~*cc~s = C5C~5 = I 

On the other hand, PCA algorithm can be used to decorrelate impulse 

response signals and to reduce their dimensionality. Reducing data dimensionality 

prevents over learning [23]. Over learning means that number of impulse response 
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signals to be estimated is larger than number of observed signals (mixture). In case of 

over learning, PCA is used to obtain a square mixing matrix which is a constraint for 

the ICA algorithm results to be valid. On the other hand, in case the mixtures are 

more than the available impulse response signals, no improvement in the signal 

separation results should occur [39]. 

Since uncorrelation is a necessary condition for independence, a whitening 

procedure, as a preprocessing for ICA algorithm, has proven to be useful. It 

decorrelates the data and reduces the dimensionality leading to a reduction in the 

number of parameters to be estimated and in an increase in the convergence speed of 

the ICA algorithm [23]. 

Time Filtering 

Since GPR scans are time signals, time filters can be used. These filters do not 

change coefficients of the mixing matrix but filter the independent components of the 

impulse response signals [23]. A high-pass filter can be used to sharpen and decrease 

the dependency between the impulse response signals in case the dependent 

components are located in the high frequency band [46]. This approach is 

computationally very efficient but it may introduce noise. On the other hand, a band-

pass filter may be more suitable than the high-pass filter for certain signals. 
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Fractal Analysis 

In this section, the concept of fractals and their use as a feature extraction tool 

will be explored. 

Introduction to Fractals 

In 1967, Mandelbrot used the wordzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA fractal to describe objects that are detailed 

at different scales. In other words, finer new features are revealed as the fractal object 

is magnified where shape (or statistics) of the smaller features is approximately 

similar to that of the larger features. This also implies that no new features will be 

revealed as a non-fractal object is magnified. Since fractals reveal more details at 

smaller scales, they are too complex to fit into a traditional geometrical model [47]. 

Euclidean geometry can be used to describe man-made shapes such as circles, 

cubes, etc. Unfortunately, some nature-made shapes such as defects in bridge decks 

are complex, non-uniform (irregular), and have rough edges. Therefore, a 

mathematical tool is required to describe heterogeneity of real objects that classical 

Euclidean geometry fails. At this point, fractal geometry begins as a complexity 

analysis tool where the fractal dimension is used to measure the scaling property of 

features of an object. 

Fractal sets can be divided into self-similar sets and self-affine sets. Self-

similar sets describe data that repeat themselves when different axes are magnified by 

the same factor while self-affine sets describe data that preserve their shape (or their 

statistics) only when different axes are scaled differently. Fractals have three kinds of 
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self-similarity. In exact self-similarity, a fractal set appears exactly the same at 

different scales. In quasi-self-similarity, a fractal set appears approximately identical 

at different scales. In this case, each scale contains small copies of the whole fractal 

set in a deteriorated form. Finally in statistical self-similarity, a fractal set has 

statistical properties which are preserved at all scales. This kind is regarded as the 

most realistic definition of self-similarity. 

Mathematically if a signalzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA x(t) has a fractal feature structure, then it should 

satisfy the scaling law under the scale conversion ( t —» At) 

X(At) = A"x(t) (54) 

where H is the Hurst exponent. If H is equal to 1, then x(t) is a self-similar function 

otherwise it will be a self-affine function. The general solution to the previous 

equation is [48] 

x(t) = ctH (55) 

where c is a random constant. In case of 2D images, fractal analysis offers a global 

description of the inhomogeneities in an image which means that complexity of 

images (more precisely their texture composition) can be characterized well using the 

fractal geometry. 

Both roughness and topology of interfaces inside the scanned medium are 

imprinted in the recorded GPR traces where these traces are considered as self-affine 

functions of time [49]. 
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Hausdorff-Besicovitch Dimension 

The Hausdorff-Besicovitch dimension (HBD) of a fractal set is a fractional 

number greater than its topological dimension that can be used to measure irregularity 

of that set. Number of independent variables required to describe a point in a set is the 

topological dimension of that set. The Hausdorff dimensionzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA D of a set A can be 

defined as the infimum of D e [0,°°) such that the D-dimensional Hausdorff measure 

of the set A is equal to 0. If we cover a set A with a number of closed sets each of 

diameter at most r where r > 0, Then, the D-dimensional Hausdorff measure will be 

the infimum of the summation of the Dth powers of the diameters, i.e., 

The Hausdorff dimension can be defined in a simpler way. Number of the 

closed sets N(r) to cover the set A increases as r decreases. Generally speaking, as r 

approaches the zero then N(r) increases in the same rate as 1 / rD increases. In this 

case, the set A has a Hausdorff dimension equal to D. In practice, it is difficult to 

measure the HBD of a fractal set in its rigorous definition [47], Therefore, several 

methods have been proposed in the literature to approximate it. Applying these 

methods to the same set does not necessarily result in the same estimated value of 

fractal dimension (FD). These differences are due to the estimation algorithm used by 

a particular method. Therefore, choice of the suitable method is an application 

dependent. 
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For a signal, the estimated fractal dimension will be in the range between 1 

and 2. If the estimated FD is close to 1, a high neighbor-to-neighbor correlation 

between pixels will be present (smooth signal). If the estimated FD is close to 2, a 

high negative correlation will be present (non-smooth signal). Figure 4 shows healthy 

and defective traces. Both traces have a topological dimension of 1, meaning that 

classical Euclidean geometry is unable to differentiate between them. On the other 

hand, both traces have different fractal dimensions with higher value for the defective 

one. In other words, the estimated fractal dimension describes, in a compact way, the 

relation between signal variance and the time scale. Therefore, fractal techniques are 

purely a statistical tool [50], In general, for an n-dimensional function, its estimated 

fractal dimension will be in the range [n, n+1]. 

Healthy scan Defective scan 

Time(ns) Time(ns) 

Figure 4. Healthy and defective scans with fractal dimensions of 1.56 and 1.65, 
respectively. Both signals have a topological dimension of 1. 

In general, fractal dimension measuring methods are based on scale, 

measurement relationship, correlation function, distribution function, or the power 

spectrum [51]. Generally speaking, these methods follow the following procedure in 

approximating the Hausdorff-Besicovitch dimension of a fractal set. 
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1. For various step sizes, measure quantities of the object (such as length). 

2. The logarithmic plot of the measured quantities versus step sizes is obtained. 

3. A line is fitted through the data points using least-squares regression. 

4. Slope of the fitted line is used to estimate the fractal dimension. 

Next, the most commonly used methods to estimate the fractal dimension will 

be summarized. 

The Divider Method 

Sometimes it is called the structured walk method. This method is more 

suitable to signals that are considered as not perfect self-similar fractals (self-affine 

signals) such as GPR traces. In order to estimate a trace length, first it is 

approximated with several straight-line segments (steps) and it is total length 

estimated as the product of number of steps and the used step length. It is preferable 

to use small step length to get more accurate results. Klinkenberg [52] found that the 

minimum step size is equal to one-half the average distance between adjacent points. 

Eq. 56 can be used to check if the set follows a fractal model. 

L(s)aSl~D (56) 

where L represents length of the trace,ywtsronlkjihgfedcZWTSQPNLKIHGFEDCA S represents the step size, and D represents 

the fractal dimension. Next, Mandelbrot-Richardson logarithmic graph is formed by 

plotting logarithm of the corresponding signal's length versus logarithm of its used 
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step size. Then, a line is fitted into the graphed points and the fractal dimension is 

estimated using Eq. 57 wherezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA S is slope of the graphed line. 

D = l-S (57) 

Box-Counting Method (BCM) 

The box-counting is the most commonly used method since it is easy to 

implement and intuitive. In order to estimate the FD of an object, it is covered with 

boxes of different sizes. In case of a smooth object, it is enough to cover it with two 

boxes of different sizes r\ and r2 in order to estimate its FD according to Eq. 58 

which indicates that the fractal dimension of a straight line and a square will be 1 and 

2, respectively. 

N, 
/ \D l o § T f 

—>D = (58) 

log— 

H 

Vr2 J 

In case of a non-smooth object, its FD can be found by averaging the 

estimated FD over different scales according to Eq. 59 [53]. 

D = _ l i m l o g W r ) ] 

log[r] 

where N(r) is the number of boxes required to completely cover a signal and D is 

slop of the logarithmic plot of N(r) versus r. Unfortunately, this method is only valid 

for statistically self-similar binary signals. The main problem of box-counting 

methods is the determination of best number of boxes. A good approach is to let 
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number of boxes less than (but not much less than) number of available intensity 

levels. 

An extended method is proposed to overcome the difficulties associated with 

the BCM. First, the fractal set is divided into subsets. Then, the BCM is used to 

estimate the fractal dimension of each set. Finally, the fractal dimension of the fractal 

set is equal to the maximum fractal dimension of the estimated ones. 

On the other hand, a differential box-counting method that works with self-

similar and self-affine signals is proposed in the literature [54], First, a signal is 

covered with three boxes. The first box completely covers the signal; the second box 

covers the first half of the signal while the third box covers the second half of the 

signal. Second, the FD is estimated using 

D_log(Nl+N2)-logN3 

log 2 

The Hurst Method 

First, windows of different sizes are used where the maximum difference of 

data within each window is computed and plotted against its corresponding window 

size in the logarithmic space. Then, fractal dimension is estimated using 

D = 2-H (61) 

where H is the Hurst exponent that can be, obtained from the slope of the graphed 

line. An analysis of the effect of the used window sizes can be found in [49, 55]. In 

case small window sizes are used, the plotted data will be a straight line. However for 

large window sizes, the normalized maximum difference turns into a constant [56]. 
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Fractional Brownian Motion (fBm) 

Most fractals encountered in physical models are fractal Brownian motion 

(fBm) functions. According to Mandelbrot, fBm is a statistically self-affine function 

which can be regarded as a generalization of Brownian motion. According to the 

variance properties of fBm, the expected value of the intensity difference between 

two points is nonzero only when square of the difference is proportional to the 

distance between the points at a power ofzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 2H as shown in Eq. 62. 

£[ |AX(; ,A0 | 2 ]= | Ar|2" E[X(t + l)-X(t)]2 =1 At \2 Ha2 (62) 

The fBm algorithm can be summarized as follows [48]. The logarithmic plot 

of E[x(t + At) - x(t)\ versus step size, At is obtained for various values of the step 

size At and the fractal dimension, FD is estimated using Eq. 61. 

The Information Dimension 

As mentioned before, entropy can be used to measure the amount of 

uncertainty (randomness) a random variable r has. In fractal theory, entropy can be 

defined as [57] 

N(r) 

/ ( r ) = - 2 > ( r , 0 1 o g P ( r , 0 (63) 
i=i 

N(r i) 
where P{r,i) = ——- , S is a fractal set, N(r) is the minimum number of cells of 

II $ II 

size r to cover S, || 5 ||is cardinality of S (number of its elements), N(r,i) is number 

of points in the ith cell, and P(r,i) indicates the probability that a point of S inside the 
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ith cell. In case all the probabilities are equal, eachzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA P(r,i) is equal to 1/ N(r) and thus 

the above equation reduces t o / ( r ) = log N(r). Therefore, the information dimension 

can be defined as 

D i n f = - l i m - ^ - (64) 
log(r) 

The Correlation Dimension 

The correlation dimension can be defined as [58] 

dcor= l i m - ^ - (65) 
log(r) 

where the correlation is defines as 

C(r) = lim 1| R, - Rj ||) (66) 

where N represents number of points in the set S, 0 is the Heaviside step function, 

and || R; - R j || is the Euclidean norm. 
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CHAPTER 3 

PERTINENT LITERATURE 

ICA-Based Algorithms 

In [59], a modified version of the FastICA algorithm of Eq. 37 is proposed 

where two iterations of the FastICA algorithm are merged into single iteration 

meaning that the Jacobean matrix is computed once per two iterations. This increases 

the convergence speed of Eq. 37 while preserving its performance. It can be 

summarized as follows. 

1. The data is whitened, i.e.zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA E[zzT] = / where z is the whitened data. 

2. The separating matrix W is initialized randomly. 

3. The following learning rule is used. 

w =w [F(wk) + F(wk-F(Wk)/JF(Wk))] 
k+l k JF(wk) 

where F(wk) is the gradient of Eq. 37 and the Jacobean matrix is defined as 

JF(w) = E[zzTg(wT
kz)]-E[g(wT

kz)]I. 

4. The separating matrix is normalized: wk+1 =wk/\\ wk ||. 

5. If | wk+l - wk |< £ , the algorithm is converged. Otherwise, go to step 3. 

In [60], the FastICA algorithm of Eq. 37 is compared against CumICA for 

blind separation of non-destructive acoustic emission signals. The CumICA is based 

on computing the cross-cumulants (off-diagonal elements of the cumulant matrix) of 
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the mixtures. The experimental results indicate that the CumICA requires a high-pass 

filter to achieve the same SNR as FastICA. 

In [39], a statistical efficient version of the FastICA algorithm is proposed 

(EFICA). EFICA is a slightly higher computationally demanding than FastICA 

algorithm but has superior separation performance in comparison with JADE, 

nonparametric ICA, and FastICA algorithms [39]. It can be summarized in the 

following steps. 

1. The symmetric FastICA is executed using the hyperbolic nonlinear function 

until the weight matrix converges to a stable point. 

2. The following nonlinear function is evaluated for the kth estimated 

independent component. 

fiAk > 3 

8k(y) = sign(y).\yr
n{a>-l H), 1.8 <M4k< 3 (68) 

sign(y).\y\l\jU4kZl.S 

where ju.^ represents the fourth-order moment of the kth independent 

component and the parameter a^ is defined as 

a k =[0 .29V/ / 4 t -1 .8-0 .185( / / 4 t -1.8)]"1. 

3. The FastICA algorithm is used with the nonlinear function of the previous 

step in order to refine the estimated independent components. 

The literature reported a number of nonlinear functions that can be used in 

addition to the functions of Eq. 48 and the first derivative of Eq. 35. Yang et al. [61] 
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derived the following function which is used to estimate the marginal probability 

density function ofzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA y using its central moments and cumulants. 

g(y) = fl(k3,k,)oy2+f2(k3,k4)oyi (69) 

where and are the 3 rd and 4th cumulants and (°) indicates Hadamard product of 

two matrices and 

/1(*3 ,*4) = 0.5*3(4.5fc4-l) (70) 

f2(*3,k4) = 1.5(*3)2 + \k,(4.5kA - 1 ) (71) 

6 

Singh and Rai [62] derived the following nonlinear function based on the 

Edgeworth expansion which is suitable for sub-Gaussian distributions only. 
, , _ 3 11 5 25 7 65 9 111 „ 1631 13 47 15 23 17 

p(y.) = 3y v v v v + y + — y y 
S\yt) y, 4 J, l2y, 4gJ, 24 yt 2gg y, -72 12^ 

+ — y,19- — y,2,+ — y f (72) 
864 ' 864 1 432 ' 

On the other hand, the following asymmetric generalized logistic function can 

be fitted to any kind of data [63]. 

g(30 = ) ' ' ' ( l -} ' ) r (73) 

The numerical integration of this function results in a sigmoidal function. 

Based on the values of p and r, this function can be adapted to peaked, flat, and unit-

like distributions. 

On the other hand, the literature reported other learning rules for the ICA 

estimation. For example, Bell and Sejnowski [32] derived the following learning rule 

for the logistic function of Eq. 73. 
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—hx[/?(l-zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA y) — ry~\ 
w 

1 
(74) 

A w 0 o c p { \ - y ) - y y (75) 

where x is the input vector and y is the output vector. Park et al. [64] derived the 

following learning rule. 

where W and Z are the discrete Fourier transforms of w and. Abu-Amara and Abdel-

Qader [65] developed the following ICA algorithm based on mutual information 

minimization to detect cancerous tissues in mammographic images. 

1. PCA algorithm is used to reduce dimensionality of the data 

matrix/? according to Eq. 77. 

where N represents number of sub-images, M represents size of each square 

sub-image, v represents number of selected principal components, and RMxv 

represents a matrix with the principal components in its columns sorted by 

descending order according to their variances. 

2. The separating matrix W is initialized to the identity matrix. Then, y is 

calculated using Eq. 78. 

YvxM=Wvxv(RMXV)T (78) 

3. The change in Wis calculated using the natural gradient [26], 

(76) 

(77) 
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AW = ri[l-G(Y)YT\W (79) 

where / is the identity matrix and G(y) is a nonlinear function. 

4. The momentum method is used to boost the convergence speed of Eq. 79 

using 

AWk+l =AWt +aAWk_l (80) 

where a is in the range [0, 1]. It was found by trial and error that the best 

value of a is 0.5. 

5. The separating matrix is updated and then normalized. 

Wk+l=Wk+AWk 

( 8 1 ) 

II W J 

6. Stop the algorithm when W converges or the maximum number of iteration 

reached. 

In case of applying the ICA algorithm to synthetic signals, the impulse 

response signals and their mixing matrix are known priori. In this case, the separation 

performance of the used ICA algorithm can be measured using the equation WA 

which verifies whether the estimated separating matrix W is exactly the inverse of the 

mixing matrix A. On the other hand, Eq. 82 can be used to compare between two 

different ICA algorithms in terms of their separation accuracies through measuring 

the error index (also called rejection ratio) [66]. The algorithm that has the lower 

error has higher accuracy. 
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? N N I n IzxtihgecZYXTONIHGDCA N N I  D I 

N(N - I ) ^ p max . | P i j \ % ^ max,. | P i j \ 

where P = {pij} = WAis the system (gain) matrix or the cross-global matrix. Similarly, 

the separation efficiency of any ICA algorithm can be measured using the separation 

performance [67], 

SIRmean=-±SIRk (83) 
n *=i 

where the signal-to-interference ratio for the kth separated signal is defined as 

2 

SlRk(dB) = 101og10 n
 m a X ' Pk> ,k = l,2,...,n (84) 

Y^pl-max, p2
ki ywvutsrponmlkihgfedcbaYXWUTSRPNMLJIHFEDCBA

;=i 

Shi et al. [68] proposed a fixed-point ICA algorithm based on the nonlinear 

measure of the temporal autocorrelation between the impulse response signals for 

blind source separation. The proposed method can be summarized as follows. 

1. The data is whitened. 

2. The weight vector is initialized randomly. 

3. The weight vector is updated using 

wt+1 =wk+E[g(yk(t))G(yk((* -t)z(t) + G(yk(t))g(yk(t -r))z(t -r)] (85) 

4. The weight vector is normalized, wk+l = wk /1| wk ||. 

5. Stop when the weight vector converges or maximum number of iterations 

reached. 

In [69], the following second order blind identification (SOBI) algorithm is 

proposed where the impulse response signals are assumed to have a unit variance. 
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1. The observed vectorzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA x is whitened as shown in Eq. 86. 

E[QzxtihgecZYXTONIHGDCAXXQt) = QAAtQt = 1 (86) 

where Q is the whitening matrix. 

2. A numerical algorithm is used to estimate the unitary matrix U that satisfies 

Eq. 87. 

A = Q~lU (87) 

3. The impulse response signals are estimated using 

y(k) = UTQz(k) (88) 

In [70], the following joint approximative diagonalization of eigen matrices 

(JADE) algorithm is proposed. JADE is based on kurtosis which can be summarized 

in the following steps. First, the quadri-covariance matrices are constructed using Eq. 

89: 

Cz(M) = E{(ZTMZ)ZZT}-Rztr(MRz)-RzMRz-RzM
TRz (89) 

where Rp and M represent the covariance- and the Eigen-matrices of the whitened 

data Z and p = l,...,m. Second, the resultant quadri-covariance matrices are 

decomposed using Eigenvalue decomposition according to C^(M(.) = UhJJT where U 

is an orthogonal joint diagonalization matrix andA(. = diag(k4(y{),...,k^(ym)). 

Finally, the mixing matrix A is estimated using A = UQ l where Q is the whitening 

matrix. The JADE algorithm is a computational attractive method with higher 

separation performance in comparison with other ICA-based methods such as 

FastICA [70], 
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In [71], the following ICA algorithm is proposed where the nonlinear function 

is derived based on the parameterized t-distribution density model. The results 

indicate that this nonlinear function is robust against outliers and can handle both sub-

and super-Gaussian distributions. 

1. The linear ICA model is formulated aszyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA y(t) = Wz(t) where z is the whitened 

data. 

171 
2. Compute the kurtosis using kt = — \ - 3 where the nth order moment can be 

m2 

calculated using 

= + 0 = 2,4) (90) 

3. Form a lookup table using Eq. 91. 

n - ) r ( - ) 

K = a ~3 (91) 

a 

4. Use the lookup table to find the value of a from /c, of step 2. 

5. The scaling constant is computed using 

3 
r ( - ) 

4 = [ ^ - f 5 (92) 
m2 r(—) 

a 

6. The nonlinear function is computed using 

gi(yi) = oAasign(yi)\Aayir
l (93) 
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One of the problems associated with the ICA algorithm is the method of 

adaptively estimating distribution of the impulse response signals [67]. FastICA 

algorithms use a fixed nonlinear function which make them non source adaptive. On 

the other hand, the source densities can be estimated adaptively using parametric 

methods such as Pearson system model [72], generalized Gaussian distribution model 

[73], or the extended generalized lambda distribution (EGLD) [74], Unfortunately, 

these methods are not completely adaptive and thus fail when source densities do not 

follow the assumed parametric method. On the other hand, different source adaptive 

methods are proposed such as using a parametric mixture of logistic distributions 

[75], using nonparametric source density estimation [76], and kernel ICA [77, 67, 

45]. In case the impulse response signals have near-Gaussian densities, kernel ICA 

methods are more robust than other ICA methods [45]. 

The literature reported extended methods to ICA such as Topographic ICA 

[78], Multidimensional ICA [79], Subspace ICA [80], Kernel ICA [77], Tree-

dependent component analysis [81], and Subband decomposition ICA (SDICA) [82]. 

The SDICA assumes that each impulse response signal can be represented as a sum of 

dependent and independent subcomponents that have different frequency bands. 

On the other hand, other methods are proposed in the literature for data 

decomposition such as non-negative matrix factorization [83], Sparse PCA [84], 

parallel factor analysis [85], smooth component analysis [86], dual tree wavelets [87], 

and fast incremental principal non-Gaussian directions analysis algorithm [88]. 
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One of the inherited problems in the ICA estimation is the dependency of the 

learning rule on the learning rate. However, other methods that do not depend on the 

learning rate such as relative Newton method [89], JADE algorithm [70], FastICA 

algorithm [23], and relative trust-region method [90] can be incorporated to overcome 

such a challenge. 

GPR Analysis via Deconvolution 

Conducting of GPR in infrastructure testing is still not performed on a 

routinely basis for many reasons. First, raw GPR data is often complex which 

requires an experienced and a skilful operator to interpret them. Second, raw GPR 

scans depend on the unknown dielectric properties of the internal targets of the 

scanned medium. Third, it is not easy to precisely locate reflected A-scans within a 

measured B-scan image. Finally, raw GPR data is not an image of the scanned 

medium (GPR not an imaging method like ultrasound) [17]. 

Referring to Eq. 2, raw GPR data can be considered (under simplifying 

assumptions) as a convolutive mixture of the incident pulse (transmitted pulse by the 

GPR antenna) / and impulse response of the system (i.e., what characterizes the 

scanned slab, its internal targets, and the measurement system)zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h as shown in Eq. 94 

resulting in one equation and two unknowns. Such a problem can be solved using the 

deconvolution process. 

g = f*h = ^ f ( t H ) h ( t j ) (94) 
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where * represents the mathematical convolution operation andzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h represents impulse 

response of the system. Deconvolving raw GPR data is regarded as a preprocessing 

step for any automatic target detection algorithm where the original ground response 

should be recovered from the overlapping reflections. In some cases, reflections from 

a small defect are masked by reflections from a larger nearby object which makes its 

detection a difficult task. The minimum vertical distance between two targets should 

be greater than 14 of the antenna wavelength to produce non overlapping reflections. 

c 3;cl08 

For the 1.5GHz antenna, A = — r- = 0.2m = 20cm = 7.8 . This means that the 
/ 1.5x10 

minimum vertical distance should be 1.95 to avoid overlapping. Deconvolution 

reduces the overlapping between reflections from closely spaced objects by 

improving the time resolution of the deconvolved signal which aims at simplifying 

the detection and consequently the depth estimation. 

Deconvolution methods can be classified into direct deconvolution and blind 

deconvolution. Direct deconvolution methods assume a known incident pulse and 

deconvolve it with raw GPR data in order to recover h. On the other hand, blind 

deconvolution methods estimate bo th /and h from raw data with no prior information 

about /nor h. 

Generally speaking, deconvolving raw radar data is considered as non-straight 

forward problem due to the following reasons. First, most direct deconvolution 

algorithms assume a stationary radar pulse with minimum phase in order to estimate 

the ground response which is not the case in most radar pulses. Second, the uneven 
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towing speed of GPR antenna may cause a horizontal distortion. Third, the unknown 

velocity of wave propagation through layers of the medium may cause a vertical 

distortion [91]. Finally, deconvolution artifacts sometimes hide weak deep signals 

unless a time gaining is applied as a pre processing step for deconvolution. On the 

other hand, signal characteristics may be changed when applying time gaining as a 

pre processing step due to its non-linearity. 

The convolution process of Eq. 94 can be modeled using matrix operations as 

shown in equations 95 and 96 where columns of the convolution matrixzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA F are 

constructed form delayed versions of the incident pulse 

vector f =[f(h),fit2),-fitnw)Y . 

g = Fh 

/(',) o o o o 

i /«,) 0 0 0 

/ ( O i '•• i i 
0 /( '„J /(*,) 0 
: 0 '•. : 
0 0 f(t„J f(tmr_,) 

0 
0 

0 

fit,) 

(95) 

(96) 

where n is the number of samples of the GPR trace g, nw is the number of samples of 

the discrete random vector/, f,-represents time index, and i = \,2,---,nw. 

Since front and tail of the incident pulse have very small values, the matrix F 

will be a large matrix with near zero main diagonal values and so it is an ill-

conditioned matrix that may not have an inverse [92], If an inverse does exist, F1 

may be extremely sensitive to additive noise in g and consequently, h may not be 

easily estimated. Therefore, conducting simple deconvolution methods such as linear 
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least squares is not enough to deconvolve raw GPR scans due to noise sensitivity and 

ground scattering. 

Krause and Abdel-Qader [93] estimated the incident pulse of the GSSI 

antenna of figure 1 by transmitting a pulse into a metal plate (a perfect reflector) and 

recording the reflected signal as shown in figure 5. Next, direct and blind 

deconvolution methods will be explored. 

Figure 5. The estimated normalized incident pulse of the GSSI 1.5 GHz antenna. 

Direct Deconvolution Methods 

In this section, direct deconvolution methods will be explored such as 

optimization-based methods, conjugate gradient method, singular value 

decomposition method, subset selection deconvolution algorithm, discrete wavelet 

methods, correlation-based methods, and Homomorphic method. 
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Optimization-Based Methods 

A set of parameters {xp...,xn}is estimated that minimize the rating 

function F[{jCp...,*„}] . The received GPR signal can be expressed using Eq. 97. 

g i O ^ c i i P i t - b ; ) (97) 
i 

In this case, the parameter set is the set of aj's and bj's where the difference 

between the current estimate and the received signal indicates the rating function: 

F[{al,bl,...an,bn}] = ̂ \g(k)-Yjaip(k-bi)\ (98) 

k i 

There are many methods reported in the literature as optimization algorithms 

such as Powell's direction set model and annealing and downhill simples [94]. 

Unfortunately, these algorithms are computationally demanding and are sensitive to 

initial values (seed) of their parameters. Also, it is not easy to find derivative of the 

rating function. Finally, these methods may produce incorrect results due to false 

interpretation of sub-optimal local minima models [95]. 

Conjugate Gradient Method 

It is an iterative algorithm that works with linear systems, mainly used for 

sparse systems, and works with only symmetrical matrices. Debalina and Tapan [96] 

developed an algorithm that remotely detects buried objects using impulse radiating 

GPR. First, a single A-scan is performed. Then, conjugate gradient method is used to 
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deconvolve the raw radar data. Then, a matrix pencil algorithm is applied that extracts 

the natural resonance frequencies in order to identify target response. 

Singular Value Decomposition - SVD 

In general, singular value decomposition (SVD) is used to decompose a real 

or complex matrixzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA F as the product of an M x M column-orthogonal matrix U, an M x 

N diagonal matrixZ, and an N x N column-orthogonal matrix V [97]. Using SVD 

method, the convolution matrix F can be decomposed using Eq. 99. 

F=UIVT ( 9 9 ) 

where £ is a diagonal matrix whose entries are the singular values on the diagonal 

direction. SVD transforms the original matrix into a domain where the covariance 

matrix is diagonal with singular values given by 

£ , = < x . a n d a, > (jM 

Using SVD, the convolution model of Eq. 94 may be restated as 

g = (100) 
i 

and thus an inverse process can be constructed using matrix operations 

resulting in an estimate of the impulse response h 

h = Y ( M ' r , g ) v - ( i o i ) 
/ ^ 

For several reasons, this inverse tends to fail. Some Oi may equal to zero 

making the division process impossible. Some a; may be smaller than machine 
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precision resulting in machine errors in division. Additionally, additive noise inzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA g 

may be greatly amplified if it correlates to unit vectors with a small CT;. One solution is 

to replace the division by o; with multiplication by a similar yet better-behaved 

function. The approach can be described as 

= (102) 
l 

where 

— when (Tj > threshold 
c, 

0 when <7, < threshold 

The choice of threshold value allows us to avoid division errors and to discard 

components of g which are determined to be mostly noise. To deconvolve an A-scan 

of GPR data using SVD method, a convolution matrix F is created based on the 

transmitted p u l s e / a s modeled in Eq. 96. Matrix F is then decomposed into its U, X 

and V components, and a threshold for values of aj is chosen. To process the 

corresponding GPR trace g, Eq. 102 is used to produce h vector which is composed of 

signatures of all embedded objects including any possible defects. 

On the other hand, PCA algorithm can be implemented using the SVD 

algorithm. If the matrices F and U are centered, columns of the matrix UL contain 

principal components of the matrix F [98]. Another way is to select the non-zero 

Eigenvalues from the matrix U which results in a new matrix U . Then, Eq. 103 can be 
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used to obtain the principal components of the matrixzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA F [99], On the other hand, the 

principal components are equal to XV according to [100]. 

_ T 

Z = U F (103) 

Subset Selection Deconvolution Algorithm - SSDA 

SSDA assumes that the real dataywtsronlkjihgfedcZWTSQPNLKIHGFEDCA g can be closely approximated by convolving 

the transmitted pulse / with a small number of delta function pulses [92], The time 

delays and amplitudes of these delta functions are chosen to minimize Eq. 104, 

similar to the linear least squares method, 
(104) min 

x . , a 
£ a ,8 (t - r ,) * / -

where a, and Tt represent amplitude and delay time of the corresponding impulse 

function. Finding the values of x a n d a, which minimize Eq. 104 is a non-trivial 

challenge especially for large values of i. When a minimum is found, the sought 

impulse response of the medium is 

h = f Y a,S {t - r , ) ) (105) 

If the difference in delay times of two separate pulses is under a preselected 

critical threshold value, SSDA will detect a single pulse whose delay time is roughly 

the average of the two original pulses and whose amplitude is their sum. Such a false 

detection obscures the true position of pulses, and generates noise which may obscure 

low amplitude details. The success of SSDA relies on the initial choices of t, and a,. 
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To deconvolve a GPR tracezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA g using SSDA, the number of expected pulses i is 

selected based on prior knowledge of medium and by minimizing the difference given 

in Eq. 104, the minimum values of x, and a, are estimated allowing for the 

construction of h per Eq. 105. 

Correlation-Based Methods 

Krause and Abdel-Qader [93] developed an algorithm to deconvolve raw GPR 

data. First, a correlation-based iterative decomposition algorithm is used to 

deconvolve each column of raw data into a list of ordered pairs in order to identify 

target reflections. Then, the deconvolved image is segmented and then, converted into 

a set of points and arcs. Arcs are formed by grouping the ordered pairs with high 

degree of similarity. Finally, an algorithm is used to eliminate, highlight, or add 

matched objects into the resultant image. The proposed algorithm by [93] 

successfully deconvolved a number of raw GPR images resulting in an enhanced 

visual inspection of embedded defects. Unfortunately, it has some drawbacks. First, it 

optimizes one parameter pair each time instead of optimizing all parameter values. 

Second, major reflections can be detected only. Third, an error may be produced due 

to the overlapping between pulses and fake correlation. 

Blind Deconvolution Methods 

Blind processing methods can be classified into blind source separation (BSS) 

and blind deconvolution (BD). BSS methods aim to decompose mixed signals into a 
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new set of signals with no prior information about the source signals or the mixing 

process while BD methods aim to deconvolve a signal into its original input and 

impulse response with no prior information on either. In BSS, the data is modeled as 

a linear mixture while in BD, the data is modeled as a convolutive mixture. Hence, 

blind deconvolution can be regarded as a particular case of blind source separation 

[23], since the blind deconvolution can be re-casted into a blind source separation 

problem if the convolutive mixture is expressed as a linear mixture. All previously 

mentioned direct deconvolution algorithms of section 3.2.1 estimated the incident 

pulse of the GPR system and used it to recover the impulse response of the scanned 

medium. 

Blind deconvolution methods can be used to solve the deconvolution problem 

without knowing the incident pulse. The received raw GPR signal is a convolutive 

mixture of two different signals resulting in one equation with two unknowns. BD 

methods recover the original signal (ground response) in an unsupervised mode (with 

unknown mixing coefficients) where the impulse response signals are assumed to 

have different statistical properties and are mutually statistically independent. 

Many methods have been used in blind deconvolution problems such as 

independent component analysis [101, 102, 103, 104], super resolution [105], 

Bussgang filters [106], and optimal sparse representation [107]. Usually these 

methods require complex computations but they offer robust results. In this section, 

deconvolution using ICA algorithm will be investigated. 
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The backscattered reflections from closely spaced layers/targets overlap. 

Conventional signal processing methods such FFT and matched filtering are not able 

to resolve their corresponding pulses (spikes of the impulse response) when the time 

spacing between them is less than 1zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA IB where B is bandwidth of the used GPR antenna 

[108, 109]. Many algorithms have been proposed in the literature to improve time 

resolution of a GPR trace such as super resolution time-delay estimation methods of 

[108], 

Blind separation of a convolutive mixture can be done in time-domain or in 

frequency-domain. In the frequency-domain, the convolutive mixture becomes 

multiplicative mixture of complex signals within different frequency bands [110]. In 

other words, blind separation of a convolutive mixture in the time-domain is 

equivalent into blind separation of an instantaneous (memoryless) mixture in each 

frequency band. In the frequency domain, the independent signals have different 

frequency representations. 

Since frequency-domain ICA methods separate the mixture within each 

frequency band, the mixing matrix becomes a function of the frequency in the new 

domain while the basic ICA model assumes it a constant [23]. In other words, all 

frequency components of each impulse response signal must be grouped. This makes 

the permutation and scaling of the impulse response signals not consistent across all 

frequency bands. For this, additional methods to solve the permutation and scaling 

ambiguity are required to avoid combining contributions from different impulse 

response signals into a single impulse response when reconstructing the signal in the 
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time-domain which adds more computational demanding [110]. In the following three 

subsections, algorithms for blind separation of a convolutive mixture are presented. 

Banded-ICA 

The impulse response signal of the medium is sparse and should consist of a 

number of sharp spikes with relatively flat area between them to represent the layered 

structure of the scanned concrete deck. These spikes can be used to estimate the 

round-trip travel time of radar waves of embedded targets. 

Referring to Eq. 94 and by assuming the impulse response signals have non-

Gaussian distribution and statistically independent and identically distributed at 

different times, the linear ICA modelzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (x = As) can be used to model Eq. 94 where the 

radar trace vector is defined &sx = [g(ti),g(t2),---,g(tn)]T, the impulse response 

vector is defined ass = [h(ti),h(t2),---,h(tn)]
T, and the mixing matrix A is defined 

according to Eq. 96 [23, 109]. Statistically independent and identically distributed at 

different times mean each signal has the same distribution as the other signals and all 

signals are mutually independent [23]. Since an impulse response signal of the 

scanned concrete slab is a sparse signal representing the layered structure of that slab, 

it has a super-Gaussian distribution and thus it meets the non-Gaussianity requirement 

condition. Additionally, the impulse response signals extracted from different scans 

are assumed to be statistically independent, naturally. 
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As Eq. 96 indicates, the mixing matrix A is a banded matrix with the nonzero 

elements of its columns represent the unknown incident pulse vector. This prior 

information about nature of the mixing matrix can be utilized to convert a blind 

deconvolution problem into a blind source separation problem [111]. However, this 

represents a single-input single-output instantaneous ICA model which is inadequate 

since statistics of the independent components cannot be characterized. 

In order to form a multiple-input multiple-output ICA modelzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (X = AS ), time 

delayed versions of x(t) and s(t) are used to construct multidimensional matrices as 

shown in Equations 106 and 107 [23], 

Xnxn = [x(t-n + l) x(t-n + 2) • • • x(t-1) x(t)J (106) 

Snxn=[s(t-n + l) s(t-n + 2) ••• s(t-1) s(t)J (107) 

Equations 106 and 107 ensure that every element of the vector x(t) is a 

convolutive version of s(t) and f(t) according to Eq. 94. In this way, the convolutional 

model is casted into multidimensional ICA model which converts the problem from 

blind deconvolution into blind source separation. Unfortunately, these two equations 

are inadequate for the ICA model as is since the first few rows/columns of S and X 

have few nonzero elements meaning that statistics of the independent components 

cannot be constrained due to lack of information. To overcome this challenge, an 

approximative convolutional model is proposed to solve the lack of information 

problem by discarding the first few rows of X and S which consequently reduce the 

number of zero elements in the first few rows [111]. Thus, equations 106 and 107 can 

be rewritten as 
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X**, = [x(t-m + l) x(t-m + 2) ••• x(t-1) x(t)J (108) 

Smxn=[s(t-m + \) s(t-m + 2) ••• s(t-l) s(t)J (109) 

where m < n, n represents length of the corresponding GPR trace while m represents 

number of independent components to recover. Now we have another problem where 

Eq. 96 does not represent an exact mapping between X (Eq. 108) and S (Eq. 109) 

especially for xt(tj) in the interval(/e {1 •••nw})n(je {{m-\)---n}). Fortunately, the 

mapping is correct for remainder of the mixture x. 

In [111], a banded-ICA algorithm was proposed to deconvolve seismic traces. 

First, raw seismic data x is whitened as shown below. 

z = Tx (110) 

Second, the new mixture matrix is formed as 

x = NjYTz, i -1,2,-• •(m — nw—10) (111) 

where x contains nw mixtures, Nt = [0((_I)xn; Imyn ;0(n_m_1+I)xn ] represents zero 

padding matrices, 0 represents a zero matrix, and i = l ,2 , - - ,n . The zero padding 

matrix Ni maps / to a particular column of F. Third, the linear ICA model is 

formulated as y - W x where W of size nw X nw . ICA recovers a number of 

independent components equal to rows of W . To select the independent component 

that best represents the desired deconvolved signal, coefficients c, are estimated such 

they minimize Eq. 112. 
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<f>(ct) xk - cf a,-* y. (112) 

where xk = [xk(tl),xk(t2),•••,xk(tN)]T represents realization of the k' mixture, 

k - m - n w - 1 0 , and = [ y ; . ( r , ) , y ; ( ? 2 ) , ( ^ ) ] r r e p r e s e n t s realization of the i111 

independent component. The best independent component that results in a minimum 

<ft(c.) is selected where/ = 1,2,---,nw. Unfortunately, the estimated independent 

component is a delayed version of the original synthetic impulse response signal. This 

is due to the way the mixture matrix X is organized. Also, size of the approximative 

convolutional model (m) is determined manually for each case. 

In [109], the following blind deconvolution algorithm was developed to 

estimate thickness of a thin PVC slab. 

1. The discrete convolutional model is formed as g(ti) = ]jT / ( t_ J + ] )h(tj) 
j 

2. The mixing matrix is formed according to Eq. 96. 

3. The S and X matrices of the linear ICA model are formed as 

S=[zn-ls,zn-2s,-,zs,sf 

X=[z"-1x,z"-2x,-,zx,x]T 

where z represents the unit time delay. 

4. Since the impulse response signal is a sparse signal, a nonlinear function that 

is dedicated to deal with super-Gaussian signals is required. Therefore, the 

hyperbolic tangent nonlinear function is used with the FastICA algorithm. 

This results in a number of independent components. To select the best 
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independent component that represents the reflectivity series, each 

independent component is convolved with its corresponding row of the 

estimated mixing matrix. Then, it is subtracted from the radar trace and the 

one that results in the smallest value is selected. 

5. The differential time delay between spikes of the estimated impulse response 

is used to estimate thickness of the pavement. 

In the algorithm of [109], the recovered independent component is a delayed 

version of the impulse response but could not produce accurate depth estimation. In 

this work, a zero correction step is performed to fix this issue and thus enables depth 

estimation with respect to the ground line. Also, size of the approximative 

convolutional model (zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm) is assumed to be equal to n while in this work best value of 

m is found in an automated way. Also they used the FastICA method for data 

decomposition and manually time filtered the raw GPR trace to keep the reflections 

that correspond to slab and remove the other reflections (air-coupling and substrate). 

In this work, EFICA method is used since it has higher separation performance than 

FastICA and is within a completely automated framework. 

Al-Qaisi et al. [103] proposed a blind deconvolution method for seismic 

traces. Their method exploits sparsity of both the mixing matrix (a banded matrix) 

and the reflectivity sequence (by assuming it has a Bernoulli Gaussian distribution). 

The proposed algorithm consists of the following steps. 

1. Let g represents a seismic trace related to the earth reflection h and to the 

source wavelet / a s g(t,) = £ f(tH,)h(tj) 
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2. The mixing matrix is formed according to Eq. 114. 

f N j (H4) 

where k represents length of the source wavelet / . This ensures that rows of A 

contain delayed versions of / . The zeros padding matrices are of size 

kx(3k-l) and defined as N( =[0kxi Ikxk 0 t x ( 2 t_W ) ] for / = 0,1,•••,2k-I . 

3. In order to form a multiple input multiple output ICA model (X = AS), the 

following matrices are formed. 

= Zh- z-3kh z"~3k-lhf (115) 

and 

X(2k)xn = [g Zg - Z-3kg Zn~2kgJ (116) 

4. The mixture matrix X is whitened using the Eigenvalue decomposition (EVD) 

of the covariance matrix method. The zero padding matrices are used to 

exploit sparsity of the mixing matrix. This results in the following whitened 

matrix Xkxn. 

XIKM=NJTTZ ( 1 1 7 ) 

where T = D~°5ETand Z = TX. E and D = diag[dl,d2,---,dn] are the 

XXT 

eigenvectors and eigenvalues of the covariance matrix C = , 
n 

respectively. 
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5. By assuming the input reflectivity sequence has a Bernoulli Gaussian 

distribution, the following learning rule was derived. zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Wi^(I-YiUi-UiUj)Wi (118) 

where 

U , = W X i + W , AW = 1 - 2 K ( 1 1 9 ) ' 0 0 ' 

and the proposed logistic function 

Yl = Pi (0.5 + 0.5 tamU^ + ̂ - p e r f i - ^ ) 
2yj 7t y]2crf 

(120) 

where pt is the probability of reflections occurrence. 

6. The best independent component among k recovered independent components 

can be found using 

¥{ct) 

II2 

x n - c i a i * d i i ( 1 2 1 ) 

where a; is a recovered wavelet (transmitted pulse) and di =W xi is the 

estimated independent component. Eq. 121 has its extreme points when 

ci=cP=ywvutsrponmlkihgfedcbaYXWUTSRPNMLJIHFEDCBA ,
 X{(a'*d'\ (122) 

( a f d i f i a S d , ) 

Performance of the proposed algorithm is compared against performance of 

FastICA and JADE algorithms. Simulation results indicate that the proposed 

algorithm is computationally expensive but offer better performance in terms of 

accuracy (using minimum mean square error), shape, and scaling. 
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Skewed-Spatiotemporal ICA 

The spatial ICA model assumes that each signal is a linear mixture of spatially 

independent impulse response signals. On the other hand, temporal ICA assumes that 

each signal is a linear mixture of temporally independent impulse response signals. 

The spatiotemporal ICA simultaneously minimizes the statistical dependency 

between the impulse response signals over both space and time. In contrast, 

conventional ICA methods attain statistical independence over space (Spatial ICA) or 

time (temporal ICA). On the other hand, skewed ICA assumes skewed density 

functions for the impulse response signals while conventional ICA methods assume 

symmetrical density functions [104]. In [104], the following spatiotemporal ICA 

algorithm was proposed. 

1. The SVD algorithm is used to decompose the data vector according to 

_ _ r 
G = ULVT~UV ( 1 2 3 ) 

2. Spatiotemporal ICA assumes that U contains a linear mixture of spatially 

independent components S while V contains a linear mixture of temporally 

independent components T and 

G = SATT ( 1 2 4 ) 

where A is a diagonal scaling matrix, S = U WS and T = VWT are the spatial 

and temporal independent components. WS and WT are the separating 

matrices for the spatial and temporal components. This implies 
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WSAW? = / —> WT = (Ws
-1)r(A-1)' (125) 

3. The following function is maximized in order to obtain Ws mdWT . 

h = aH(Ys) + (\-a)H(YT) (126) 

where H is the entropy, a is a constant in the range [0, 1] and usually equal to 

0.5, H(ys) = as(S)andH(YT) = crT(T), <7S and aT are the approximations of 

cumulative density functions of the spatial and temporal independent 

components, respectively. In [104], cr = sec/z2;y a n d = s e c h 2 y . 

In case of skewed ICA, the skewed density functions can be estimated using 

skewness instead of kurtosis as shown in Eq. 127 [104], 

In case of skewed spatiotemporal ICA, the function of Eq. 126 is maximized 

while H(YS) is replaced with Eq. 127. 

In [112], temporal ICA and spatial ICA methods based on natural gradient 

ICA algorithm were implemented for clutter reduction in order to decompose GPR 

signals into subspaces of clutter signals and target signals. They followed it with 

component selection algorithms based on temporal, spatial, and spatiotemporal 

feature selection. Results indicated that the spatiotemporal selection method produced 

best performance. Their work can be summarized as follows. 

,a — b a + b f~i 00 e xP(— — v x +1) (127) 
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1. The SVD algorithm is used to implement PCA algorithm for dimensionality 

reduction usingzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA G = ULVT to obtain the principal components according 

to 

2. The temporal ICA algorithm can be summarized as follow. 

_  T 

- GPR data is projected into a new subspace using Y = U G where 

U represents a vector of size less than number of selected principal 

components. 

- The temporal ICA is defined as Y = A,St. 

- Natural gradient is used to estimate Al and£r [26], 

- The original GPR signal is reconstructed as G = U A!S! . 

3. The spatial ICA algorithm is summarized as follow. 

- T 

- GPR data is projected into a new subspace using Y = U G where 

U represents a vector of size less than number of selected principal 

components. 

- T 

- The spatial ICA is defined as U = AV5V. 

- Natural gradient is used to estimate As and Ss. 

- T 

- The original GPR signal is reconstructed as G = YA Ŝs . 

4. Three component selection algorithms are used to select components that 

have landmine signatures as follows. 
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The temporal selection method reconstructs the original signal using Eq. 128 

for temporal and spatial ICA algorithms, respectively. 

- T 

G = W,~S,,G (128) 

The spatial selection method reconstructs the original signal using Eq. 129 for 

temporal and spatial ICA algorithms, respectively. 
_  T 

G = W, St ,G = W 5 S s (129) 

The spatiotemporal selection method reconstructs the original signal using Eq. 

130 for temporal and spatial ICA algorithms, respectively. 

- ~ T _  _  

G = Wt St and G =WsSs (130) 

Complex ICA 

In [113], a spatial complex ICA algorithm is used to extract the components 

with spatio-temporal dynamics in order to model the change of oxygenated blood 

flow with neural activity from fMRI recordings of brain activity. The dynamic flow 

patterns are modeled as a convolutive version of a spatio-temporal source pattern and 

its time-course of activation. The proposed algorithm is a generalized version of the 

Infomax ICA [32] where the impulse response signals are assumed as complex 

random variables with super-Gaussian densities. Their work can be summarized in 

the following steps. 
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1. LetzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA xtj represents the mixture where i represents sample index and t 

represents time index. It is decomposed into different spectral bands using the 

short-time Fourier transform (STFT). 

( / ) = z 8iV + W(T)e-i2*Tl2k (131) 
t 

where R(z) is a windowing function (e.g., a Hanning window) centered at 

time T with finite support in the interval r - -k,...,k-1 (window length is 2k) 

and / i s the frequency index / = 0,.. . ,K. 

In the frequency-domain, Eq. 132 is used to model the mixture for each 

frequency band/. 

Xf=AfSf (132) 

2. The following linear projection equation is used to separate the mixture in 

each frequency band to obtain the complex-valued independent components 

for each frequency band (bin). 

Yf=WfXf (133) 

3. The following learning rule is developed based on natural gradient method. 

AWf =W-E{G(yf)y
H

f])Wf (134) 

where Gf is a nonlinear function that can be computed using 

gfTi = sign(yfTi)tanh(| yfn |) (135) 

and 
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fO i f y = 0, 

(136) 

4. The estimated independent components are reconstructed in the time-domain 

using inverse STFT by combining the extracted components across several 

frequency bands. 

Results indicate that the proposed algorithm successfully separated the 

mixture. Unfortunately, artifacts may appear in the reconstructed independent 

components in the time-domain. Also, the process of solving the permutation and 

scaling ambiguity when reconstructing the impulse response signals in the time-

domain is done manually. 

In [110], a frequency-domain version of the FastICA algorithm is used 

according to Eq. 137. 

where Z is the whitened data. A suitable choice for the nonlinear function can be as 

follows 

Since a high correlation exists between spectrums of the mixture in adjacent 

frequency bands, resultant separation matrices should have no great change in their 

coefficients. This means by initializing the separation matrix in the current frequency 

band Wf to the final value obtained in the previous frequency band, the separation 

W/+L =W,+ E[Z(WFZ)'G(| W,Z |2)] - E[G(\ W,Z |2)+ | W,Z |2 G'(| W,Z |2)]W 

G(y) = tanh(9?{y}) + 7tanh(3{y}) (138) 
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matrices in adjacent frequency bands will have same permutation order. Thus the 

permutation ambiguity is solved. On the other hand, Eq. 139 can be used to solve the 

scaling ambiguity. 

Yf=RfWfXf (139) 

where X is the mixture and R is defined as Rf - diag{Cf} and 

cf=w; = 

C\\ '" C\M 

CMM 

(140) 

where M is number of impulse response signals. The proposed algorithm has a fast 

execution time with fast convergence speed. On the other hand, the proposed 

algorithm requires a high resolution in the frequency-domain to solve the permutation 

and scaling ambiguity. 

In [114], a similar approach was proposed to solve the permutation ambiguity 

by applying frequency coupling between adjacent frequency bands according to Eq. 

141. This equation is similar to the momentum method of Eq. 16. 

AW(/+1) = AW, +abWM (141) 

where a is in the range [0, 1]. 

On the other hand, using a constant step size for all frequency bands may 

affect the separation performance at certain frequency bands. In [114], the following 

fixed-point ICA algorithm is proposed based on Newton optimization. 

AW, = D[diag(-at) + E{Gf(y)Yf
H }]Wf 

(142) 
f+1 - " f l ' r f w f + 1 =wf[w"wfr-5 
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Comparing Eq. 142 to the natural gradient equation, we notice that the identity 

matrix is replaced with an adaptive termzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA diag(—) to increase the convergence speed 

of the algorithm [23], Also, the fixed learning rate is replaced with a matrix D that 

adapts to the data according to Eq. 143 [114]. 

D = diag( 1 ) (143) 
ai-E{G(yi)} 

where a^ = E{yjG(yj)}. There are other approaches to solve the permutation 

ambiguity such as information maximization [115], prior smoothness information 

[116], high-dimensional optimizations [117], measuring distance between 

components across frequency bands and matching component pairs [118], direction 

of arrival estimation [119], and inter-frequency dependency relation [120]. 

Target Detection in GPR Scans 

Karlsen et al. [99] implemented an algorithm based on selective ICA for 

mine-like objects detection where the SVD algorithm was used as a whitening step. 

Four different ICA linear mixture models were tested. The time-time model assumes 

time independence of GPR time signals. The time-spatial model assumes a spatial 

independence of time signals. In the frequency domain, frequency independence is 

assumed in the frequency-frequency model and the frequency-spatial model assumes 

a spatial independence. Two ICA algorithms based on the Infomax ICA of Eq. 42 and 

delayed-decorrelations ICA [121] were investigated. The independent components 

with high non-Gaussianity structure were selected as they have mine reflections 
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where kurtosis is used to measure non-Gaussianity. The buried mines have weak 

reflections. The decorrelation ICA is based on decorrelation of delayed-time signals. 

Since the time-spatial model assumes a spatial independence of time signals, both 

ICA methods seek to enhance the spatial independence of the mixture. Decorrelation 

ICA failed to separate the time-spatial mixture because decorrelation enhances spatial 

signature of both objects (detected mines) and clutter simultaneously when it is 

supposed to enhance signatures of mines and suppress clutter signatures. The 

frequency-frequency model assumes the GPR trace as a linear mixture of independent 

frequency spectrum signals. Both Infomax and decorrelation ICA methods try to 

enhance frequency independence of the mixture. Results indicate that the 

decorrelation ICA has better separation performance of the frequency-frequency 

mixture. However, the natural gradient method can be used to enhance the Infomax 

ICA and thus improving its results. 

Lotsch et al. [122] applied the FastICA to deconvolve remotely sensed image 

sequences. Results indicate that ICA successfully extracts spatial and temporal 

components of the data, separate them, and recognize data artifacts due to GPR 

instrumentation and data processing. 

In [123], four ICA algorithms were applied to the GPR detection of non-

metallic land mines to decide on their suitability for GPR data. These are the FastICA 

algorithm, the Infomax ICA based on maximum likelihood estimation, the SOBI 

algorithm, and the JADE algorithm. The clutter reduction efficiency is estimated 

using the Receiver Operating Characteristics (ROC) curves and used to compare 
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between performances of the implemented algorithms. The experimental results 

indicate that both JADE and SOBI algorithms have a better performance than 

FastICA and Infomax ICA. 

In [124], a comparison between ICA and Blind Instantaneous Signal 

Separation (BISS) is established for ground bounce removal while preserving 

signature of deep objects in the landmine detection problem. The received GPR signal 

is assumed as a linear mixture of strong ground bounce signal, landmine signals, and 

noise. In case of ICA, the independent components are selected based on the non-

homogenous detector (NHD) method. The cumulant-based BISS algorithm selects 

few impulse response signals from a large number of observed signals based on the 

NHD method to determine number of impulse response signals to recover. Results, 

based on one GPR image, show that the BISS used less number of recovered 

components than ICA and thus it is less computational demanding. 

Defect Detection in GPR Scans 

In [125], a simple algorithm is proposed to detect subsurface defects such as 

knots, decays, and embedded metals in wooden logs in real time. The metal detectors 

employed by the saw mills cannot detect all kinds of defects and thus their saw blades 

can be damaged by the undetected defects. A GSSI 900MHz antenna is used to scan 

the wood logs. Two different methods were compared for this problem. 

1. In the first method, raw GPR data is processed using the RAD AN software. 

First, a time gaining is applied to enhance reflections from deep objects. Then, 
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position of the whole B-scan is adjusted vertically to enable depth estimation 

with respect to the ground line. Next, background and noise are removed. The 

previous steps result in a B-scan with clear defect signatures. Finally, 

whenever a change in signal bands is encountered, a defect is declared. 

Unfortunately, analyzing the output image in RADAN requires an expert 

operator and it is time consuming. 

2. In the second method, the Surf plot of raw GPR data is obtained with the 

round-trip travel time shown in the horizontal axis and amplitude shown in the 

vertical axis. Next, surface reflections are clipped until the second positive 

peak. Then, a top view is taken with 90° clockwise rotation. Next, echo 

reflections from bottom of the wooden log are reduced. Then, a thresholding 

is applied to detect subsurface defects. Finally, output of the algorithm is used 

as an input for the CNC sawing machine. 

In [126], an enhanced version of the previous algorithm is proposed to detect 

subsurface defects in wooden logs in real time. The proposed algorithm can be 

summarized in the following steps. 

1. A linear time gaining is applied to enhance reflections from deep objects. 

Unfortunately, this also enhances the ringing bands. 

2. Zero correction: in this step, part of the signal is deleted until the first positive 

peak (ground band reflection). First, position of maximum points is found for 

all traces of the scan. Then, an average position is found and finally data 

points till that average position are deleted. 



87 

3. Extended zero correction: in this step, the signal is further clipped till either 

the first minimum (to detect both internal- and surface-defects) or to the 

second maximum (to detect only internal defects). 

4. Clipping the signal: first, average of the scan is subtracted from the entire 

scan. Next, data points in every column (trace) are deleted till the first positive 

pixel to the right of the corresponding column minimum. Finally, data points 

are deleted from the entire scan till the average maximum position of all 

columns. 

5. Bottom reflection removal: since the lowest amplitude value after the 250th 

point represents bottom reflection, average of all minimum values for all 

columns after the 250th point is found, then, data points are deleted from this 

position till end of the scan. 

6. Filtering the signal: A low pass filter (300 MHz cutoff) is used followed by a 

high pass filter (1800MHz cutoff) to eliminate the remaining noise. 

7. Thresholding the signal: since average of the entire scan is zero, it cannot be 

used as a threshold. Alternatively, average value of maximum values of all 

columns is found and used as a threshold. 

8. To prevent declaring a defect in a normal log, the previous threshold value is 

adjusted by adding or subtracting a constant value. 

9. Depth of a detected defect can be found in two steps. First, total depth is 

estimated using Eq. 144. 
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d, = Ctwood (144) 

where dt represents depth of the detected defect in meters, c represents speed 

of light, twood represents the round trip travel time in seconds, and 

£mmd represents the dielectric constant of the wood (10-26) depending on 

moisture content of the wood. 

Second, depth of the defect is found using 

j _ ^ x Defect peak row number (145) 

' total number of rows in the scan 

A second way of estimating depth of a defect can be done as follows, 1) the 

difference between first positive peak and the last negative peak in each column is 

estimated, 2) the average of these differences is computed which represents the 

number of rows in the scan, and 3) depth is estimated by dividing the defect row 

number over the number of rows in the scan and multiplying the resulting ratio by the 

user defined average diameter of the wooden log. 

Fractal-Based Algorithms 

There are different features extraction algorithms reported in the literature. 

Some GPR objects have regular shapes such as rebar. However, other objects have 

irregular shapes such as defects. Generally speaking, these irregular objects can be 

detected using methods that require training and testing phases. Fractal-based 
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techniques can be used to differentiate between defects and other embedded 

objects, thus enabling the automation of defect detection process. 

A complex tracezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA z(t) consists of a real seismic trace and an imaginary trace 

(Hilbert transform of the real trace) as shown in Eq. 146 [56]. 

where / ( r ) i s the real trace and f ( t ) is the imaginary trace. The Hilbert transform is 

defined according to Eq. 147 which results in a 90° phase shift to the input signal. 

where F(w) is the Fourier magnitude spectrum of f(t). Then, z(t) is reconstructed 

using the inverse Fourier transform of Z(w) where three seismic attributes can be 

extracted from it. Amplitude is found using Eq. 148 while phase is found using Eq. 

149 and the frequency using Eq. 150 which represents rate of change of the time 

dependent phase. 

z(t) = f ( t ) + j f ( t ) (146) 

- j , w>0 

G(w) = - j sgn(vv) = • j, w< 0 

0, w = 0 

(147) 

In the frequency domain, 

2F(w), w > 0 

Z(w) = F(w) +j F(w) = <F(w), W = 0 

0, w< 0 

(148) 

^ ( 0 = tan" 1 [ / 2 (0 + / 2 ( 0 ] (149) 
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w(t) = — ( 1 5 0 ) 
dt 

Nath and Dewangan proposed the following algorithm to detect strength and 

location of reflections in seismic traces [56]. First, a sliding window is moved 

progressively along the corresponding attribute (amplitude or phase) and its 

corresponding fractal dimension within the window is estimated using the Divider 

and the Hurst Methods and then plotted. Whenever there is an object reflection, a 

sharp change should occur to both phase and amplitude attributes which cause a 

change in the graphed fractal dimension. One of the challenging tasks is the 

determination of the optimum window length. Results indicate that the amplitude 

attribute can be used to estimate strength of the reflection while the phase attribute 

can be used to estimate location of the reflection. 

Oleschko et al. [49] developed a mathematical model to extract soil structure 

from a recorded radar trace using the Hurst method and a wavelet-based method. A 

strong relation between the fractal dimension of the detected radar traces and 

heterogeneity of the soil physical properties is shown. The proposed algorithm shows 

that the Hausdorff dimension of the radar signal is the same as the mass fractal 

dimension of the soil structure. The proposed fractal dimension mapping method is 

able to detect small changes in the mechanical and physical properties of the soil. 

A seismic B-scan can be considered as a two-dimensional image and its 

fractal Brown movement (fBm) model can be developed [127]. Then, fractal 

reconstruction phase is used to enhance significant information and suppress non-



91 

useful information in the raw seismic data since the image reconstruction phase can 

inherit texture characteristics of the raw image. 

Zhao et al. [48] proposed an algorithm based on fBm to extract reflections of 

pipelines and soil interfaces from a raw GPR B-scan of a tunnel across a river. First, 

the GPR time series (A-scan) is proved to satisfy certain requirements of fBm 

characteristics since it can be regarded as a self-affine fractal set. Second, an fBm 

model is constructed for a radar B-scan by regarding it as a 2D image to extract its 

fractal and statistical features: the Hurst exponentzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA H (connected with fractal 

dimension) and the standard deviation of time series a (connected with GPR data 

distribution). Then, the successive random additions method is used to reconstruct the 

GPR B-scan which should contain the extracted significant information. In other 

words, the low-frequency components of the raw scan are suppressed while the useful 

high-frequency components are enhanced in the reconstructed scan. 

Dogaru and Carin [128] analyzed the time-domain electromagnetic waves 

scattered from a target using three rough-surface statistical models in order to 

investigate effect of surface roughness on the detection performance. These statistical 

models are exponential, Gaussian, and fractal surfaces. The multi-resolution time-

domain method is used to model physics of the underlying GPR wave. The fractal 

surface realized the greatest target-signature randomization which achieved best 

target detection performance where the target is assumed to reside under a randomly 

rough air-ground interface. 
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Don and Revathy used the fractal dimension and the fractal-signature 

techniques as feature extraction methods in order to describe the degree of self-

similarity between pixel values within the clusters in mammographic images where 

K-means algorithm is used as a classification algorithm [129]. 

Depth Estimation 

Velocity of radar waves through layers of the scanned medium can be 

approximated using Eq. 151. 

V=~ (151) 

where V is the speed in m/s, c is speed of light (2.998 x 108 m/s), and e is the 

dielectric constant. Depth of a target can be estimated using ground truth (velocity 

analysis), dielectric table, or hyperbolic shape analysis [16]. Depth of targets deeper 

than 1.5 under the surface can be accurately measured by the 1.5 GHz antenna [16]. 

n 

This is because reflections of targets within 1.5 from the surface are masked by the 

direct coupling. 

Dielectric Table Method 

Since the dielectric constant of concrete is in the range of [4.5,9], the 

dielectric table method assumes a dielectric constant value of 6.25 (dry concrete) or 9 

(moister concrete) and estimates velocity of radar waves through the medium using 

Eq. 151. The depth of a defect can be determined using: 
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dzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA =tc_ = _ t c _ s s _ K _ s s V t i L ywvutsrponmlkihgfedcbaYXWUTSRPNMLJIHFEDCBA

" 2 TJ 2-^fjue l4e 2 

where the round-trip travel time to a target is estimated from the deconvolved signal 

(as demonstrated by Eq. 213), J] represents refractive index of the target medium, s 

represents the dielectric constant of the scanned medium, and fi is its relative 

permeability. In case of bridge decks, [i is approximately equal to one and 

thus 77 = •re . It is worthy to state here that the dielectric table method is the simplest 

but the least accurate method [16]. 

Velocity Analysis Method 

It approximates velocity of radar waves based on a known depth of a target. In 

bridge decks, depth of rebar is known and can be used for this purpose. Other 

applications include drilling a target at known depth or using the concrete slab 

thickness in case of a visible slab bottom. In case of having several layers inside the 

scanned medium and a known target depth, the computed velocity is the average 

velocity within these layers. However, for accurate results, the thickness ratio of these 

layers should not change along the scan. The velocity analysis method will be 

explained in proposed framework. 
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Hyperbolic Shape Analysis (Migration) Method 

In the hyperbolic shape analysis method, the velocity of radar waves is 

estimated based on shape of the hyperbolic reflections using the Migration function in 

RADAN. If the materials in the scanned medium have low dielectric constant, radar 

waves propagate with high velocity resulting in wide hyperbolae. This method does 

not require prior knowledge of a target's depth (such as rebar) to estimate the 

velocity, but requires a skillful operator to work with RADAN to manually analyze 

the GPR scans. 

Summary and Conclusions 

A variety of ICA-based algorithms have been utilized to solve the blind source 

separation problem. One of the inherited problems in the ICA estimation is the 

dependency of the learning rule on the learning rate (step size). In case of GPR, the 

learning rate should be estimated for each scan where most likely the estimated value 

is not the optimal one resulting in a less reliable ICA algorithm due to higher 

execution time and degraded separation performance. Therefore, several solutions to 

this problem were proposed that does not depend on the learning rate such as relative 

Newton method [89], JADE algorithm [70], FastICA algorithm [23], and relative 

trust-region method [90]. 

The FastICA algorithm is the most reported method in the literature since it 

has the following properties [35, 38, 39]: easy implementation since it does not 

depend on the learning rate, has high separation performance, and has fast 
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convergence speed. In this work, EFICA is selected for the ICA estimation since it 

was reported with slightly higher computational demands than FastICA algorithm, 

but it has superior separation performance in comparison with JADE and FastICA 

algorithms [39], 

Methods to estimate the fractal dimension such as the Hurst method [56], the 

Divider method [52, 56], the differential box counting method (DBC) [54], fractal 

Brownian motion method (fBm) [48], to name a few, have been reported. Applying 

these methods to the same data of a specific problem, such as a GPR scan, does not 

necessarily result in the same estimated value of the fractal dimension. These 

differences are due to the estimation algorithm used by a particular method. 

Therefore, choice of the suitable method is an application dependent. Since no 

previous work was done to compare between these methods suitability for GPR data, 

a comparison between most used methods is presented in this work, namely: fBm, 

DBC, and Hurst methods. 

Since reflections from closely spaced targets overlap in any GPR application, 

conventional signal processing methods, such FFT and matched filtering, could not 

recover their corresponding pulses (spikes of the impulse response) when the time 

spacing between them is less thanzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 1/B (0.625 ns for the 1.5GHz antenna) where B is 

bandwidth of the GPR antenna. 

Since front and tail of the incident pulse have very small values, the 

convolution matrix F will be a large matrix with near zero main diagonal values and 

so it is an ill-conditioned matrix that may not have an inverse [92], If an inverse does 
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exist,zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA F1 may be extremely sensitive to additive noise in g and consequently, h may 

not be easily estimated. Therefore, conducting simple deconvolution methods such as 

linear least squares is not enough to deconvolve raw GPR scans due to noise 

sensitivity and ground scattering [92]. 

Deconvolution methods can be divided into direct and blind deconvolution. 

Direct deconvolution methods assume a known incident pulse / and attempts to 

recover the impulse response of the scanned medium h assuming it is following a 

linear system model, g = / * h, where g is the reflected raw GPR data. 

On the other hand, blind deconvolution methods estimate both / and h from 

raw data with no prior information about / or h. Direct deconvolution methods are 

simpler, less computationally demanding, but less accurate in comparison with blind 

deconvolution methods [130], 

Deconvolution can be performed using the data in the frequency-domain or in 

time-domain. In frequency-domain, the convolutive mixture becomes multiplicative 

mixture of complex signals within different frequency bands [110]. In the frequency 

domain, the independent signals have different frequency representations. Since 

frequency-domain ICA methods separate the mixture within each frequency band, the 

mixing matrix becomes a function of the frequency in the new domain while the time-

domain ICA model assumes it to be a constant [23]. In other words, all frequency 

components of each impulse response signal must be grouped. This makes the 

permutation and scaling of the impulse response signals lose consistency across all 

frequency bands. For this, additional methods to solve the permutation and scaling 
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ambiguity are required to avoid combining contributions from different impulse 

response signals into a single impulse response when reconstructing the signal in the 

time-domain which adds more computational demanding [110]. The literature 

reported different methods for blind deconvolution using ICA such as banded-ICA 

[23, 111, 103, 109], skewed-spatiotemporal ICA [104], and compIex-ICA [113]. Both 

banded-ICA and skewed-spatiotemporal ICA work in time-domain while complex -

ICA works in frequency domain. 

To avoid the previously mentioned difficulties associated with frequency-

domain, deconvolution in the time-domain will be considered in this work. Banded-

ICA deconvolution algorithm resulted in robust results [111, 103, 109] and 

outperformed both singular value decomposition (SVD) and subset selection 

deconvolution (SSDA) algorithms in deconvolving GPR scans of simulated concrete 

bridge decks [130], The estimated independent component was modeled as a delayed 

version of the original impulse response signal which prevented accurate depth 

estimation since their estimates were not with respect to the ground-line. Also, they 

determined the value of the approximative convolutional modelzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m manually for each 

case or they assumed it equal to the length of the corresponding GPR trace, n [111, 

103, 109, 130]. 

In this work, a modified version of the banded-ICA algorithm is developed to 

overcome all limitations that prevented automation of the detection process. A zero-

correction step is applied to the estimated independent components to allow depth 
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estimation with respect to the ground line. Also, the estimated incident pulse is 

utilized to select the best independent component amongzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m estimated ones. 

Different methods for depth estimation such as dielectric table method, 

velocity analysis method, and hyperbolic shape analysis method are reported in the 

literature [3, 6, 16]. The dielectric table method is the simplest but the least accurate 

method while the hyperbolic shape analysis method does not require prior knowledge 

of a target's depth (such as rebar) to estimate the velocity. However, it requires a 

skillful operator to work with RAD AN to manually analyze the GPR scans. Velocity 

analysis method was reported with significantly high depth estimation accuracy [3, 6] 

and since it does not require a skillful operator or additional post processing, I used it 

as the tool for defects depth estimation in this dissertation. 
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CHAPTER 4 

A NEW FRAMEWORK FOR DETECTING EMBEDDED DEFECTS 

The framework consists of four stages to identify, localize, and characterize 

defects in concrete as shown in Figure 6: a fractal-based feature extraction stage to 

detect defective regions and localize them horizontally, a banded-ICA stage for the 

deconvolution of the defective region traces, a velocity analysis stage to estimate the 

depth of defects, and a classification stage to characterize detected defects. As a 

preprocessing step, a zero-correction is performed on raw B-scans that involves the 

deletion of first part of the B-scan all the way to the first positive peak of the ground 

band reflection. This step is intended to enable depth estimation with respect to the 

ground line. Next, the proposed defect detection algorithm will be summarized. 

Fractal-Based Feature Extraction 

In this work, a fractal-based feature extraction (FBFE) algorithm is 

proposed and applied to each A-scan extracted from the B-scan. FBFE can be 

summarized in the following steps after normalizing all traces to zero mean, 

1. Feature vectors can be constructed according to the scanning method (as will 

be shown by Figure 7A). In the case of having the survey line perpendicular to 

the rebar, the dominant reflections are from rebar and targets above it as will 

be shown in Figure 15. When the survey line is parallel to the rebar, most of 
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the reflections are from deeper objects with rebar reflections being minimized 

as will be shown in Figure 1 IE. These differences caused us to seek different 

feature vectors to characterize traces. 

Figure 6. Block diagram of the proposed framework for defect detection. 
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- A: When the scan is conducted perpendicular to the rebar, the first feature 

vector, /ywtsronlkjihgfedcZWTSQPNLKIHGFEDCAQ consists of time-domain statistical features such as: fractal 

dimension (FD), root mean square (RMS), energy, and number of local 

maximum points (peaks). The RMS and energy are determined from the GPR 

trace and from its DFT real part values. The second feature vector,zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA fL 

contains the value of the summation of peak-to-peak value at each local 

maximum point. 

- B: When the scan is parallel to the rebar, the first feature vector, f g is 

constructed in the same way as in A above, but without the energy feature 

since it proved to be not efficient for defective and healthy traces while the 

second vector feature, fL, containing the square mean root (SMR) of each 

GPR trace which is viewed as a reasonable compromise between the 

geometric and the arithmetic means. 

2. Three methods are used to estimate the fractal dimension of the GPR 

trace x(t), 

- In fractal Brownian motion, the logarithmic plot of E[x(t + At) - x(t)f versus 

step size, At is obtained for various values of the step size Ar and the fractal 

dimension, FD is estimated as: 

FD = 2-H 

where H is the Hurst exponent obtained from the slope of the graphed line. 



102 

- In the differential box counting, the GPR trace is covered with three boxes. 

The first box completely covers the trace; the second box covers the first half 

of the trace while the third box covers the second half of the trace, leading to 

the following FD: 

/ 7 Z ? _ i o g ( ^ + ^ 2 ) - i o g y v 3 

log 2 

where TV,- is the maximum difference of data within its corresponding ith box. 

- In the Hurst method, windows of different sizes are used where the maximum 

difference of data within each window is computed and plotted against its 

corresponding window size in the logarithmic space. Fractal dimension is 

estimated asywtsronlkjihgfedcZWTSQPNLKIHGFEDCA FD = 2 - H 

3. Each feature vector is a column in the feature matriceszyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA FQ and FL. 

4. The mean and standard deviation vectors, ( JQ^ , , f c c y f L c r ) a r e computed 

for all rows of the feature matrices FQ and FL . 

5. The index of segments of lengths greater than a threshold T, corresponding 

feature vectors in FQ that are greater than /Q^ + CC FQA, and corresponding 

feature vectors in FL matrix that are smaller than where a e [0,1] 

are identified as defective regions. 

6. The center trace within each defective segment is labeled as by the defect's 

column number. Dividing it over the total number of columns in the B-scan 
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and multiplying it by the length of the B-scan, the horizontal location of defect 

(distance) is determined as: 

X d = ^ x L s (153) 
c 

wherezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Dcrepresents defect's column number, Tc represents total number of 

columns in the B-scan (350-550 depending on the scan), and Ls represents length 

of the B-scan in inches. 

A number of statistical measures are used in this work to evaluate 

performance of the proposed FBFE algorithm. Precision is used as a measure of 

fidelity and recall as a measure of completeness. False negative FN also used as the 

case of failure to detect a defect and false positive FP as the case of declaring a non-

existing defect. Precision is defined according to Eq. 154 while recall is defined 

according to Eq. 155 as follows: 

TP 
Pc = — — — (154) 

TP + FP 

TP 
Rc = - — — — (155) 

TP + FN 

where TP represents number of correctly classified defects. 

Deconvolution Using Banded-ICA 

The proposed banded-ICA algorithm is a modified version of a previously 

developed algorithm in [130]. In the current version, we intended to enhance 

sparseness of the estimated independent components. Also, the independent 
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component with highest sparseness was selected as the best candidate while in the 

current version a more effective criterion is used to select the best candidate. It can be 

summarized in the following steps. 

1. LetzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA x represents a defective trace marked by the FBFE algorithm. 

2. The mixture matrix X is constructed according to Eq. 108: 

Xmxn = [x(t-m + \) x(t-m + 2) ••• x(t-1) x(tjj 

3. Since the impulse response signal to be estimated is sparse and consists a 

number of sharp spikes with relatively flat area between them (representing 

the layered structure of the scanned concrete deck), the separating matrix 

WrriKm is initialized to the identity matrix. 

4. Mahalanobis transformation is used to whiten the mixture matrix X as 

follows: 

Z = C ^ 5 ( X - X ) 

where X represents the mean of the mixture matrix X and C represents its 

covariance matrix. The whitening step is a decorrelation process that results in 

an identity covariance matrix. 

5. In this step, three ICA algorithms are used to decompose the whitened mixture 

which consequently recovers m independent components. They are FastICA, 

EFICA, and Pearson ICA. 

5.1. The FastICA algorithm has the following learning rule (Eq. 37). The 

FastICA algorithm does not depend on the learning rate and thus it offers 

easy implementation, has high accuracy, and fast convergence speed as was 



105 

reported in the literature [23]. Since the impulse response signal to be 

estimated is a sparse signal, the hyperbolic tangent is selected for the 

nonlinear functionzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA g since it is more suitable for super-Gaussian signals 

[23]. 

wk+1 = wk+E[zg (wT
kz)]-E[g(wT

kz)]wk 

wk WM =zywvutsrponmlkjihgfedcbaWVUTSQPOMJIHFEDCBA M 

Wk 

5.2. Efficient FastICA (EFICA) is a statistical efficient version of the FastICA 

algorithm [39] with an added computationally complexity. However, it has 

superior separation performance as was reported in the literature. First, the 

FastICA is executed using the hyperbolic tangent function until convergence 

of the weight matrix or the maximum number of iterations reached. Then, 

the FastICA algorithm is used with the following nonlinear function for the 

kth estimated independent component in order to refine the estimated 

independent components. 

8k(y) = sign(y).\yr^-lM],l.S<{l4k<3 

sign(y).\y\l\M4k ^1-8 

where jU4k represents the fourth-order moment of the kth independent 

component and the parameter a^ is defined as 

a , = [ 0 . 2 9 ^ - 1 . 8 - 0 . 1 8 5 ( / / 4 t -1.8)]"1. 
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5.3. The Pearson ICA algorithm uses few parameters to model wide class of 

distributions. Pearson-ICA can be summarized in the following steps: 

I. Moments of the independent components are computed. 

II. For each independent component, parameters of its nonlinear function are 

estimated based on the computed moments. 

III. FastICA algorithm based on likelihood maximization is used with the 

estimated nonlinear functions. 

IV. The previous steps are repeated until convergence. 

. The selected independent component is to satisfy the following conditions, 

- It should have a minimum number of spikeszyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ns (since the defect may mask 

reflections from targets beneath it) as defined by: 

ns=nt-1 (156) 

where is the number of interfaces in the scanned concrete slab. 

- It should lead to the minimum mean square error (MMSE) according to: 

MSEi = E(g-f*yi)
2 (157) 

whereywtsronlkjihgfedcZWTSQPNLKIHGFEDCA g is the GPR trace and * represents the convolution process between 

the estimated incident pulse of the GPR antenna / and the current estimated 

independent component or its horizontally flipped version, for all 
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Depth Estimation Using Velocity Analysis 

The velocity-analysis based depth estimation method can be presented as: 

1. The initial total range of a GPR trace is 10ns. After applying zero-correction 

step, the new total range of the GPR trace is found using: 

wherezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Lz represents the length of the trace after zero correction, L0 represents 

the original length of the trace, and Tr represents the total range. 

2. Velocity of radar waves through the scanned medium can be approximated 

using Eq. 159 and noting that the depth of the rebar, d r in the concrete bridge 

decks is known, 

where V is the speed in inch/s, dr is rebar depth in inches, and tr is the round-

trip travel time to the rebar. 

3. Using Eq. 152, the actual depth of the defect is estimated. The spikes in the 

deconvolved trace are on a one-to-one correspondence with the ground line, 

defect, rebar, and bottom of the simulated deck. The round-trip travel time of 

the object (rebar or defect) trd is determined as: 

(158) 

(159) 
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where Sr(j represents the corresponding spike location of the object, L t r 

represents the deconvolved trace length, and the new total rangezyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Tn was 

defined in Eq. 158. 

Classification Using PCA and Euclidean Distance 

The proposed defect classification algorithm can be summarized in the following 

steps. 

1. Eight defective sub-images are cropped from five raw scans and scaled into 

45x45 pixels based on center of each defect to form the training set. Four sub-

images are extracted from delamination defects while the other four are 

extracted from air-void defects. 

2. Principal component analysis algorithm is used to identify main features from 

the training set and the labeled defective region. 

3. Euclidean distance is used as a similarity measure to match the selected features 

from the defective region with those of a sub-image from the training set to 

classify the defective region into air-void or delamination defect. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

Experimental Setup 

Six concrete slabs were constructed to simulate bridge decks: three with 

several embedded defects of known dimensions and locations as shown in Figure 7A 

and Tables 1 to 3, and three with no defects. PVC pipes and Styrofoam blocks were 

used to model air-void and delamination defects, respectively [3]. The slabs are 45 

inches long and 45 inches wide with one bottom layer of rebar (number 5 steel) in 

both directions spaced at 6 inches on center. Two slabs are of 3.54 inches thickness 

with the rebar placed 1.3 inches and 1.93 inches deep with rebar cover of 1 inch. The 

other two slabs are of 5.51 inches thickness with the rebar placed 2.53 inches and 

3.15 inches deep with rebar cover of 1.74 inches. The final set of slabs is of 7.32 

inches thickness with the rebar placed 4.33 inches and 4.96 inches deep with rebar 

cover of 1.74 inches. Figure 7 shows a 4-inch slab during the construction phase, 

Figure 8 shows a schematic diagram of a 6-inch slab, Figure 9 shows a plan view of a 

4-inch slab, and Figure 10 shows a plan view of 6- and 8-inch slabs [3]. 

A 1.5 GHz (GSSI model 5100) bistatic antenna is used to scan the concrete 

slabs [18]. Thirty one scans (labeled as scans 1 through 31) of length 37-38 inches 

were collected of which eleven for the healthy slabs and twenty for the defective ones 

as shown in Table 4. Twenty six scans (scans 1 through 26) are used to test 



110 

performance of the FBFE and deconvolution algorithms while five scans (scans 27 

through 31) are used as training set for the classification stage. 

The dielectric constant of concrete is in the range [4.5, 9]. An initial scan is 

conducted and the migration function in RADAN is used to estimate the velocity of 

radar waves and to find the dielectric constant (as will be shown in the parameter 

analysis section). This analysis resulted in a dielectric constant of 6.25 for the 

simulated concrete bridge decks. Therefore, during the data collection process, the 

dielectric constant is set to 6.25. As Table 4 shows, the scans are collected for the 4-, 

6-, and 8-inch concrete slabs with different acquisition parameters to test performance 

of the proposed defect detection algorithm with different acquisition parameters. 

After collecting the scans, RADAN is used to remove the gain applied to data 

during the data collection process. Therefore, the proposed defect detection algorithm 

processes raw GPR scans. 

Figure 7. Simulated 4-inch concrete bridge deck with embedded defects. (A) during 
the construction phase. The green arrow indicates a parallel survey line to 
the first rebar from left while the red arrow indicates a perpendicular survey 
line to the rebar. (B) the finished slab. 
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Figure 8. Schematic diagram of a 6-inch simulated concrete bridge deck. 
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Figure 9. Plan view for the 4-inch slab. 

Table 5 shows results of applying the fBm, DBC, and the Hurst methods to 

the fifteen defective scans. The fBm method detects fourteen of the fifteen defective 

scans while the Hurst method detects partially (not all the defective regions within the 

scan) thirteen of the fifteen defective scans and the DBC method detects partially ten 
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defective scans only. In the case of the fBm, the average difference between the 

estimated and actual horizontal location is 0.76 inches which indicates the 

applicability of the proposed algorithm in this field. In case of the DBC method, the 

average difference is 1.42 inches while the Hurst method has an average difference of 

0.93 inches. Finally, the proposed FBFE algorithm is able to detect and mark the 

defective regions using only the underlying B-scan with no need for the number of B-

scans for algorithm training. 

Results of the Defect Detection Algorithm 

Table 6 shows false positive, false negative, accuracy, precision, and recall for 

the fBm, DBC, and Hurst methods applied the twenty six scans. The fBm method has 

the highest accuracy, precision, and recall, and the lowest false negative and false 

positive rates. The DBC method results in the highest false negative rate while the 

Hurst method results in the highest false positive rate. 

The DBC method estimates the fractal dimension of a signal through covering 

it with three boxes and taking the maximum difference between data within each box. 

This is an approach that is easy to implement but it does not take into account all 

neighbor-to-neighbor pixel variations, causing DBC results to be the least accurate. 

The Hurst method follows a similar approach but with increased number of windows 

that cover the signal. This covers more neighbor-to-neighbor pixel variations than 

with DBC method and thus it should have a clear improvement in the results. The 

fBm method takes the difference between a shifted version of the signal and the 
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original signal which covers more neighbor-to-neighbor pixel variations than the 

other two methods and consequently improves the results. 

VI 
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Figure 10. Plan view for the 6- and 8-inch slabs. 

Table 1 

Defects map of the 4-slab 

Defect Length Width Thickncss Coordinates (X,Y) Depth 

Dl 2 3 2 33.5 26 1 

D2 2 1.5 1 26 30.5 0.75 

D3 4 4 0.5 13 24.5 0.75 

1.5 1.5 1.5 23 18 1.25 

D5 4 3 2 34.5 10 1.25 

D6 3 3 1.5 31.2 10.2 1.5 
D7 . # 3 3 0.5 24.5 39 1.43 

12 NA 0.5 NA 39.25 1.58 

' i ; ' V2 16 NA 0.25 NA 7.5 1.02 

•-'. V3 12 NA 1.0 NA 16 1.65 
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Table 2 

Defects map of the 6-slab 

Defect Length Width Thickness Coordinates (X,Y) Depth 

Dl 2 3 2 30.0 26 1 

D2 2 1.5 1 23 32.5 3 

Jiifi 4 4 0.5 9 25.5 2.03 

D4 "iv- 1.5 1.5 1.5 22 19 2 

4 3 2 34.5 8.5 1.15 

D6 3 3 1.5 30.25 9 1.65 
VI 12 NA 0.5 NA 37 1.42 

V2 16 NA 0.25 NA 7 4.49 

V3 12 NA 1.0 NA 16 0.39 

Table 3 

Defects map of the 8-slab 

Dcfcct Length Width Thickness Coordinates (X,Y) Depth 

Dl 2 3 2 34.0 25.5 2.75 

D2 2 1.5 1 23.5 30.5 3.96 

D3 4 4 0.5 10.5 25 3.83 

M 1.5 1.5 1.5 23.5 20.5 3.46 

D5 4 3 2 36 9 2.33 

D6 3 3 1.5 31 9.25 2.83 
VI 12 NA 0.5 NA 37.5 2.91 

16 NA 0.25 NA 7 3.62 

12 NA 1.0 NA 16.5 2.6 

Since the best results are obtained using the fBm method, the marked 

defective traces from this method were used for the deconvolution process to reduce 

overlapping between reflections from adjacent targets and estimate the round-trip 

travel time to and from the embedded defects and rebar. The FastICA, EFICA, and 

Pearson ICA methods are used for the ICA decomposition within the deconvolution 

algorithm to test their performance for the depth estimation accuracy and select the 

best one. The velocity analysis method is used to estimate depth (in inches) of 
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detected defects as shown in Table 7. As the table indicates, the EFICA method has 

better results than FastICA and Pearson ICA methods. For EFICA, the estimated 

depth in all scans is within 0.85 inches from the actual depth with average difference 

between the actual and estimated depth of 0.37 inches. Also, the proposed EFICA-

based deconvolution algorithm is able to detect shallow defects of depth 0.39 inches. 

O Q 

The antenna wavelength is A =zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA c/f - 3*10 / 1.5x10 = 0.2m = 20cm = 7.8 inches. 

This indicates that the deconvolution algorithm is able to resolve overlapping 

reflections of targets spaced at 0.43/7.8 = 6% of the antenna wavelength which 

indicates robustness of the proposed deconvolution algorithm. 

In some cases, the FBFE algorithm detects portion of the defective region. 

Therefore, the defective trace to be deconvolved did not represent peak of the defect. 

This indicates that the estimated depth of that defect is not its actual depth. Also, the 

defect maps in tables 1 through 3 are not accurate since some of the embedded 

defects moved a little bit from their actual location indicated by the tables during the 

concrete casting process. Also, there is a depth measurement error. All these factors 

affect the depth estimation accuracy. 

Tables 8 and 9 summarize results of Table 5 and Table 7 for each concrete 

slab. The percent error is obtained by dividing the average difference between the 

estimated and actual horizontal location over scan length (Table 8) and the average 

difference of the depth over the corresponding slab thickness (Table 9). In case of 

fBm-based feature extraction, best results of the horizontal location estimation 

accuracy are obtained for the 8-inch slab while the 6-inch slab has the best results for 
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the depth estimation accuracy. The estimated horizontal location is within ±2.4% 

error in all slabs while the estimated depth is within ±12.45% error in all slabs. 

Table 4 

Collected scans from 6, 4, and 8-inch slabs with different acquisition parameters 

Scan Slab Thickness Defects Samples/scan Scans/inch 

1 6- nch None 512 8.33 

6- nch Air-void (VI) 512 8.33 

6- nch None 512 8.33 

6- nch None 512 8.33 

6- nch Delamination (Dl) Delamination (D3) 512 8.33 

6 6- nch Air-void (V3) 512 8.33 

7 6- nch None 512 8.33 

8 6- nch Air-void (V3) 512 8.33 

9 6- nch Delamination (D6) Delamination (Dl) 512 8.33 
10 6- nch None 512 8.33 

11 6- nch Delamination (D4) 512 8.33 

12 6- nch Delamination(D3) Air-void (VI) 512 8.33 

13 4- nch Delamination (D7) Air-void (VI) 512 8.33 

14 4- nch None 512 8.33 

15 4- nch None 512 8.33 

16 4- nch None 512 8.33 

17 4- nch Delamination (Dl) 512 8.33 

18 4- nch Delamination (Dl) Delamination (D3) 256 10 
4- nch Air-void (V3) 256 10 

'31M m 4- nch Delamination (D5) Delamination (D6) 256 10 
21 4- nch None 256 10 

S 8- nch Delamination (D5) Air-void (V3) 256 10 

'-•hM . f ; 8- nch None 256 10 
24 8- nch None 256 10 

25 8- nch Delamination (D3) 256 10 

26 8- nch Delamination (D5) Delamination (D6) 256 10 

27 6- nch Air-void (VI) 512 8.33 

ZMB 6- nch Delamination (D6) Air-void (VI) 512 8.33 

4- nch Delamination (D3) 512 8.33 

4- nch Delamination (D7) Air-void (VI) 256 10 
31 8- nch Delamination (D5) Air-void (V3) 256 10 
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Table 2 

Actual and estimated horizontal location of defects* 

Scan 

Number 

Actual 

Location 

Estimated 

Location 

(fBm) 

Diff 

Estimated 

Location 

(DBC) 

Diff 

Estimated 

Location 

(Hurst) 

Diff 

Scan2 33.75 34.28 0.53 32.02 1.73 ND ND 

ScanS 
8.75 8.71 0.04 10.98 2.23 8.83 0.08 

ScanS 
28.75 29.19 0.44 28.4 0.35 29.76 1.01 

Scan6 3.5 3.83 0.33 ND ND 3.94 0.44 

ScanS 10.75 9.63 1.12 ND ND 9.63 1.12 

Scan9 
3.75 3.45 0.3 4.16 0.41 2.26 1.49 

Scan9 
19 17.61 1.39 ND ND 18.8 0.2 

Scan 11 14.5 ND ND ND ND ND ND 

Scan 12 
19.5 21.61 2.11 21.61 2.11 21.61 2.11 

Scan 12 
32 32.76 0.76 ND ND 32.76 0.76 

Scan13 
13.75 12.57 1.18 ND ND 13.68 0.07 

Scan13 
33.75 35.26 1.51 ND ND 34.56 0.81 

Scan 17 4.75 4.2 0.55 7.58 2.83 3.07 1.68 

Scan IS 
5.25 4.38 0.87 8.16 2.91 6.95 1.7 

Scan IS 
24.75 24.82 0.07 ND ND 24.63 0.12 

Scan 19 3 4.62 1.62 ND ND 4.62 1.62 

Scan20 
3.25 2.99 0.26 1.91 1.34 2.75 0.5 

Scan20 
7.05 8.03 0.98 ND ND 6.55 0.5 

Scan22 
2.75 2.28 0.47 2.22 0.53 5.26 2.51 

Scan22 
9.2 8.24 0.96 ND ND 8.24 0.96 

Scan25 29 29.64 0.64 29.64 0.64 29.64 0.64 

Scan26 
3.25 3.03 0.22 1.95 1.3 3.03 0.22 

Scan26 
7.05 7.36 0.31 7.65 0.6 ND ND 

A vera i;c 0.76 1.42 0.93 

* All measurements are in inch andywtsronlkjihgfedcZWTSQPNLKIHGFEDCA ND means the defective segment is not detected 

Table 6 

False positive, false negative, accuracy, precision, and recall for the fBm, DBC, and 
Hurst algorithms 

Algorithm FP Rate i< N Rate Accuracy Precision Recall 

ffim 7.69% 2.56% 89.74% 88% 95.65% 
DBC 12.82% 28.21% 58.97% 70.59% 52.17% 
Hurst 20.51% 7.69% 71.8% 71.43% 86.96% 
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Table 2 

Actual and estimated depth of the detected defects* 

Scan 

Number 

Actual 

Depth 

Estimated 

Depth 

(EFICA) 

Diff 

Estimated 

Depth 

(FastICA) 

Diff 

Estimated 

Depth 

(Pearson) 

Diff 

Scan2 1.42 1.68 0.26 1.42 0 1.21 0.21 

Scan? 
1 1.11 0.11 2.81 1.81 0.14 0.86 

Scan? 
2.03 2.53 0.5 2.05 0.02 1.09 0.94 

Scan6 0.39 0.48 0.09 0.53 0.14 0.21 0.18 

ScanX 0.39 0.43 0.04 0.39 0 0.20 0.19 

Scan9 
1.65 1.7 0.05 1.48 0.17 0.77 0.88 

Scan9 
1 1.36 0.36 0.16 0.84 0.10 0.90 

Scan 11 2 NA NA NA NA NA NA 

Scan 12 
2.03 1.59 0.44 1.17 0.86 1.78 0.25 

Scan 12 
1.42 1.18 0.24 1.13 0.29 1.95 0.53 

Scan 13 
1.43 1.76 0.33 1.23 0.2 0.74 0.69 

Scan 13 
1.58 1.35 0.23 2.17 0.59 0.78 0.80 

Scan 17 1 1.62 0.62 1.9 0.9 0.71 0.29 

Scan 18 
1 1.16 0.16 0.16 0.84 0.10 0.90 

Scan 18 
0.75 1.01 0.26 1.39 0.64 0.14 0.61 

Scan19 1.65 0.92 0.73 1.08 0.57 0.22 1.43 

Scan20 
1.25 0.74 0.51 0.38 0.87 0.21 1.04 

Scan20 
1.5 0.8 0.7 0.25 1.25 0.29 1.21 

Scan22 
2.33 2.28 0.05 2.08 0.25 2.49 0.16 

Scan22 
2.6 2.29 0.31 2.29 0.31 3.50 0.90 

Scan25 3.83 3.22 0.61 3.22 0.61 3.72 0.11 

Scan26 
2.33 1.58 0.75 3.68 1.35 4.29 1.96 

Scan26 
2.83 3.68 0.85 3.68 0.85 3.90 1.07 

Average 0.37 0.61 0.73 

* All measurements are in inch,ywtsronlkjihgfedcZWTSQPNLKIHGFEDCA NA means the defective segment is not detected 

Figures 11 A, 11B, 11C, and 11D show healthy scans from a 6-inch concrete 

slab (scanl, scan3, scan4, and scan7) with the survey line perpendicular to the rebar 

while Figure 11E (scan 10) shows a healthy B-scan with the survey line parallel to the 

rebar. The three interfaces as shown in each B-scan are: air-concrete, concrete-rebar, 

and concrete-substrate. No defective segments are declared by the proposed fractal-

based feature extraction algorithms after applying them to the aforementioned scans. 
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Table 2 

Average difference between actual and estimated location of the corresponding slab 
defects 

Slab 

Thickness 

Average 

Diff (fBm) 

Percent 

Error 

Average Diff 

(DBC) 

Percent 

Error 

Average Diff 

(Hurst) 

Percent 

Error 

4-inch 0.88 2.38% 2.36 6.39% 0.88 2.38% 

6-inch 0.78 2.05% 1.37 3.61% 0.9 2.37% 

8-inch 0.52 1.37% 0.77 2.03% 1.08 2.84% 

Table 9 

Average difference between actual and estimated depth of the corresponding slab 
defects 

Slab 

Thickness 

Average Diff 

(EFICA) 

Percent 

Error 

Average Diff 

(FastICA) 

Percent 

Error 

Average Diff 

(Pearson ICA) Error 

4-inch 0.44 12.43% 0.79 22.32% 0.87 24.58% 
6-inch 0.23 4.17% 0.38 6.9% 0.55 9.98% 
8-inch 0.51 6.97% 0.85 11.61% 0.84 11.48% 

Figures 12A and 12B show healthy scans from a 4-inch concrete slab (scan 14 

and scan 15) with the survey line parallel to the rebar while Figures 12C and 12D 

(scan 16 and scan21) show healthy scans with the survey line perpendicular to the 

rebar. 512 samples are collected per scan for Figures 12A, 12B, and 12C while 256 

samples are collected per scan for figure 12D. This means that every trace of scan21 

contains half the number of the samples that traces of the other scans contain. 

Therefore, these scans show more visible reflections from deep objects with better 

resolution in comparison with scan21. On the other hand, scan21 takes roughly half 

the execution time required by the other scans. No defective segments are declared by 
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Figure 11. A, B, C, D, and E are healthy scans from a 6-inch concrete slab. 

Figures 13A and 13B show healthy scans from an 8-inch concrete slab 

(scan23 and scan24). Since the width to thickness ratio of the 8-inch concrete slab is 

not large enough, there is a diagonal arc under the rebar represents interference 

caused by the reflections from the right side boundary of the slab. This diagonal arc 

may mask reflections from deeper objects. One possible solution to reduce the 

interference is by using the migration method. No defective segments are declared by 

the proposed fractal-based feature extraction algorithms after applying them to the 

aforementioned scans. 



Figure 12. A, B, C, and D are healthy scans from a 4-inch concrete slab. 

Figure 13. A and B are healthy scans from an 8-inch concrete slab. 

Applying the fBm-based feature extraction algorithm on a given raw B-scan 

followed by the EFICA-based deconvolution algorithm, results in marking the 

defective regions. Figure 14A shows raw B-scan (scan2) with an embedded air-void 
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defect that lies above the sixth and seventh hyperbolae. Figure 14B shows the 

processed scan where the defective region is partially marked. Figure 15A shows raw 

B-scan (scan5) with two embedded delamination defects. The first defect is shallower 

than the other one and is partially overlapped with the black section of the ground 

coupling band while the second defect lies right above the sixth hyperbola. Figure 

15B shows the processed scan where the two defective regions are successfully 

marked. Figure 16A shows a raw B-scan (scan6) with a shallow embedded air-void 

defect that is overlapped with the black section of the ground coupling band. Figure 

16B shows the processed scan where the defective region is successfully marked. 

Figure 14. A and B are raw and processed scans from a 6-inch slab with embedded 

air-void defect. The white rectangle area marks partially the air-void 

defect. 

Figure 17A shows raw B-scan (scan8) with shallow embedded air-void defect 

that is partially overlapped with the black section of the ground coupling band. Figure 

17B shows the processed scan where the defective region is successfully marked. 
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Figure 15. A and B are raw and processed scans from a 6-inch slab with two 
embedded delamination defects. The white rectangle areas mark the two 
defects. 

Figure 16. A and B are the raw and processed scans from a 6-inch slab with 
embedded air-void defect. The white rectangle area marks the air-void 
defect. 

Figure 18A shows raw B-scan (scan9) with two embedded delamination 

defects. Figure 18B shows the processed scan where the first and second defective 

regions are successfully and partially marked, respectively. Figure 19A shows raw B-

scan (scanll) with embedded delamination defect that masked reflections from the 

third rebar. Signature of the delamination defect in is barely visible with low contrast 

from its surrounding background. Therefore, the proposed method is unable to detect 
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this weak signature defect as shown in Figure 19B. Figure 20A shows raw B-scan 

(scanl2) with embedded delamination and air-void defects. Figure 20B shows the 

processed scan where both defects are partially marked. 

Figure 17. A and B are the raw and processed scans from a 6-inch slab with 
embedded air-void defect. The white rectangle area marks the air-void 
defect. 

Figure 18. A and B are the raw and processed scans from a 6-inch slab with two 
embedded delamination defects. The white rectangle areas mark 
completely and partially the two defects. 

Figure 21A shows raw B-scan (scanl3) with embedded delamination and air-

void defects. Figure 21B shows the processed scan where the first and second 

defective regions are partially marked. Figure 22A shows raw B-scan (scanl7) with 
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embedded delamination defect. Figure 22B shows the processed scan where the 

defective region is successfully marked. 

Figure 19. A and B are the raw and processed scans from a 6-inch slab with 
embedded delamination defect. 

Figure 20. A and B are the raw and processed scans from a 6-inch slab with 
embedded delamination and air-void defects. The white rectangle areas 
mark partially the two defects. 

Figure 23A shows raw B-scan (scanl8) with two embedded delamination 

defects. Figure 23B shows the processed scan where the two defective regions are 

successfully marked. Figure 24A shows raw B-scan (scanl9) with embedded air-void 

defect. Figure 24B shows the processed scan where the defective region is partially 

marked. Figure 25A shows raw B-scan (scan20) with two embedded delamination 
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defects. Figure 25B shows the processed scan where the two defective regions are 

successfully marked. 

Figure 21. A and B are the raw and processed scans from a 4-inch slab with 
embedded delamination and air-void defects. The white rectangle areas 
mark partially the two defects. 

Figure 22. A and B are the raw and processed scans from a 4-inch slab with 
embedded delamination defect. The white rectangle area marks the 
defect. 

Figure 26A shows raw B-scan (scan22) with embedded delamination and air-

void defects. Figure 26B shows the processed scan where the defective regions are 

successfully and partially marked. Figure 27A shows raw B-scan (scan25) with 

embedded delamination defect. Figure 27B shows the processed scan where the 
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defective region is partially marked. Figure 28A shows raw B-scan (scan26) with two 

embedded delamination defects. Figure 28B shows the processed scan where the two 

defective regions are partially and successfully marked. 

Figure 23. A and B are the raw and processed scans from a 4-inch slab with two 
embedded delamination defects. The white rectangle areas mark the two 
defects. 

Figure 24. A and B are the raw and processed scans from a 4-inch slab with 
embedded air-void defect. The white rectangle area marks partially the 
defect. 

In summary, the integrated fBm-based feature extraction and EFICA-based 

deconvolution framework fully identified and labeled twelve of the twenty three 

defective regions. It was also able to partially identify and label ten additional 

defective regions. The labeled defective region is extracted from the raw GPR scan as 
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a sub-image and used as an input to the classification stage. Table 10 shows a 

classification accuracy of 90.91%. As the table shows, all the delamination defects 

are correctly classified while two air-void defects are not correctly classified. This is 

because an air-void defect has two different signatures depends on being parallel or 

perpendicular to the survey line while a delamination defect has nearly same 

signature regardless of the survey line direction. When the air-void defect is parallel 

to the survey line, it has a flat reflection similar to that of the delamination defect. For 

example, a parallel air-void defect to the survey line (Figures 16) has a different 

signature when it is perpendicular to the survey line (Figure 17). 

Figure 25. A and B are the raw and processed scans from a 4-inch slab with two 
embedded delamination defects. The white rectangle areas mark the two 
defects. 

Parameter Analysis 

Several parameters that impact performance accuracy of the proposed defect 

detection algorithm are addressed in the following subsections. These parameters 

include, towing speed of the GPR antenna, dielectric constant, number of samples per 
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trace, minimum defective segment length, and characteristics of the used GPR 

antenna such as frequency and physical size. 

Figure 26. A and B are the raw and processed scans from an 8-inch slab with 

embedded delamination and air-void defects. The white rectangle areas 

mark partially the two defects. 

,,i?B*)1 -r«*1 
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Figure 27. A and B are the raw and processed scans from an 8-inch slab with 

embedded delamination defect. The white rectangle area marks partially 

the defect. 

Towing Speed of the GPR Antenna 

During the data collection process, the GPR antenna is towed by hand. This 

non-uniform towing speed determines number of scans per inch which results in non-

equal horizontal distance between rebar peaks. This affects shape of the detected 

objects and defects. A calibration procedure should be performed prior to conducting 



130 

the scans in order to reduce this effect and thus improves the horizontal distance 

estimation and classification accuracies. 

Figure 28. A and B are the raw and processed scans from an 8-inch slab with two 
embedded delamination defects. The white rectangle areas mark partially 
and completely the two defects. 

If a whole bridge to be scanned, the GPR antenna should be towed behind a 

vehicle moving at a constant speed to achieve accurate results. Another way to 

enhance distance estimation and classification accuracies is by using the distance 

normalization function in RADAN which establishes a constant horizontal scale 

(equal number of scans per inch) between marks where the marks are entered during 

the data collection process every fixed distance (3 feet for example). 

Dielectric Constant 

The dielectric constant reflects velocity of radar waves through the scanned 

medium. Higher value of the dielectric constant indicates a slower travel time and 

thus shallower penetration. The depth estimation accuracy depends on the proper 

choice of the dielectric constant as Eq. 152 indicates. If the used value of the 
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dielectric constantzyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA e during the data collection process is different from the proper 

value e in the amount of A, then the estimated depth will be different from the actual 

depth as shown in Eq. 160. 

Table 10 

Classification results of the detected defects 

Scan number Defect type Classification result 

Scan2 Air-void Air-void 

Scan5 
Delamination Delamination 

Scan5 
Delamination Delamination 

Scan6 Air-void Air-void 

Scan8 Air-void Air-void 

Scan9 
Delamination Delamination 

Scan9 
Delamination Delamination 

Scanl1 Delamination Not detected 

Scan 12 
Delamination Delamination 

Scan 12 
Air-void Delamination 

Scan 13 
Delamination Delamination 

Scan 13 
Air-void Delamination 

Scan17 Delamination Delamination 

Scan 18 
Delamination Delamination 

Scan 18 
Delamination Delamination 

Scan 19 Air-void Air-void 

Scan20 
Delamination Delamination 

Scan20 
Delamination Delamination 

Scun22 
Delamination Delamination 

Scun22 
Air-void Air-void 

Scan25 Delamination Delamination 

Scan26 
Delamination Delamination 

Scan26 
Delamination Delamination 

Accuracy 90.91% 

ct ct 

One possible way of finding the proper value of e is by measuring velocity of 

radar waves through the scanned medium using the Migration function in RADAN. 
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From Figures 29-31, the estimated velocity of radar waves for the 4-, 6-, and 8-inch 

slabs is 4.7244 inches/ns. Therefore, the dielectric constant is 

£• = 1-1 = 
3x10 xlOO 

= 6.25 
2.54 x 4.7244x 10 

This is the same value used during the data collection process which indicates 

that the estimated depth in Table 7 is accurate. Since the concrete slab has 

homogenous materials, the dielectric constant should not change significantly with 

depth (as opposed to the soil). Therefore, assuming a constant value of the dielectric 

constant for the concrete slabs should not affect the depth estimation accuracy [18]. 
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Figure 29. Measuring velocity of radar waves using the migration function in 

RAD AN for a 4-inch slab. 

Number of Samples per Trace 

Each trace consists of a number of individual data points called samples. 

Generally speaking, the vertical resolution of the B-scan will be improved by 

increasing number of samples per scan. Since the concrete slabs are shallow, there is 
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no need for a large number of samples per scan. To investigate effect of number of 

samples per scan on depth estimation accuracy, scans from Table 7 with the lowest 

accuracies are re-sampled to 1024 samples per scan using RADAN. Then, the fBm-

based feature extraction, EFICA-based deconvolution algorithm, and velocity 

analysis method are applied to these scans. The new scans take considerably longer 

execution time than the execution time needed for the B-scans with 512 and 216 

samples per scan. This is because each GPR trace has 1024 samples resulting in large 

mixture matrix for the deconvolution algorithm to decompose which is difficult to 

handle using a regular personal computer with a limited memory. Also, using a large 

number of samples to represent shallow medium will degrade the depth estimation 

accuracy as shown in Table 11. 

Figure 30. Measuring velocity of radar waves using the migration function in 

RADAN for a 6-inch slab. 
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Figure 31. Measuring velocity of radar waves using the migration function in 
RADAN for an 8-inch slab. 

Table 11 

Actual and estimated depth of defects using different samples per scan 

Scan 
Actual 

Depth 
s 

Estimated 

Depth 
Diff 

Estimated 

Depth 
DilT 

Scan22 
1.25 

256 
0.74 0.51 

1024 
0.32 0.93 

Scan22 
1.5 

256 
0.8 0.7 

1024 
2.63 1.13 

Sean29 
2.33 

256 
1.58 0.75 

1024 
3.1 0.77 

Sean29 
2.83 

256 
3.68 0.85 

1024 
1.51 1.32 

Average 0.7 1.04 

Minimum Defective Segment Length 

The densest recommended number of scans per inch for concrete structures 

using the 1.5 GHz antenna is 10 scans per inch [16]. Therefore, the GPR antenna is 

set to 8.3 scans per inch (100 scans per foot) for scans 1 through 17 and 10 scans per 

inch (120 scans per foot) for scans 18 through 26 during the data collection process. 

The smallest defect embedded in the slabs is 1.5 inches wide. Ideally,zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA T should be 
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8.3x1.5=12.5 for scans 1 through 17 and 10x1.5=15 for scans 18 through 26. For both 

cases,zyxwvutsrponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA T should be 12 to detect the smallest embedded defect. Since the proposed 

FBFE algorithm may detect portion of the defective region (see Figure 20 for 

example) due to that fact that a defective region may have stronger reflections in 

some parts than other parts, the threshold value, T is set to 7 to be able to detect 

defective regions as small as 0.79 inches (scans 1 through 17) and 0.7 inches (scans 

18 through 26). This user-defined parameter can be adjusted depending on the 

application needs. 

Characteristics of the Used GPR Antenna 

The used GPR antenna has three factors that affect the data collection process 

and consequently accuracy of the results: physical size of the antenna, the offset 

between the transmitter and receiver, and its frequency. 

Bridge deck condition assessment requires using a high frequency antenna 

since it is more suitable for shallow surfaces. High frequency antennae have small 

physical size and consequently small distance between the transmitter and the 

receiver. 

The 1.5GHz antenna has a small physical size (10 inches long) [18]. Using a 

small size antenna allows the detection of small size defects. Since the transmitted 

radar signal attenuated drastically away from center of the antenna, the antenna has to 

go directly over the small defect to detect it. This slows the data collection process 

and becomes non practical in case of scanning large bridges. 
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The offset (distance) between the transmitter and receiver of the 1.5 GHz 

antenna is 2.3 inches. Therefore, targets of less than 2.3 inches deep may appear 

slightly off from their actual depth in raw scans. This is because radar signals travel at 

an angle from transmitter to the receiver rather than a straight line down and back 

from center of the GPR antenna [16]. Since all the embedded defects and rebar in the 

4-inch slab are within 1.65 inches from the surface, this slab has the lowest horizontal 

location and depth estimation accuracies. 

In summary, it is recommended to use a high frequency antenna for bridge 

deck condition assessment [16, 18, 5]. The price comes at a little degradation in 

distance and depth estimation accuracies of shallow defects but with accurate results 

for deep defects. Also, the data collection process will be slow. However, the high 

frequency antenna has the capability of detecting small defects and providing high 

resolution scans that facilitate the automation of defect detection. 
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CHAPTER 6 

CLOSURE 

Summary and Conclusions 

In this dissertation, a framework has been developed to automate the 

detection, localization, and characterization of subsurface defects inside bridge decks. 

The framework consists of four algorithms: 1) a fractal-based feature extraction 

algorithm to detect and horizontally label defective regions; 2) a banded-ICA 

deconvolution algorithm to reduce overlapping reflections from closely spaced targets 

and to recover travel time to and from detected defects and rebar; 3) a velocity 

analysis method to estimate depth of detected defects; and 4) a classification 

algorithm using principal component analysis to identify main features in defective 

regions. This framework was implemented and tested using real GPR scans of 

simulated concrete bridge decks of varying thicknesses and with several embedded 

defects of different types, dimensions, and locations. 

Attempting to investigate Fractals for detecting and horizontally labeling 

defective regions, I presented a comparison between three different fractal methods to 

determine the most suitable one. Results indicate that fractal Brownian motion based 

feature extraction algorithm has 89.74% accuracy of detecting defects and localizing 

them horizontally where the average difference between the actual and estimated 

horizontal locations is 0.76 inches resulting in the highest accuracy, recall, and 
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precision among the three methods. Results also demonstrate that Brownian motion 

algorithm has the lowest false negative and false positive rates. EFICA-based 

deconvolution algorithm estimates defects depths with significant accuracy where the 

average difference between the actual and estimated depths is 0.37 inches. Also, the 

deconvolution algorithm is able to detect defects of a depth of 0.39 inches which 

indicate that the deconvolution algorithm is able to resolve overlapping reflections of 

targets spaced at 6% of the antenna wavelength which indicates robustness of the 

proposed deconvolution algorithm. 

The integrated fBm-based feature extraction, EFICA-based deconvolution, 

and velocity analysis framework fully identified and labeled twelve of the twenty 

three defective regions. It was also able to partially identify and label ten additional 

defective regions. Results of the classification phase indicate that the algorithm has 

90.91% classification accuracy for delamination and air-void defects. All the 

delamination defects are correctly classified while two air-void defects are not 

correctly classified. This is because an air-void defect has two different reflections 

(flat or arch) depending on being parallel or perpendicular to the surveying line while 

a delamination defect shape is independent of the surveying line direction (flat 

reflection). When the air-void defect is parallel to the survey line, it has a flat 

reflection similar to that of the delamination defect and thus it may lead to erroneous 

classification results. 

The depth estimation accuracy depends on the proper choice of the dielectric 

constant, the proper choice of the number of samples per scans, the whole detection 
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of the defective region by the fractal-based feature extraction algorithm, the 

deconvolution algorithm, and the accurate measurement of rebar depth. 

Contribution 

The work presented in this dissertation has several contributions to the current body 

of knowledge in ground penetrating radar detection analysis techniques and in 

concrete bridge deck condition assessment. The contributions include the following: 

• Developed a complete framework that detects, localizes, and classifies subsurface 

defects inside concrete bridge decks. 

• Presented a comparison between the most common fractal methods to determine 

the most suitable one for bridge deck condition assessment. 

• Introduced a fractal-based feature extraction algorithm that is capable of detecting 

and horizontally labeling defective regions with reasonable computational demands 

and using only the underlying GPR B-scan without the need for a training dataset 

as required by other algorithms. 

• Developed an EFICA-based deconvolution algorithm that is able to detect 

embedded defects in bridge decks. This demonstrates that the deconvolution 

algorithm resolved the overlapping reflections of adjacent objects problem. 

• Introduced an automated identification methodology of defective regions which 

can be integrated into a CAD system that allows for better visual assessment by the 

maintenance engineer of size and cost of repairs needed. 

• Presented a completely automated framework that should eliminate human 
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interpretation errors and reduce condition assessment time and cost. 

• Presented an investigation and a successful attempt to classify the common defects 

in bridge decks and produced highly accurate classification results. 

• Presented a framework that can, with little modification, be used in other 

applications as well, including new materials or structures. 

Future Work 

An important extension of this work is testing and validating the work using 

data of real bridges. The EFICA-based deconvolution algorithm as presented is robust 

but it is computationally demanding. Therefore, future work may include work on 

improving its execution time by reducing its computational complexity. This can be 

accomplished by exploiting other methods to construct the mixture matrix and/or 

considering parallel processing. Future work may also include efforts to improve the 

proposed FBFE algorithm to be able to detect the whole defective region and thus 

improving the depth estimation accuracy. Furthermore, detecting boundaries of the 

defective regions to enable the maintenance engineer to estimate the size of repair 

needed, can be an excellent addition to this work. Investigating the use of a more 

robust classifier that can handle a variety of defect types can be another valuable 

extension. Finally, contour maps can also be integrated into this framework to 

quantify percentage of the detected defects. 
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