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OBJECTIVE

The goal of this study was to describe the development and validation of an
artificial intelligence–based, deep learning algorithm (DLA) for the detection of
referable diabetic retinopathy (DR).

RESEARCH DESIGN AND METHODS

A DLA using a convolutional neural network was developed for automated detec-
tion of vision-threatening referable DR (preproliferative DR or worse, diabetic mac-
ular edema, or both). The DLA was tested by using a set of 106,244 nonstereoscopic
retinal images. A panel of ophthalmologists graded DR severity in retinal photo-
graphs included in the development and internal validation data sets (n = 71,043); a
reference standard grading was assigned once three graders achieved consistent
grading outcomes. For external validation, we tested our DLA using 35,201 images
of 14,520 eyes (904 eyes with any DR; 401 eyes with vision-threatening referable
DR) from population-based cohorts of Malays, Caucasian Australians, and Indig-
enous Australians.

RESULTS

Among the 71,043 retinal images in the training and validation data sets, 12,329
showed vision-threatening referable DR. In the internal validation data set, the area
under the curve (AUC), sensitivity, and specificity of the DLA for vision-threatening
referable DR were 0.989, 97.0%, and 91.4%, respectively. Testing against the
independent, multiethnic data set achieved an AUC, sensitivity, and specificity of
0.955, 92.5%, and 98.5%, respectively. Among false-positive cases, 85.6%were due
to a misclassification of mild or moderate DR. Undetected intraretinal microvas-
cular abnormalities accounted for 77.3% of all false-negative cases.

CONCLUSIONS

This artificial intelligence–based DLA can be used with high accuracy in the de-
tection of vision-threatening referable DR in retinal images. This technology offers
potential to increase the efficiency and accessibility of DR screening programs.
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Diabetic retinopathy (DR), the most com-
mon microvascular complication of di-
abetes, is a leading cause of irreversible
vision loss in adults of working age
(1). Recent estimates suggest the global
prevalence of DR is 34.6%, correspond-
ing to nearly 100 million people world-
wide (1).With the prevalence of diabetes
expected to rise by at least 25% by
2030 (2,3), a significant increase is ex-
pected in the burden of DR (4).
Given that the majority of vision loss

from DR is avoidable through early de-
tection and effective treatment strategies
(5,6), many national and international so-
cieties have long endorsed screening for
DR (7). This comes most commonly in the
form of point-of-care ophthalmoscopy
by trained eye care personnel (e.g., oph-
thalmologists or optometrists) or retinal
photography with either local interpre-
tation or telemedicine-based screening pro-
grams with centralized grading (8). However,
despite growing evidence of the effective-
ness of routine assessments and early
intervention (9,10), comprehensive DR
screening strategies are not widely im-
plemented (11). This is largely because of
the inadequate availability of resources,
including trained eye care personnel and
financing, to copewith the rapidly growing
burden of diabetes. This is particularly
important in major developing countries
such as China and Indonesia (11–13).
Deep learning, a branch of machine

learning under the broad category of
artificial intelligence (AI), represents a
recent advancement of artificial neural
networks that permits improved classi-
fication predictions from raw image data
(14). These deep learning techniques
have been applied in highly image-driven
medical specialties, including dermatol-
ogy and radiology, with promising re-
sults: the techniques have identified
diseases as accurately as or more ac-
curately than board-certified specialists
(15,16). Recent studies suggest that
these deep learning algorithms (DLAs)
can achieve excellent sensitivities and
specificities in detecting DR and refer-
able DR (moderate DR or worse) (17–20),
thereby offering significant potential
benefits to DR screening programs, in-
cluding increased efficiency, accessibil-
ity, and affordability. Despite this, most
of the systems were validated using
retinal photographs from publicly avail-
able databases (EyePACS, MESSIDOR 2,
e-ophtha), comprising mainly high-quality

photographs from individuals of a single
ethnicity. Given this, such systems should
be evaluated under real-world screening
conditions, where the quality of retinal
images varies considerably and retinal
pigmentation differs among ethnicities;
it is important that DLAs for DR be val-
idated through the use of retinal photo-
graphs captured with different imaging
protocols and across multiple ethnicities
in order to demonstrate their pertinence.
We are aware of only one study to date
that has evaluated a DLA in a multiethnic
cohort (21).

Herein we describe the development
and validation of a DLA for the detection
of vision-threatening referable DR
(preproliferative DR or worse, diabetic
macular edema [DME], or both) through
the use of a data set of over 70,000 reti-
nal photographs collected during routine
assessments from a variety of clinical
settings in China. In addition, we validate
the DLA using three population-based
data sets comprising photographs from
individuals of distinct ethnicities.

RESEARCH DESIGN AND METHODS

This study was approved by the institu-
tional review boards of the Zhongshan
Ophthalmic Center, Guangzhou, China
(2017KYPJ049), and the Royal Victorian
Eye and Ear Hospital, East Melbourne,
Australia (16/1268H). The study was
conducted in accordance with the Dec-
laration of Helsinki.

Development of the DLA
The DLA was developed using 71,043
retinal photographs acquired from a
web-based, crowdsourcing platform
(LabelMe, Guangzhou, China; http://www
.labelme.org) that contains more than
200,000 color fundus photographs. A total
of 36 hospital ophthalmology depart-
ments, optometry clinics, and screening
settings in China contributed deidenti-
fied original fundus photographs to this
data set. In all cases retinal photographs
were captured through the use of
common conventional desktop retinal
cameras, including from Topcon Corp.,
Canon, Centervue, and Heidelberg Engi-
neering, and with a variety of imaging
protocols. We recruited 27 ophthalmolo-
gists as candidates to grade images. Each
candidate graded three test sets of 60 im-
ages (20 images of normal fundi, 20 images
of background DR, and 20 images of pre-
proliferative or proliferative DR), and their
results were compared with those of an

experienced ophthalmologist (Z.L.) who
held an English National Health Screening
(NHS) DR grading license. Only those who
achieved an unweighted k $ 0.70 (sub-
stantial) for vision-threatening referable
DR (preproliferative DR or worse, DME, or
both)were included asgraders in this study.
In total, 21 ophthalmologists met this crite-
rion.

Retinal photographs were graded be-
tween March and June 2017. Images
from the total data set (n = 71,043)
were randomly assigned to a single
ophthalmologist for grading when their
LabelMe account was activated. After a
given image was graded, it was returned
to the pooled data set; this process con-
tinued until three consistent grading out-
comes were achieved for an image. At that
time, a conclusive annotation was added
to the image and it was removed from
the original image pool and made avail-
able for download by the research team.
Graders were blind to the previous grad-
ing outcomes in this process, and a given
image could be assigned to a grader only
once. The consensus grading outcome
was assigned as the final, conclusive
grade of each image. A retinopathy se-
verity score was assigned according to
the NHS diabetic eye screening guidelines
(22,23). These guidelines categorize
patients as R0 (no DR), R1 (background
DR), R2 (preproliferative DR), R3 (prolif-
erative DR), M0 (no visible maculopathy),
M1 (maculopathy), or U (unclassifiable).
We defined DME as any hard exudates
within a one-disc diameter of the fovea
or an area of hard exudates in themacular
area that encompassed at least 50% of
the disc area. Vision-threatening refer-
able DR was defined as preproliferative
DR or worse, DME, or both. Images were
graded as “poor quality” if 50% or more
of the image was obscured or if vessels
in the macular region could not be dis-
tinguished as DME. Figure 1 and Supple-
mentary Table 1 describe the image
grading process, how models were
built, and how images were randomized
to the training or validation set.

Several preprocessing steps were per-
formed for normalization to control for
variation in the data set. The resolution of
original images was any of the following:
2,4803 3,280; 5763 768; 1,9003 2,285;
1,958 3 2,588; 1,900 3 2,265; 1,956 3
2,448; and 1,944 3 2,464 pixels. Image
pixel values were scaled within a range of
0–1, and local-space average color was
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applied for color constancy (24). Images
were then downsized to a resolution of
299 3 299 pixels. Online data augmenta-
tion was performed to transform the
images by a zero- to three-pixel random
horizontal shift and 90°, 180°, or 270°
random rotation in order to expand hetero-
geneity but keep the prognostic features in
the image. The study included four deep
learning models, all of which use Inception
v3 architecture (25) (Supplementary Fig. 1).
This included networks for the 1) classifi-
cation for vision-threatening referable DR,
2) classification of DME, 3) evaluation of
image quality for DR, and 4) assessment of
image quality and of the availability of the
macular region for DME. The model used
in this study was version 20171024.

Validation Data Sets
We initially tested our DLA in our local
LabelMe data set by preserving a per-
centage of images from the original data
set of 71,043 images. This included a total
of 19,900 images from the four deep
learning models; each image was labeled
with a consensus standard. An experienced

ophthalmologist (Z.L.) classified false-
positive and false-negative images into
subgroups.

Using identical preprocessing proce-
dures, we also evaluated the perfor-
mance of our DLA on an independent
data set of 35,201 images (14,520 eyes of
7,643 participants) derived from three
population-based studies. Population-
based samples offer an ideal platform
with which to validate this system be-
cause they closely mirror the screening
setting, capturing a population across the
full spectrum of DR severity. These stud-
ies included the Indigenous Australians
from the National Indigenous Eye Health
Survey (NIEHS) (26), Malays from the
Singapore Malay Eye Study (SiMES) (27),
and Caucasians (95%) from phases 2
and 3 of the Australian Diabetes, Obe-
sity and Lifestyle Study (AusDiab) (28)
(Table 1). In each study, two standard,
nonmydriatic, 45°, color retinal photo-
graphs were taken of each eye, one of
the optic disc and the other of the macula,
using a Canon retinal camera. Protocols
for pupillary dilation differed between

studies. In the SiMES, all participants
underwent pupillary dilation as part of
the retinal imaging protocol, whereas in
the NIEHS mydriatic photography was
used only when nonmydriatic photo-
graphy failed; no participants underwent
pupillary dilation in the AusDiab. Trained
professional graders from each study
were used as the reference standard
against which the DLA was evaluated.
In the case of the NIEHS, images classi-
fied as mild andmoderate nonproliferative
DR (NPDR) were grouped, and as such,
a single ophthalmologist (Z.L.) regraded
these images to conform to the NHS
scheme. In all studies a single manual
grading outcome was provided by eye.
Given that in the majority of cases mul-
tiple images were available for each eye,
we adopted the following logic to consol-
idate a single automated grading result for
the right and left eyes:1) positive referable
DR = any image for a given eye was found
upon automated grading to be positive; 2)
negative referable DR = all images for a
given eye were found upon automated
grading to be negative, or both negative

Figure 1—Development workflow for image grading and automated detection.
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and ungradable; and 3) ungradable = all
images for a given eye were ungradable
upon automated grading.

Statistical Analyses
The accuracy of each grader was calcu-
lated as the proportion of grading results
that matched the conclusive grading
outcome divided by the total number
of images graded by that individual. The
sensitivity, specificity, accuracy, and
area under the curve (AUC) of the DLA
in detecting vision-threatening referable
DR were calculated and compared to
the reference standard (local validation
by a retinal specialist, external validation
by professional graders) at the level of
the individual eye. The 95% CIs were also
calculated. Stata version 14.0 (StataCorp,
College Station, TX) was used for all
statistical analyses in this study.

RESULTS

Each image in the local data set was
graded between three and eight times,
with amean agreement of 87.3% (95% CI
85.6–95.4) and a range of 78.6–97.2%
among the 21 ophthalmologists. Each
ophthalmologist graded between 137 and
21,024 (median 3,501) fundus photo-
graphs. Eleven ophthalmologists individ-
ually graded more than 3,500 fundus
photographs. Of the total 71,043 images,
4,253 (6.1%) were labeled as poor qual-
ity, leaving 66,790 images with a con-
clusive DR severity grading. Using a simple
random samplingmethod, a total of 58,790

imageswereassigned to the trainingdata
set and the remaining 8,000 imageswere
held for internal validation. Among the
58,790 images in the training data set,
10,861 (18.5%) had vision-threatening
referable DR and 13,736 (27.5%) had
DME (Supplementary Table 1). Training
and internal validation of the DLA were
completed in October 2017.

Internal Hold-Out Validation
In the internal hold-out validation data
set, with reference to the ophthalmolo-
gist standard, the AUC, sensitivity, and
specificity of the DLA for vision-threatening
referable DR were 0.989, 97.0%, and
91.4%, respectively (Fig. 2). For DME,
the AUC of the DLA was 0.986, the
sensitivity was 95.0%, and the speci-
ficity was 92.9%. The AUC, sensitivity,
and specificity were 0.950, 90.0%, and
86.2%, respectively, for image quality
(to identify referable DR) and 0.989,
96.7%, 90.2%, respectively, for image
quality (to identify DR) and availability
of the macular region (to identify DME).

The most common clinical features
of false-negative cases (n = 44) included
intraretinal microvascular abnormalities
(n = 34 [77.3%]) and peripheral retinal
photocoagulation laser scars without ac-
tive proliferative DR lesions (n = 4 [9.1%])
(Table 2). An analysis of false-positive
cases (n = 563) revealed that most images
displayed signs of retinal pathology (n5
517 [91.8%]), of which the majority (n =
482 [93.2%]) were due to background DR

being misclassified as vision-threatening
DR; the remaining cases were other eye
pathologies, including age-related mac-
ular degeneration (n = 10 [1.9%]) and
myopicmaculopathy (n = 7 [1.4%]). Thus,
only fewof all false-positive cases (n546
[8.2%]) had no abnormal ocular find-
ings, and nearly half of these images
contained artifacts (n 5 21 [45.7%]).
Examples of typical false-negative and
false-positive images can be found in
Supplementary Figs. 2 and 3.

External Validation
The external data set contained retinal
images from 14,520 eyes from three
population-based studies (Supplemen-
tary Fig. 4). Of these, 863 eyes (5.9%)
had missing or ungradable manual
grading outcomes and were subse-
quently excluded from analysis. Among
the total 13,657 eyes (94.1%) included in
the external validation data set, 956
(7.0%) had any DR (mild NPDR or worse)
and 401 (2.9%) had vision-threatening
referable DR.

Also among the 13,657 eyes with
images in the external validation data
set, 263 images (1.9%) were ungradable
for referable DR with the use of the
DLA. The DLA showed robust and com-
parable performance across each of the
three population-based studies, achiev-
ing accuracy of 97.1%, 98.3%, and 99.1%
for the NIEHS, SiMES, and AusDiab, respec-
tively (Supplementary Table 2 details
metrics by study). The combined AUC,

Table 1—Summary of population-based studies used for external validation

Data sets

NIEHS SiMES AusDiab

Year 2008 2004 2004–2012

Country Australia Singapore Australia

Demographics
Age, years (range) 40–90 40–80 25–90
Ethnicity Indigenous Australians Malays Caucasian Australians
Male sex (%) 41.1 51.9 53
Diabetes

prevalence (%) 9.4 35 24.5

Retinal imaging
Protocol Two-field, 45° images taken with

a Canon CR-DGi camera
Mydriasis performed when

nonmydriatic photography failed

Two-field, 45° images taken
with a Canon CR-DGi camera
Mydriasis performed for

all participants

Two-field, 45° images taken with
a Canon CR6-45NM camera

No pupillary dilation

Grader experience Five certified professional senior
graders (.2 years’ experience)
supervised by a retinal specialist

from Australia

One certified professional senior
grader (.7 years’ experience)

Three certified professional senior
graders (.2 years’ experience)
supervised by a retinal specialist

from Australia
Images (n) 7,181 15,679 12,341
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sensitivity, and specificity of the DLA for
referable DRwere 0.955, 92.5%, and 98.5%,
respectively. This data set consisted of
193 false-positive images (23 [11.9%]
of which showed mild or moderate DR),
367 true-positive images, and 30 false-
negative images.
To assess repeatability and reliability

of the DLA, automated grading was re-
peated on a sample of 200 eyes from

each study data set. We observed
100% consistency in this subset eval-
uation. An evaluation of real-time run-
time of the DLA classification procedure
yielded an average of 8.5 s per evaluated
image.

CONCLUSIONS

This article describes the development
and validation of a novel AI-based DLA

for the detection of vision-threatening
referable DR. Using a large data set of
71,043 retinal images labeled with a
reference standard and 35,201 retinal
images from population-based studies,
our DLA achieved robust performance in
identifying vision-threatening referable
DR (AUC = 0.989) and DME (AUC = 0.986)
in an independent, local validation
data set. Furthermore, the DLA showed
excellent diagnostic performance in an
external, multiethnic data set (AUC =
0.955). Thus, it offers great potential
as an efficient, low-cost solution for
DR screening.

Recent reports provide novel data on
the accuracy of deep learning systems
for the detection of DR (17–19). Gargeya
and Leng (18) validated their DLA using
75,137 images, demonstrating high diag-
nostic accuracy for the detection of any
DR (AUC = 0.94–0.95). Abràmoff et al. (17)
validated their DLA using 1,748 images
and also reported promising results (AUC =
0.980) in the detection of any DR. How-
ever, given that early DR (mild NPDR or
better) alone does not constitute a change
in the routine management of patients
with diabetes, identification of referable
DR has been the focus of screening pro-
grams internationally (i.e., moderate
NPDR or worse, DME, or both) (19,29).
Adopting this criterion, Gulshan et al.
(19) tested their DLA using 9,963 retinal
images and achieved excellent perfor-
mance (AUC = 0.99) for referable DR.
Ting et al. (20) validated their DLA using
71,896 images and also reported excel-
lent results for referable DR (AUC 0.936)
and vision-threatening DR (AUC 0.958).

Although these studies provide excel-
lent insights, they had some limita-
tions. First, all previously reported DLAs
were based on a clinical definition, the
International Clinical Diabetic Retinopa-
thy Disease Severity Scale (7), which
adopts a criterion for notably earlier
referral for DR, that is, any level of
retinopathy more severe than mild ret-
inopathy (defined as the presence of
microaneurysms only). No specific or
effective eye care management is cur-
rently available for patients with this
milder stage of DR, and therefore these
patients should not be referred for spe-
cialist eye care; rather, they should be
monitored with routine annual screen-
ings (30). This was highlighted by the
landmark Early Treatment of Diabe-
tic Retinopathy Study (ETDRS), which

Figure 2—Mean AUC of the model for automated detection of vision-threatening referable DR,
derived from internal validation. ROC, receiver operating characteristic.

Table 2—Features of false-negative and false-positive images for referable DR in
the internal validation data set

Features No. Proportion

False-negative images
IRMA 34 77.3
PRP laser scar 4 9.1
Blurred preretinal hemorrhage 3 6.8
Questionable new vessels 3 6.8
Total 44 100

False-positive images
Retinal disorders
Background DR 482 85.6
AMD 10 1.8
Myopic maculopathy 7 1.2
Silicone oil–filled eyes 5 0.9
Retinal vessel occlusion 2 0.4
Retinal detachment 2 0.4
Others 9 1.5
Subtotal 517 91.8

Normal fundus
With artifacts 21 3.8
Without artifacts 25 4.4
Subtotal 46 8.2
Total 563 100

AMD, age-related macular degeneration; IRMA, intraretinal microvascular abnormality; PRP,
peripheral retinal photocoagulation.
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reported that none of the patients with
mild DR progressed to proliferative DR
within 1 year (31). Thus, the adoption of
this clinical criterion would lead to over-
referral, increasing the strain on eye care
resources and adding financial burden
to DR screening programs. By compari-
son, ours is, to our knowledge, the first
study to develop a DLA through the use
of real-world national screening criteria.
The NHS DR classification guideline
has been used for many years in national
DR screening programs, such as DR
screening programs in the U.K. (10). Us-
ing this classification, the U.K. DR screen-
ing program showed that the number
of blindness cases from DR was reduced
from 2003 to 2016, to the extent that
DR is no longer the leading cause
of blindness among working-age adults
in the region (32).
Second, three previously reported deep

learning systems were validated against
public databases comprising mainly
high-quality photographs from Caucasian
eyes. To demonstrate the generaliza-
tion of these automated systems, it is
important to assess their validity in mul-
tiethnic data sets containing images ob-
tained through variable retinal imaging
protocols (e.g., nonmydriatic vs. mydri-
atic) (21).
To address these gaps, in the current

study we developed and validated our
DLA to detect vision-threatening refer-
able DR (preproliferative DR or worse,
DME, or both) based on real-world na-
tional DR screening programs (10,33).
We tested our DLA in four ethnic groups
(Chinese, Malay, Caucasian Australian,
and Indigenous Australian), each with
distinct retinal pigmentation. Contrast
between retinal background and DR
lesions (e.g., hemorrhages) varies con-
siderably across ethnicities and is
therefore a source of potential error.
That is, we hypothesized that a higher
level of pigmentation in darker races
(e.g., Indigenous Australians) may reduce
the contrast between background and
DR lesions, making it more difficult for
automatedmethods to detect them. Our
finding of robust diagnostic performance
across all ethnicities (AUC ranging from
0.94 [Indigenous Australians] to 0.99
[Chinese]) provides evidence that pig-
mentation does not affect the per-
formance of our DLA and that it is
likely generalizable to most populations
worldwide.

Poor-quality images are an inevitable
consequence of disturbances during the
image acquisition process, including poor
pupil dilation, media opacities, image
contrast or focus issues due to operator
problems, or all three. In real-world
screening settings, rates of poor-quality
or ungradable images have been re-
ported to be as high as 20% (34,35).
There is no doubt that sufficient image
quality and field definition are key pre-
requisites for reliable automatic systems
for detecting DR and DME. Our DLA
successfully offers automated classifiers
of image quality (blur detection; AUC =
0.950) and location (macular field vs.
other fields; AUC = 0.989), robustly
identifying low-quality images in real time
and prompting image recapture. Our
finding that 98% of retinal images in
the external validation data set were
gradable using the DLA provides evi-
dence of reliable automated image anal-
ysis under different imaging protocols
(mydriatic and nonmydriatic) and in
older adults who are prone to media
opacities. It is worth noting that visual
acuity should be assessed in conjunction
with retinal analysis in DR screening.
Those with reduced vision should be
given a referral because other pathology
such as cataract, retinal detachment, or
vitreous hemorrhage may be the cause
of ungradable images. In addition, visual
acuity assessment is important to ensure
cases that may be undetectable by stan-
dard photography (e.g., macular ischemia)
are not overlooked.

Indigenous Australians are particu-
larly susceptible to vision loss from DR
through a combination of extremely high
rates of diabetes (36) and a historical
disadvantage in terms of accessing eye
care services (37). Our finding that per-
formance indicators (sensitivity, specific-
ity, and AUC) were substantially better
among the Indigenous Australian data set
than what screening guidelines would
typically recommend (.80% sensitivity
and specificity) offers great promise to
improve the accessibility and efficiency
of DR screening among this population.

To our knowledge, this is the first study
to explore the characteristics of misclas-
sification (false negatives and false
positives) when using a DLA to detect
DR. This investigation will help us better
understand why this happens in DLA
grading and identify strategies to mini-
mize errors in the future. These data are

also useful to assist in the clinical accep-
tanceof thesesystems (21). False-positive
referrals result in wasted resources and
often cause unnecessary psychological
harm to patients (38). Our finding that
;92% of false-positive images dis-
played abnormal retinal features high-
lights that most patients in fact may
have benefited from referral. More
than three-fourths of false-negative cases
proved to be undetected intraretinal
microvascular abnormality, an often sub-
tle lesion characterized by abnormal
branching or dilation of existing retinal
vessels. Future optimization of the DLA
through the inclusion of more image
examples of this lesion in the data set
would likely further increase our sensi-
tivity metric.

Key strengths of this study include the
use of a large training data set (.70,000
images) of images labeled with a refer-
ence standard, development based on
real-world screening guidelines, and the
robust performance of our DLA when
tested on an external validation data set
of 35,201 images from threemultiethnic,
population-based studies. Some limita-
tions must also be considered. First, in
the external validation data set (popu-
lation-based images), the performance
of our DLA was assessed against grading
by professional nonphysician graders and
not by ophthalmologists (i.e., the refer-
ence standard). However, given that pre-
vious research has consistently reported
high interobserver agreement between
nonphysician graders and ophthalmolo-
gists (39,40), and that similar metrics
were observed from internal hold-out
validation, it is unlikely that the use of
nonphysician graders would have signif-
icantly affected the overall diagnostic
accuracy. Second, a relatively small rep-
resentation of referable cases was in-
cluded in the Caucasian sample (n = 37),
which may have resulted in an unstable
estimate of diagnostic accuracy in this
group. Third, the positive predictive
value (PPV) and negative predictive value
for the external validation data set were
65.5% ([367 4 560] 3 100) and 99.7%
([12,9934 13,027]3 100), respectively.
PPV is highly dependent on the preva-
lence of disease, and given that our
external validation data set contained
a relatively low prevalence of referable
DR (2.9%) compared with what is ex-
pected in real-world screening set-
tings (;10%), the resultant PPV likely
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represents an underestimation of the
true PPV. Furthermore, the operating
threshold for this DLA was purposefully
set to be conservative, with an empha-
sis on not missing vision-threatening
referable DR, and thus we focused on
achieving a high sensitivity and very
high negative predictive value. Fourth, the
use of two-field, nonstereoscopic images
(as opposed to standard seven-field ste-
reoscopic images) and the exclusion of
optical coherence tomography from the
study protocol may have resulted in a
reducedsensitivity toDRand, inparticular,
reduced DME detection. Last, although
not detailed in this report, it is important
to note that our DLA has been developed
todetectother common, incidental vision-
threatening conditions such as possible
cataract (AUC = 0.991), suspected glau-
coma (AUC = 0.989), and late age-related
macular degeneration (AUC= 0.995) (data
not shown). These conditions are typically
included within current manual DR
screening programs and therefore should
not be ignored.
In summary, this AI-based DLA shows

robust performance in the detection of
vision-threatening referable DR (severe
DR or worse, DME, or both) in retinal
images from a multiethnic sample. This
technology offers great potential to in-
crease the efficiency and accessibility of
DR screening programs, particularly in
developing countries such as China, In-
donesia, and India, and in minority
and underserved populations (e.g., Indige-
nous Australians). Before clinical use,
further work is required to investigate
where this technology “fits” within the
clinical system. For example, whether
this software can be successfully incor-
porated at the point of care to allow
non–eye-trained professionals to conduct
DR screening or into telemedicine-based
screening programs warrants investiga-
tion. In addition, public health projects
assessing the impact (i.e., adherence to
referral, new DR detection rates), end-
user acceptance (clinician and patient),
and cost-effectiveness of these DLAs
would be beneficial.
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