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Abstract

We present the first results from BlackHat, an automated C++ program for calculating one-loop

amplitudes. The program implements the unitarity method and on-shell recursion to construct

amplitudes. As input to the calculation, it uses compact analytic formulæ for tree amplitudes

for four-dimensional helicity states. The program performs all related computations numerically.

We make use of recently developed on-shell methods for evaluating coefficients of loop integrals,

introducing a discrete Fourier projection as a means of improving efficiency and numerical stability.

We illustrate the numerical stability of our approach by computing and analyzing six-, seven- and

eight-gluon amplitudes in QCD and comparing against previously-obtained analytic results.
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I. INTRODUCTION

The Large Hadron Collider (LHC) will soon begin exploration of the electroweak sym-

metry breaking scale. It is widely anticipated that physics beyond the Standard Model will

emerge at this scale, leading to a breakthrough in our understanding of TeV-scale physics.

A key ingredient in this quest is the precise understanding of the expected Standard Model

backgrounds to new physics from both electroweak and QCD processes. In the absence of

such an understanding, new physics signals may remain hidden, or backgrounds may be

falsely identified as exciting new physics signals.

Quantitatively reliable QCD predictions require next-to-leading order (NLO) calcula-

tions [1]. For a few benchmark processes, such as the rapidity distribution of electroweak

vector bosons [2], the transverse-momentum distribution of the Z boson at moderate pT,

and the total cross sections for production of top quark pairs and of Higgs bosons [3], the

higher precision of next-to-next-to-leading order (NNLO) results may be required [1]. For

most other processes, NLO precision should suffice. However, there are many relevant pro-

cesses that need to be computed, particularly those with high final-state multiplicity. Such

processes are backgrounds to the production of new particles that have multi-body decays.

To date, no complete NLO QCD calculation involving four or more final-state objects (par-

ticles or jets) is available. (In electroweak theory, however, e+e− → 4 fermions has been

evaluated [4] using the integral reduction scheme of Denner and Dittmaier [5].) NLO correc-

tions require as ingredients both real-radiative corrections and virtual corrections to basic

amplitudes. The structure of the real-radiative corrections — isolation of infrared singu-

larities and their systematic cancellation against virtual-correction singularities — is well

understood, and there are general methods for organizing them [6–8]. Indeed, the most

popular of these methods, the Catani-Seymour dipole subtraction method [8], has now been

implemented in an automatic fashion [9]. The infrared divergences of virtual corrections,

needed to cancel the divergences from integrating real radiation over phase space, are also

understood in general [6, 10]. The main bottleneck to NLO computations of processes with

four or more final-state objects has been the evaluation of the remaining ingredients, the

infrared-finite parts of the one-loop virtual corrections.

As the number of external particles increases, the computational difficulty of loop-

amplitude calculations using traditional Feynman diagrams grows rapidly. Technologies
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that have proven useful at tree level, such as the spinor-helicity formalism [11], do not suf-

fice to tame these difficulties. In the past few years, several classes of new methods have

been proposed to cope with this rapid growth [5, 12–16], including on-shell methods [17–39]

which are based on the analytic properties of unitarity and factorization that any ampli-

tude must satisfy [40, 41]. These methods are efficient, and display very mild growth in

required computer time with increasing number of external particles, compared to a tradi-

tional Feynman-diagrammatic approach. The improved efficiency emerges from effectively

reducing loop calculations to tree-like calculations. Efficient algorithms can then be em-

ployed for the tree-amplitude ingredients.

One of the principal on-shell technologies is the unitarity method, originally developed in

calculations of supersymmetric amplitudes with more than four1 external particles [17, 42].

An early version combining unitarity with factorization properties was used to compute

the one-loop amplitudes for e+e− → Z → 4 partons and (by crossing) for amplitudes

entering pp → W, Z + 2 jets [18]. (The latter have been incorporated into the NLO program

MCFM [43].) This calculation introduced the concept of generalized unitarity [41] as an efficient

means for performing loop computations. It improves upon basic unitarity because it isolates

small sets of terms, and hence makes use of simpler on-shell amplitudes as basic building

blocks. On-shell methods have already led to a host of new results at one loop, including

the computation of non-trivial amplitudes in QCD with an arbitrary number of external

legs [25–28, 44]. This computation goes well beyond the scope of traditional diagrammatic

computations, and provides a clear demonstration of the power of the methods. The reader

may find recent reviews and further references in refs. [1, 33].

The next challenge is to move beyond analytic calculations of specific processes or

classes of processes to produce a complete, numerically stable, efficient computer code

based on these new developments. Here we report on an automated computer program

— BlackHat — based on on-shell methods, with the stability and efficiency required to

compute experimentally-relevant cross sections. Other researchers are constructing numeri-

cal programs [35–39] based on related methods [31, 37, 39].

On-shell methods rely on the unitarity of the theory [40] and on its factorization proper-

1 The earlier dispersion relation approach [40] had not been used to construct amplitudes with more than

two kinematic invariants.
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ties, which together require that the poles and branch cuts of amplitudes correspond to the

physical propagation of particles. In general, any one-loop amplitude computed in a quantum

field theory contains terms with branch cuts, and also purely rational terms, that is, terms

that have no branch cuts and are rational functions of the external momentum invariants

(or more precisely of spinor products). The cut-containing pieces can be determined from

unitarity cuts, in which the intermediate states may be treated four-dimensionally [17, 42].

Only products of tree-level, four-dimensional helicity amplitudes are needed for this step.

The rational terms have their origin in the difference between D = 4−2ǫ and four dimensions

when using dimensional regularization. They can be obtained2 within the unitarity method

by keeping the full D-dimensional dependence of the tree amplitudes [19, 20, 30–32, 37, 38].

Alternatively, to obtain the rational terms, one can use on-shell recursion [23, 24] to con-

struct the rational remainder from the loop amplitudes’ factorization poles [26, 28, 44]. We

will follow the latter route in this paper.

A generic one-loop amplitude can be expressed in terms of a set of scalar master in-

tegrals multiplied by various rational coefficients, along with the additional purely rational

terms [46–50]. The relevant master integrals depend on the masses of the physical states that

appear, but otherwise require no process-specific computation. At one loop, they consist of

box, triangle, bubble and (for massive particles) tadpole integrals. The required integrals

are known analytically [51, 52].

Our task is therefore to determine the coefficients in front of these integrals for each

process and helicity configuration. We do so using generalized cuts [18, 20, 21, 53]. Britto,

Cachazo and Feng (BCF) observed [21] that with complex momenta one can use quadruple

cuts to solve for all box coefficients, because massless three-point amplitudes isolated by cuts

do not vanish as they would for real massless momenta. Moreover, the solution is purely

algebraic, because the loop momentum of the four-dimensional integral is completely frozen

by the four cut conditions, and a given quadruple cut isolates a unique box coefficient. This

provides an extremely simple method for computing box-integral coefficients. Continuing

along these lines, Britto, Buchbinder, Cachazo, Feng, and Mastrolia have developed efficient

analytic techniques [29] for evaluating generic one-loop unitarity cuts to compute triangle

2 This fact is closely connected to van Neerven’s important observation that dispersion relations for Feynman

integrals converge in dimensional regularization [45].
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and bubble coefficients. They use spinor variables and compute integral coefficients via

residue extraction.

For the purposes of constructing a numerical code, we use a somewhat different ap-

proach. For triangle integrals, we can impose at most three cut conditions. This leaves a

one-parameter family of solutions. These conditions no longer isolate the triangle integral

uniquely, as a number of box integrals will share the same triple cut. Similar considerations

apply to the ordinary two-particle cuts needed to obtain bubble coefficients. As discussed

by Ossola, Papadopoulos and Pittau (OPP) [31], one can construct a general parametric

form for the integrand. This form can be understood as a decomposition of the loop mo-

mentum in terms of components in the hyperplane of external momenta and components

perpendicular to this hyperplane [35]. Coefficients of the various master integrals can be

extracted by comparing the expressions obtained from Feynman graphs with the general

parametric form, using values of the loop momentum in which different combinations of

propagators go on shell. For the quadruple cut, this leads to a computation identical to the

method of ref. [21] once one further replaces sums of Feynman diagrams by tree amplitudes.

OPP solve the problems of box contributions to triangle coefficients, and of box and triangle

contributions to bubble coefficients, iteratively by subtracting off previously-determined con-

tributions and solving a particular system of equations numerically. In the OPP approach,

the rational terms can be determined by keeping the full D-dimensional dependence in all

terms [31, 37, 38].

Forde’s alternative approach makes use of a complex-valued parametrization of the loop

momenta [34] (similar to the one used in refs. [13, 31]) and exploits the different func-

tional dependence on the complex parameters to separate integral contributions to a given

triple or ordinary cut. We develop this method one step further, and introduce a discrete

Fourier projection in these complex parameters, in conjunction with an OPP subtraction of

previously-determined contributions [31]. The projection isolates the desired integral coef-

ficients efficiently, while maintaining good numerical stability in all regions of phase space.

It minimizes the instabilities that may arise [35, 38, 39] from solving a system of linear

equations in regions where the system degenerates.

We compute the rational remainder terms using loop-level on-shell recursion rela-

tions [26, 28, 44], analogous to the recursion relations at tree level [23, 24] developed by

Britto, Cachazo, Feng and Witten (BCFW). At tree level, gauge-theory amplitudes can be
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constructed recursively from lower-point amplitudes, by applying a complex deformation to

the momenta of a pair of external legs, keeping both legs on shell and preserving momentum

conservation. The proof relies only on the factorization properties of the theory and on

Cauchy’s theorem, so the method can be applied to a wide variety of theories. At loop level,

the construction of an analogous recursion relation for the rational terms requires addressing

a number of subtleties, including the presence of spurious singularities. These issues can and

have been addressed for specific infinite series of one-loop helicity amplitudes, allowing their

recursive construction [26–28, 44]. In order to more easily automate the method of ref. [26],

we modify how the spurious singularities are treated, making use of the availability of the

integral coefficients within the numerical program, in a manner to be described below.

In any numerical method, the finite precision of a computation means that instabilities can

arise, occasionally leading to substantial errors in evaluating an amplitude at a given point

in phase space. We introduce simple tests for the stability of the evaluation. Principally, we

check that the sum of bubble integral coefficients agrees with its known value, and we check

for the absence of spurious singularities in this sum. A comparison with known analytic

answers for a variety of gluon amplitudes shows that these two tests suffice to detect almost

all instabilities. If a test fails, we consider the point to be unstable. Various means of dealing

with unstable points have been discussed [1, 5, 48, 54–56]. We simply re-evaluate the fairly

small fraction of unstable points at higher precision using the QD package [57]. Doing so, we

still have an average evaluation time of less than 120 ms for the most complicated of the

six-gluon helicity amplitudes, and subtantially better times for the simpler ones. Higher-

precision evaluation has also been used recently in ref. [36] to handle numerically unstable

points.

Although BlackHat is written in C++, for algorithm development and prototyping, we

found it extremely useful to use symbolic languages such as Maple [58] and Mathematica [59],

and in particular the Mathematica implementation of the spinor-helicity formalism provided

by the package S@M [60]. At present BlackHat computes multi-gluon loop amplitudes. Once

we implement a wider class of processes in the same framework, we intend to release the

code publicly.

The present paper is organized as follows. In section II, we discuss how we compute the

coefficients of the various integral functions, and introduce the discrete Fourier projection.

In section III, we outline the calculation of the purely-rational terms, describing in particular
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(a) (b) (c) (d)

FIG. 1: The basis of scalar integrals: (a) box, (b) triangle, (c) bubble, and (d) tadpole. Each corner

can have one or more external momenta emerging from it. The tadpole integral (d) vanishes when

all internal propagators are massless.

our treatment of the spurious singularities. We also introduce our criteria for ensuring the

numerical stability of the computed amplitude. We show results for a number of gluon

amplitudes with up to eight external legs in section IV, and summarize in section V. We

defer a number of technical details to a future paper [61].

II. INTEGRAL COEFFICIENTS FROM FOUR-DIMENSIONAL TREE AMPLI-

TUDES

We begin by dividing the dimensionally-regularized amplitude into cut-containing and

rational parts. We evaluate the cut parts using the four-dimensional unitarity method [17,

33]. To extract the box-integral coefficients we use the observation of BCF that the quadruple

cuts freeze the loop integration [21]. For triangle and bubble integrals we use key elements

of both the OPP [31] and Forde [34] approaches. In addition, we introduce a discrete

Fourier projection for extracting the integral coefficients. (Alternative on-shell methods for

obtaining the integral coefficients have been given in refs. [29, 32].)

As the first step, we separate an n-point amplitude An into a cut part Cn and a rational

remainder Rn,

An = Cn + Rn . (2.1)

The cut part is given by a linear combination of scalar basis integrals [46–51],

Cn =
∑

i

diI
i
4 +

∑

i

ciI
i
3 +

∑

i

biI
i
2 +

∑

i

aiI
i
1 . (2.2)

The integrals I i
4, I

i
3, I

i
2, I

i
1 are scalar box, triangle, bubble and tadpole integrals, illustrated

in fig. 1. For massless particles circulating in the loop, the tadpole integrals vanish in
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3

FIG. 2: The quadruple cut used to determine the coefficients of the box integrals. The loop

momenta, flowing clockwise, are constrained to satisfy on-shell conditions. The blobs at each

corner represent tree amplitudes. The dashed lines indicate the cuts. The external momenta are

all outgoing.

dimensional regularization. The integral coefficients di, ci, bi, ai are rational functions of

spinor products and momentum invariants of the kinematic variables, and are independent

of the dimensional regularization parameter ǫ. The index i runs over all distinct integrals of

each type. The rational terms Rn are defined by setting all scalar integrals to zero,3

Rn = An

∣

∣

∣

Ii
m→0

. (2.3)

Alternatively, the rational terms can be absorbed into the integral coefficients by keeping

their full dependence4 on ǫ.

In this paper, we obtain the integral coefficients at ǫ = 0 by using the unitarity

method with four-dimensional loop momenta. This method allows us to use powerful four-

dimensional spinor techniques [11, 63] to greatly simplify the tree amplitudes that serve as

basic building blocks. We will instead obtain the rational terms Rn from on-shell recur-

sion [23, 24, 26, 27], as explained in the subsequent section.

3 All contributions from the scalar integrals in eq. (2.2) are part of Cn, including all 1/ǫ2 and 1/ǫ pole

terms, π2 factors, and pieces arising from the order ǫ0 term in the scalar bubble integral.
4 The ǫ dependence leads only to rational contributions, because it arises from integrals with (−2ǫ) com-

ponents of loop momenta in the numerator. Each such integral can be rewritten as the product of ǫ with

a higher-dimensional integral, which possesses at most a single, ultraviolet pole in ǫ, whose residue must

be rational [19, 62].
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A. Box Coefficients

Consider first the coefficients of the box integrals. We obtain them from the quadruple cut

shown in fig. 2. The cut propagators correspond to the four propagators of the desired box

coefficient. As observed in ref. [21], if we take the loop momentum to be four-dimensional,

then the four cut conditions,

l2i = m2
i , i = 1, 2, 3, 4, (2.4)

match the number of components of the loop momentum, leading to a discrete sum over two

solutions for li. The integration is effectively frozen. The mi are the masses of the particles

in the cut propagators, which in this paper are taken to vanish. The coefficient of any box

integral is then given in terms of a product of four tree amplitudes,

di =
1

2

∑

σ=±

dσ
i , (2.5)

dσ
i = Atree

(1) Atree
(2) Atree

(3) Atree
(4)

∣

∣

∣

li=l
(σ)
i

, (2.6)

where the sum runs over the two solutions to the on-shell conditions, labeled by “+” and

“−”. The four tree amplitudes in eq. (2.6) correspond to the tree amplitudes at the four

corners of the quadruple cut depicted in fig. 2.

The generic solution for l
(σ)
i was found in ref. [21]. Simpler forms can be found for

particular, but still fairly general, kinematical cases. In this paper, we focus on the case of

massless particles circulating in the loop. When in addition at least one external leg, say

leg 1, of the box integral shown in fig. 2 is also massless, that is K2
1 = 0, the two solutions

to the on-shell conditions (2.4) can be written in a remarkably simple form,

(l
(±)
1 )µ =

〈1∓| /K2 /K3 /K4γ
µ |1±〉

2 〈1∓| /K2 /K4 |1±〉
, (l

(±)
2 )µ = −〈1∓| γµ /K2 /K3 /K4 |1±〉

2 〈1∓| /K2 /K4 |1±〉
,

(l
(±)
3 )µ =

〈1∓| /K2γ
µ /K3 /K4 |1±〉

2 〈1∓| /K2 /K4 |1±〉
, (l

(±)
4 )µ = −〈1∓| /K2 /K3γ

µ /K4 |1±〉
2 〈1∓| /K2 /K4 |1±〉

. (2.7)

As illustrated in fig. 2, the Ki are the external momenta of the corners of the box integral

under consideration and 〈1∓| and |1±〉 are Weyl spinors corresponding to the massless mo-

mentum K1, in the notation of refs. [63]. In massless QCD this solution covers all helicity

configurations for amplitudes with up to seven external quarks or gluons, and a large frac-

tion of the box coefficients for more external partons. (This solution may also be found in

Risager’s Ph.D. thesis [64].)
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FIG. 3: (a) The triple cut and (b) the ordinary double cut used to determine the coefficients of the

triangle and bubble integrals. The loop momenta li, flowing clockwise, are constrained to satisfy

on-shell conditions. The external momenta are all outgoing.

The solution (2.7) has the advantage of making it manifest that Gram determinants enter

only as square roots, one for each power of loop momenta in the numerator of box integrals.

Indeed, the Gram determinant is given by the product of the spinor-product strings in the

denominators of eq. (2.7),

∆4 = −2 〈1−| /K2 /K4 |1+〉 〈1+| /K2 /K4 |1−〉 , (2.8)

where ∆4 = det(2Ki · Kj), i, j = 1, 2, 3, is the box Gram determinant for K2
1 = 0. This

property reduces the severity of numerical round-off error due to cancellations between

different terms, in the regions of phase space where the Gram determinant vanishes.

B. Triangle Coefficients from Discrete Fourier Projection

To evaluate the coefficients of the triangle and bubble integrals, we make use of elements

from the approaches of both OPP [31] and Forde [34]. First consider the triangle integrals.

To obtain the coefficients ci in eq. (2.2) we use the triple cut depicted in fig. 3(a). In

contrast to the quadruple cut, the triple cut does not freeze the integral, but leaves one

degree of freedom which we denote by t. Moreover, the triple cut also contains box integral

contributions. This makes the extraction of the triangle coefficients somewhat more intricate

than the box coefficients.

For massless internal particles, the solution of the cut condition l2i = 0 (i = 1, 2, 3)
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is [13, 31, 34]

lµ1 (t) = K̃µ
1 + K̃µ

3 +
t

2
〈K̃−

1 |γµ|K̃−
3 〉 +

1

2t
〈K̃−

3 |γµ|K̃−
1 〉 , (2.9)

and, using momentum conservation, l2(t) = l1(t)−K1, l3(t) = l1(t)+K3. Here t is a complex

parameter corresponding to the one component of the loop momentum not fixed by the cut

condition. Following ref. [34] we have,

K̃µ
1 = γα

γKµ
1 + S1K

µ
3

γ2 − S1S3
, K̃µ

3 = −γα′γKµ
3 + S3K

µ
1

γ2 − S1S3
, (2.10)

with S1 = K2
1 , S3 = K2

3 , and K̃µ
1 and K̃µ

3 are both massless. (In comparison with ref. [34], we

have rescaled and relabeled these massless momenta, and here we take all external momenta

to be outgoing.) The variables α, α′ and γ are defined as follows,

α =
S3(S1 − γ)

S1S3 − γ2
, α′ =

S1(S3 − γ)

S1S3 − γ2
, γ = γ± = −K1 · K3 ±

√
∆ , (2.11)

where

∆ = − det(Ki · Kj) = (K1 · K3)
2 − K2

1K
2
3 , (2.12)

with i, j running over 1, 3 (or any other pair). To determine the coefficients of integrals

we must sum over the two solutions corresponding to γ+ and γ−. It turns out that for the

three-external-mass case, these solutions are related by taking t → 1/t. In addition, when

a corner of the triangle is massless, simpler forms of the solutions can be obtained. These

issues will be discussed elsewhere [61]. A similar solution to eq. (2.9) has been given in the

massive case [65].

OPP [31] showed that after subtracting the known box contributions from the triple cut

integrand, one is left with seven independent coefficients. One of these seven corresponds to

the coefficient of the scalar triangle we seek, while the remaining six correspond to terms that

integrate to zero. Evaluating the subtracted triple-cut integrand at seven selected kinematic

points leads to a system of linear equations for these coefficients. As discussed in ref. [35],

however, numerical stability issues can arise from inverting this linear system of equations.

The OPP approach of solving a system of equations is currently being implemented in

numerical programs, with initial results reported in refs. [1, 35–39]. In the alternative

approach of Forde [34], the coefficient is instead extracted from the analytic behavior of the

triple cut in the limit that the complex variable t becomes large.

11



We choose to use a hybrid of these approaches, subtracting box contributions from the

triple cuts following OPP, but in a way that makes manifest the analytic properties in the

complex variable t following Forde. The triple cut is,

C3(t) ≡ Atree
(1) Atree

(2) Atree
(3)

∣

∣

∣

li=li(t)
. (2.13)

Each of the box contributions to the triple cut (2.13) contains a fourth Feynman propagator,

1/l2i (t) for some i 6= 1, 2, 3. Hence C3(t) develops a pole in t whenever the inverse propagator

vanishes, say

l2i (t) ∼ ξσ
i (t − tσi ) , as t → tσi . (2.14)

The pole locations tσi and coefficients ξσ
i are determined from the form of l2i (t), after inserting

the triple-cut loop momentum parametrization (2.9).

The residues at the poles also involve the coefficients dσ
i of the ith box integral, evaluated

on the two solutions σ to the quadruple cuts. The dσ
i can be computed prior to the triangle

calculation, and their contribution subtracted to form the difference,

T3(t) ≡ C3(t) −
∑

σ=±

∑

i

dσ
i

ξσ
i (t − tσi )

. (2.15)

Equation (2.15) is slightly schematic, omitting a few subtleties that depend in part on how

many of the triangle legs are massive. For example, in the three-mass case we should either

sum over γ+ and γ−, or else make use of the t → 1/t relation between the two triple-cut

solutions to eliminate one of them [61]. The main point is that proper subtraction of the

box contributions removes all poles at finite values of t, so that T3(t) has poles only at t = 0

and t = ∞, as sketched in fig. 4. Thus we can write,

T3(t) =
p
∑

j=−p

cjt
j . (2.16)

From eq. (2.9) we see that the maximum power of t in eq. (2.16), denoted by p, is equal

to the maximum tensor rank encountered at the level of triangle integrals. In a generic

renormalizable theory such as QCD, this value is p = 3.

As explained in ref. [34], the desired coefficient of the triangle integral is given by c0,

which can be extracted by taking the limit t → ∞ and keeping only the t0 contribution.

This “Inf” operation can be applied to either C3(t) or the box-subtracted triple cut integrand

T3(t), because the box contributions vanish as t → ∞. In the language of OPP, the terms

with j 6= 0 in eq. (2.16) correspond to terms that integrate to zero.
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FIG. 4: After subtracting the box contributions to the triple cut, the t plane is free of all singularities

except at t = 0 and t = ∞. We can extract the desired triangle coefficient by using a discrete

Fourier projection, evaluating T3(t) at points indicated by the squares on the circle.

We can also express the triangle coefficient using a contour integral around t = 0,

c0 =
1

2πi

∮

dt

t
T3(t) , (2.17)

as depicted in fig. 4. However, because of the special analytic form (2.16) of T3(t), it is much

more efficient numerically to evaluate this contour integral by means of a discrete Fourier

projection,

c0 =
1

2p + 1

p
∑

j=−p

T3

(

t0e
2πij/(2p+1)

)

, (2.18)

where t0 is an arbitrary complex number. This projection removes the remaining coefficients

ck, k 6= 0. As it turns out, we do need the other coefficients in order to subtract out triangle

contributions when evaluating bubble coefficients [61]. We can obtain them from the same

2p+1 evaluations of T3(t), by multiplying or dividing by factors of t before carrying out the

Fourier sum,

ck =
1

2p + 1

p
∑

j=−p

[

t0e
2πij/(2p+1)

]−k
T3

(

t0e
2πij/(2p+1)

)

. (2.19)

As we shall discuss in section IV, the discrete Fourier projection provides excellent numerical

stability.

C. Bubble Coefficients

Next consider the bubble coefficients. To parametrize the remaining degrees of free-

dom left by the two-particle cuts shown in fig. 3(b), we make use of a lightlike vector K̃µ
1
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constructed from the external momentum Kµ
1 and an arbitrary lightlike vector χµ. The asso-

ciated spinors are |K̃±
1 〉 and |χ±〉. The normalization of χµ = 〈χ−| γµ |χ−〉 /2 is determined

by the constraint that K1 · χ = K2
1/2, which ensures that

K̃µ
1 = Kµ

1 − χµ (2.20)

is lightlike. Note that this definition of K̃1 differs from the one (2.10) in the triangle discus-

sion, and is used exclusively for the two-particle cuts associated with the bubble coefficient.

The cut conditions l2i = 0 (i = 1, 2) are solved by the momenta,

lµi (y, t) =
1

2
Kµ

i + (y − 1

2
)
(

K̃µ
1 − χµ

)

+
t

2
〈K̃−

1 | γµ |χ−〉 +
y(1 − y)

2 t
〈χ−|γµ|K̃−

1 〉 , (2.21)

with two free parameters y and t [31, 34].

In the two-particle cuts it is sometimes useful to restrict the cut loop momenta to be real.

In this case, for S1 = K2
1 > 0, the cut corresponds to a physical rescattering process. It is

convenient to view the rescattering in the center-of-mass frame, in which K1 = (
√

S1, 0, 0, 0),

the energies of the intermediate momenta li(y, t) are fixed to be
√

S1/2, and the phase space

can be parametrized alternatively by the polar and azimuthal angles θ and φ for one of the

two momenta, say l1. The relation between the two parametrizations is given by,

y = sin2 θ

2
, t =

1

2
sin θ eiφ . (2.22)

Then y is real and restricted to y ∈ [0, 1], while t =
√

y(1 − y) eiφ with φ ∈ [0, 2π).

After subtracting box and triangle contributions from the two-particle cut under consid-

eration [31, 35],

C2(y, t) ≡ Atree
(1) Atree

(2)

∣

∣

∣

li=li(y,t)
, (2.23)

we are left with a tensorial expression B2(y, t) in terms of the loop momentum li, with

maximal rank (p − 1). (In general, if the maximal rank of the triangle integrals is p, the

maximal rank of bubble integrals is p−1.) In terms of the parametrization (2.21), B2(y, t) is

a (p−1)th order polynomial expression in terms of the monomials (1/2−y), t and y(1−y)/t.

The bubble coefficient is then given by the integral [61],

b0 =
1

2πi

∫ 1

0
dy
∮

|t|=
√

y(1−y)

dt

t
B2(y, t) . (2.24)

The factor of 1/t is a Jacobian for the change of variables (2.22) from (θ, φ) to (y, t).
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As in the case of the triangle coefficients, the special analytic form of the subtracted

two-particle cut B2(y, t) allows the integral (2.24) to be evaluated efficiently using a discrete

Fourier projection. Two observations are important here: the t integration projects B2(y, t)

onto the terms independent of t, which are of maximal power (p − 1) in y; also, the y

integration amounts to replacing positive powers of yn by rational numbers 1/(n + 1) [34].

Following similar logic as in the triangle case, we can extract the bubble coefficient with a

double discrete Fourier projection on the subtracted two-particle cut,

b0 =
1

(2p − 1)p

2(p−1)
∑

j=0

p−1
∑

k=0

p−1
∑

n=0

(y0 e2πik/p)−n

n + 1
B2

(

y0 e2πik/p, t0 e2πij/(2p−1)
)

, (2.25)

where y0 and t0 are arbitrary complex constants. For the case p = 3, we use the fact that

for f(y) = f0 + f1y + f2y
2, the desired combination f0 + f1/2 + f2/3 can be written as

[f(0) + 3f(2/3)]/4. In this way it is possible to reduce the number of values of y required,

from three in eq. (2.25) to two:

b0 =
1

20

4
∑

j=0

[

B2

(

0, t0 e2πij/5
)

+ 3B2

(

2/3, t0 e2πij/5
)

]

. (2.26)

One can also reduce the number of values of t sampled, from five down to three or four,

using lower-order roots of unity (independently of how y is treated). In a similar fash-

ion to eq. (2.19), higher-rank tensor bubble coefficients may be extracted by weighting the

sum (2.25) differently. (Such coefficients would feed into the calculation of tadpole coeffi-

cients. They are not needed for the case of massless internal lines treated in this paper.)

Due to the physical interpretation of the two-particle cut as a rescattering, with real

intermediate momenta living on a sphere, an alternative projection formula from eqs. (2.25)

and (2.26) may be found in terms of spherical harmonics Yl,m(θ, φ). To do so we change

from the variables y and t to the spherical coordinates θ and φ via eq. (2.22). In these

variables, the loop momentum (2.21) is linear in the spherical harmonics Yl,m with l = 1 and

m = 0,±1, because

1

2
− y =

1

2
cos θ =

√

π

3
Y1,0(θ, φ) ,

t =
1

2
sin θ eiφ = −

√

2π

3
Y1,1(θ, φ) ,

y(1 − y)

t
=

1

2
sin θ e−iφ =

√

2π

3
Y1,−1(θ, φ) . (2.27)
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FIG. 5: Using Cauchy’s theorem, rational terms in loop amplitudes can be reconstructed from

residues at poles in the complex plane. The poles are of two types: physical and spurious. All

pole locations are known a priori. Residues at physical poles are obtained from on-shell recursion.

Residues at spurious poles are obtained from the cut parts.

The two-particle cut with box and triangle contributions subtracted is then a superposition

of spherical harmonics,

B2(θ, φ) =
∑

|m|≤l≤p−1

bl,m Yl,m(θ, φ) . (2.28)

The scalar bubble coefficient is just b0,0, up to a normalization constant. Using eq. (2.21), the

higher spherical-harmonic coefficients bl,m can be related to the coefficients of the higher-rank

tensor integrals.

III. RATIONAL CONTRIBUTIONS

We now turn to the question of computing the rational terms Rn in the amplitude (2.1).

Here we use the on-shell recursive approach for one-loop amplitudes [26, 27], modifying it

to make it more amenable to numerical evaluation in an automated program. As is true for

the cut parts, an important feature of on-shell recursion is that it displays a modest growth

in computational resource requirements — compared to the rapid growth with a traditional

Feynman-diagram approach — as the number of external particles increases.

At one loop, as at tree level, on-shell recursion provides a systematic means of determining

rational functions, using knowledge of their poles and residues. At loop level, however, a

number of new issues must be addressed, including the appearance of branch cuts, spurious

singularities, and the behavior of loop amplitudes under large complex deformations. In
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some cases, “unreal poles” develop [25], which are poles present with complex but not real

momenta. The appearance of branch cuts does not present any difficulties because we use

on-shell recursion only for the cut-free rational remainders Rn. As noted in ref. [27], we

can sidestep the problems of unreal poles by choosing appropriate shifts within the class

given below in eq. (3.1). Finally, we may determine the behavior of amplitudes under large

complex deformations by using auxiliary recursion relations.

A. General Principles

On-shell recursion relations may be derived by considering deformations of amplitudes

characterized by a single complex parameter z, such that all external momenta are left on

shell [24]. In the massless case, it is particularly convenient to shift the momenta of two

external legs, say j and l,

kµ
j → kµ

j (z) = kµ
j − z

2
〈j−|γµ|l−〉 ,

kµ
l → kµ

l (z) = kµ
l +

z

2
〈j−|γµ|l−〉 . (3.1)

We denote the shift in eq. (3.1) as a [j, l〉 shift. This shift has the required property that

the momentum conservation is left undisturbed, while shifted momenta are left on-shell,

k2
j (z) = k2

l (z) = 0.

On-shell recursion relations follow from evaluating the contour integral,

1

2πi

∮

C
dz

Rn(z)

z
, (3.2)

where the contour is taken around the circle at infinity, as depicted in fig. 5, and Rn(z) is Rn

evaluated at the shifted momenta (3.1). If the rational terms under consideration vanish as

z → ∞, the contour integral vanishes and Cauchy’s theorem gives us a relationship between

the desired rational contributions at z = 0, and a sum over residues of the poles of Rn(z),

located at zα,

Rn(0) = −
∑

poles α

Res
z=zα

Rn(z)

z
. (3.3)

On the other hand, if the amplitude does not vanish as z → ∞, there are additional contri-

butions, which we can obtain from an auxiliary recursion relation [27].

Poles in the z-shifted one-loop rational terms, labeled by α in eq. (3.3), may be separated

into two classes as shown in fig. 5: physical and spurious. The physical poles are present in
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FIG. 6: Diagrammatic contributions to on-shell recursion at one-loop for a [j, l〉 shift. The labels

“T” and “L” refer respectively to (lower-point) tree amplitudes Atree and rational parts of one-

loop amplitudes R. The central blob in (c) is the rational part of a one-loop factorization function

F [66].

the full amplitude An, and correspond to genuine, physical factorization poles (collinear or

multiparticle). The spurious poles are not poles of An; they cancel between the cut parts

Cn and rational parts Rn. They arise from the presence of tensor integrals in the underlying

field-theory representation of the amplitude. Our method avoids the need to perform the

reduction of such tensor integrals explicitly, because of the use of a basis of master integrals.

The reduction happens implicitly, and leaves its trace in the presence of Gram determinant

denominators. These denominators give rise to spurious singularities in individual terms.

Separating the different contributions, we may write,

Rn(z) = RD
n (z) + RS

n(z) + Rlarge z
n (z) , (3.4)

where RD
n contains all contributions from physical poles, RS

n the contributions from spurious

poles, and Rlarge z
n the possible contributions from large deformation parameter z, if Rn(z)

does not vanish there. More explicitly, from elementary complex variable theory, under the

shift (3.1) the rational terms can be expressed as a sum over pole terms and possibly a

polynomial in z,

RD
n (z) =

∑

α

Aα

z − zα
, RS

n(z) =
∑

β

(

Bβ

(z − zβ)2
+

Cβ

z − zβ

)

,

Rlarge z
n (z) =

σmax
∑

σ=0

Dσzσ , (3.5)

where the coefficients Aα, Bβ, Cβ, Dσ are functions of the external momenta. The poles in z

in eq. (3.5) are shown in fig. 5. The physical poles labeled by α are generically single poles.

(Some shift choices may lead to double poles [25]; we can generally avoid such shifts [27].)

In general, in a renormalizable gauge theory, the spurious poles, labeled by β, may be either
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single or double poles [61]. If Rn(z) vanishes for large z, the Dσ are all zero. If not, then

D0 gives a contribution to the physical rational terms, Rn(0).

The contributions of the physical poles may be obtained efficiently using the on-shell

recursive terms represented by the diagrams in fig. 6. The tree “vertices” labeled by “T”

denote tree-level on-shell amplitudes Atree
m , while the loop vertices “L”are the rational parts

of on-shell (lower-point) one-loop amplitudes Rm, m < n, as defined in eq. (2.3). The

contribution in fig. 6(c) involves the rational part of the additional factorization function

F [66]. It only appears in multi-particle channels, and only if the tree amplitude contains

a pole in that channel. Each diagram is associated with a physical pole in the z plane,

illustrated in fig. 5, whose location is given by,

zα = zrs ≡
K2

r···s

〈j−| /Kr···s |l−〉
, (3.6)

where Kr...s = kr +kr+1+ · · ·+ks. This pole arises from the vanishing of shifted propagators,

K2
r...s(zrs) = 0. Generically the sum over α is replaced by a double sum over r, s, labeling

the recursive diagrams, where legs labeled ̂ and l̂ always appear on opposite sides of the

propagator in fig. 6. The computation of the recursive diagrams has been described in

refs. [26, 33, 44], to which we refer the reader for further details.

What about the contributions of the spurious poles? One approach is to find a “cut

completion” [26, 27], which is designed by adding appropriate rational terms to Cn in order

to cancel entirely the spurious poles in z within the redefined cut terms Ĉn. Because the

complete amplitude is free of the spurious poles, this procedure ensures that the redefined

rational terms R̂n are free of them. The cut completion makes it unnecessary to compute

residues of spurious poles (although additional “overlap” diagrams are introduced). It is

very helpful for deriving compact analytic expressions for the amplitudes. This approach

has led to the computation of the rational terms for a variety of one-loop MHV amplitudes

with an arbitrary number of external legs [26–28], as well as for six-point amplitudes. In

general, it should be possible to construct a set of cut completions using integral functions

of the type given in ref. [54] to absorb spurious singularities.

For the purposes of a numerical program, however, it is simpler to extract the spurious

residues from the known cut parts. These residues are guaranteed to be the negatives of the
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spurious-pole residues in the rational part. That is, the spurious contributions are,

RS
n(0) = −

∑

spur. poles β

Res
z=zβ

Rn(z)

z
=

∑

spur. poles β

Res
z=zβ

Cn(z)

z
, (3.7)

where Cn(z) is the shifted cut part appearing in eq. (2.1). The spurious poles β correspond

to the vanishing of shifted Gram determinants, ∆m(z) = 0 for m = 2, 3, 4, associated with

bubble, triangle and box integrals. (In the case of massless internal propagators, the bubble

Gram determinant does not generate any spurious poles.)

A simple example of a spurious singularity in the cut part (2.2) is from a bubble term of

the form,

bi I
i
2 =

b̂i

(K2
1 − K2

2 )2
ln(−K2

1 ) + · · · , (3.8)

where b̂i is smooth as K2
1 → K2

2 , and K1 + K2 + k3 = 0 for some massless momentum

k3. The denominator factor (K2
1 − K2

2) is the square root of the Gram determinant for a

triangle integral with two massive legs, K1 and K2, and one massless leg, k3. Under the

[j, l〉 shift, there will be a value of z, zβ , for which the shifted denominator vanishes linearly,

K2
1 (z)−K2

2 (z) ∼ z−zβ (unless j and l both belong to the same massive momentum cluster,

K1 or K2, in which case the Gram determinant is unshifted). From eq. (3.7) we see that we

only need the rational pieces of the spurious-pole residues of the cut part, because RS
n(0)

is rational. From eq. (3.8), we see that there can only be a rational piece if we have to

series expand the logarithm to compute the residue. Hence the spurious pole in the bubble

coefficient bi must be of at least second order in (K2
1 − K2

2 ). At order ǫ0, box and triangle

integrals contain dilogarithms and squared logarithms, which must be expanded to second

order to obtain a rational piece. Thus the spurious poles of box and triangle coefficients

must be at least of third order for rational terms to be generated.

To extract a residue from Cn(z)/z, we evaluate the integral coefficients di, ci, bi numeri-

cally for complex, shifted momenta in the vicinity of the spurious pole, using our implemen-

tation of the results of section II. We also need to evaluate the loop integrals. First, however,

we perform an analytic series expansion of the integrals around the vanishing Gram deter-

minants. For example, the three-mass triangle integral, I3m
3 (s1, s2, s3), close to the surface

of its vanishing Gram determinant,

∆3 ≡ s2
1 + s2

2 + s2
3 − 2s1s2 − 2s1s3 − 2s2s3 → 0 , (3.9)
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behaves as,

I3m
3 (s1, s2, s3) → −1

2

3
∑

i=1

ln(−si)
si − si+1 − si−1

si+1si−1



1 − 1

6

∆3

si+1si−1
+

1

30

(

∆3

si+1si−1

)2




+
1

6

∆3

s1s2s3

− s1 + s2 + s3

120

(

∆3

s1s2s3

)2

+ · · · , (3.10)

where the index i on the shifted invariant, si ≡ si(z), is defined mod 3. In this expression

the logarithms are to be expanded according to,

ln(−s) → s − sβ

sβ
− 1

2

(s − sβ)2

s2
β

+ · · · , (3.11)

where s = s(z), and sβ = s(zβ) is the value of the shifted invariant at the location zβ of the

spurious pole. The leading order of eq. (3.10) matches the expansion found in ref. [54]. In

the integral expansions we need keep only rational terms, including terms that can become

rational after further series expansion around a generic point, such as eq. (3.11). Thus we

may avoid computing any logarithms or polylogarithms at complex momentum values. The

expression obtained by replacing Cn(z) according to these rules, in the vicinity of zβ , will

be denoted by Eβ
n(z). In ref. [61] we present the complete set of integral expansions needed

in the calculations, as well as a convenient method for generating them from a dimension-

shifting formula [47].

B. Discrete Fourier Sum for Spurious Residues

Similarly to the case of triangle and bubble coefficients, we extract each required spurious-

pole residue from the cut parts by using a discrete Fourier sum. We evaluate Eβ
n(z) at m

points equally spaced around a circle of radius δβ in the z plane, centered on the pole

location zβ , as depicted in fig. 7; i.e., z = zβ + δβe2πij/m, for j = 1, 2, . . . , m. In contrast to

the t-plane analysis used earlier to obtain triangle coefficients, however, we do not know the

residues at other poles a priori , so we cannot subtract them easily. (Indeed, the function

Eβ
n(z) we are analyzing is only rational in the vicinity of zβ , due to our use of the rational

parts of the integral expansions around this point.) Here the discrete Fourier sum is an

approximation to the contour integral, whereas in the previous section it was exact. We can

make the approximation arbitrarily accurate in principle, by choosing δβ to be arbitrarily

small. With finite precision, however, numerical round-off error forces us to work at finite
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FIG. 7: We obtain the residue at the spurious pole located at z = zβ in the complex z plane by

a discrete Fourier sum, evaluating Eβ
n(z) on the (blue) squares on the circle of radius δβ centered

on zβ . In this figure four points are shown, although in practice we use ten points. The locations

of other poles are represented by (red) dots. We ensure that δβ is sufficiently small so that other

poles give a negligible contribution to the residue.

δβ. When extracting the residue of a spurious pole we must also ensure that there are no

other poles inside or near the circle. To obtain the contributions of the spurious poles to

Rn(0) in eq. (3.7) we evaluate,

RS
n(0) ≃ 1

m

∑

β

m
∑

j=1

δβe2πij/m Eβ
n(zβ + δβe2πij/m)

zβ + δβe2πij/m
. (3.12)

The sum over β runs over the location of all spurious Gram determinant poles that contribute

to rational terms. Equivalently, we can extract the coefficients Bβ and Cβ in eq. (3.5) via,

Bβ ≃ − 1

m

m
∑

j=1

[

δβ e2πij/m
]2

Eβ
n(zβ + δβe2πij/m) ,

Cβ ≃ − 1

m

m
∑

j=1

δβ e2πij/m Eβ
n(zβ + δβe2πij/m) . (3.13)

For the results presented in the next section we choose m = 10 points in the discrete sum.

In general, an increase in m increases the precision, but at the cost of computation time.

We choose δβ to be much smaller than the distance to nearby poles, but not so small

as to lose numerical precision. Typically at “standard” double precision we use a value of

δβ = 10−2. If the contributions from the nearby poles are unusually large, then we find a

large variation in the absolute value of each term in the sum. If this happens we reduce δβ

until either the variation is acceptable, or we cross a minimum value of δβ, beyond which the
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point becomes unstable because of round-off error. We deal with such points as described

below.

C. Numerical Stability

In addition to the value of δβ becoming too small, other cancellations can also sometimes

cause a loss of precision, giving rise to a potentially unstable kinematic point. In order to

identify such phase-space points more generally, we apply consistency checks independently

to the cut and rational parts of the amplitude. For the cut part we test how well the known,

non-logarithmic 1/ǫ singularities are reproduced. Because the only source of such 1/ǫ poles

are the bubble integrals, for the n-gluon amplitudes, for example, we have [6, 10],

A1-loop
n |1/ǫ,non−log =

1

ǫ

∑

k

bk = −
[

1

ǫ

(

11

3
− 2

3

nf

Nc

)]

Atree
n , (3.14)

where nf is the number of quark flavors and the sum on k runs over all bubble integrals. As a

practical matter it is sufficient to check that the divergent term divided by the tree amplitude

is real. (For helicity configurations with vanishing tree amplitudes the cut contributions

vanish, so no check is required.) Because bubble coefficients are computed from expressions

where triangle and box contributions have been subtracted, any instabilities in the latter

are also detected with this 1/ǫ consistency check.

In general this test is not sufficient for finding all the unstable points of the full amplitude,

because some of the instability comes from computing the spurious residues for rational

terms. A related test, which suffices to find all remaining instabilities, comes from the

requirement that each spurious singularity must cancel in the sum over bubble coefficients.

This cancellation can be understood by applying the [j, l〉 shift to eq. (3.14), and making use

of the fact that Atree
n has no spurious poles. For each spurious-pole residue that contributes

to the rational part, we therefore check that the sum of discrete Fourier sums over all bubble

coefficients,
∑

k

m
∑

j=1

δβe2πij/m bk(zβ + δβe2πij/m) , (3.15)

vanishes to within a specified tolerance.

If a phase-space point fails the above stability conditions we recalculate the point in a

manner that improves its stability. Various strategies have been proposed in the literature

to handle unstable points. One approach is to modify the standard integral basis (2.2) so as
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to absorb the Gram determinant singularities into well-defined functions [5, 14, 18, 54, 67].

This approach is related to using a cut completion [26]. Other approaches are to interpolate

across the singular region or to series expand the integrals in the singular region [5, 55]. A

third approach is to simply redo unstable points at higher precision, e.g. as in ref. [36].

We have found the high-precision approach to be effective for eliminating the remaining

instabilities in our program. It is robust and simple to implement; a detailed analysis

of the instabilities is not needed, and we can use the standard basis of integrals with no

interpolations or expansions of the integrals around unstable points. Our implementation

of on-shell methods already has only a small fraction of unstable phase-space points; hence

the overhead of recomputing them at higher precision is relatively small. We use the QD

package [57], switching to “double-double” precision, that is approximately 32 decimal digits.

If the stability test were to fail at this level of precision, we switch to “quadruple-double”

precision, corresponding to approximately 64 digits of precision; for all amplitudes calculated

here, this happens rarely, if ever. To compute the integrals to higher precision, we implement

the polylogarithms which enter the integrals using a series expansion to a sufficiently high

order. If the 1/ǫ test (3.14) fails then we recompute the entire cut part at higher precision,

but if the spurious-pole test (3.15) fails we only recompute those pieces containing unstable

Gram determinant singularities.

Further details, as well as all integral expansions used to extract the spurious residues

from the cut part, will be given elsewhere [61].

IV. RESULTS

We now discuss the numerical stability of our implementation. Our stability tests use

sets of 100,000 points for 2 → (n − 2) gluon scattering, generated with a flat phase-space

distribution using the RAMBO [68] algorithm. We impose kinematic cuts on the outgoing

gluons, following ref. [35]:

ET > 0.01
√

s , η < 3 , ∆R > 0.4 , (4.1)

where ET is the gluon transverse energy, η is the pseudorapidity, and ∆R =
√

∆2
η + ∆2

φ is

the separation cut between pairs of gluons. The center-of-mass energy
√

s is chosen to be 2

TeV and the scale parameter µ (arising from divergent loop integrals) is set to 1 TeV.
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FIG. 8: The distribution of the logarithm of the relative error for 100,000 phase-space points in the

1/ǫ2, 1/ǫ and finite (ǫ0) components of the six-point MHV amplitude A6(1
−, 2−, 3+, 4+, 5+, 6+).

The solid (black) curve shows the distribution run entirely with ordinary double precision, and the

dashed (red) curve shows it when contributions identified as unstable — following the discussion

of section III — are evaluated using higher precision. The target values use analytic results from

refs. [17, 26, 42].

We computed one-loop six-, seven- and eight-gluon amplitudes for nf = 0 with BlackHat

at each phase-space point, and compared the output against a target expression, obtained

either from known analytic results, or from BlackHat itself using quadruple-double preci-

sion (∼64 digits). As an additional test, we also used ordinary double precision to compare

to the numerical results of refs. [15, 37] at the quoted phase-space points. We find agree-

ment for the five- and six-gluon amplitudes for all helicity configurations, to within their

quoted accuracy, after accounting for external phase conventions and the incoming-particle

convention implicitly used in ref. [37]. We also find agreement with the numerical results

of ref. [27] at the quoted phase-space points for the six-, seven- and eight-point maximally

helicity violating (MHV) amplitudes presented here.

The histograms in figs. 8–10 show the results of our study of numerical precision. For

these plots, the horizontal axis is the logarithmic relative error,

log10

(

|Anum
n − Atarget

n |
|Atarget

n |

)

, (4.2)

for each of the 1/ǫ2, 1/ǫ and ǫ0 components of the numerical amplitude Anum
n obtained from
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BlackHat. The vertical axis in these plots shows the number of phase-space points in a bin

that agree with the target to a specified relative precision. We use a logarithmic vertical scale

to visually enhance the tail of the distribution, so as to illustrate the numerical stability.

For the MHV amplitudes in figs. 8 and 9, we used analytic expressions from refs. [17,

26, 42, 44] as the target expressions Atarget
n . For the next-to-MHV (NMHV) amplitudes,

analytic expressions are available [16, 27, 29, 42], although for fig. 10, we generated the

target with BlackHat, using quadruple-double precision. This is more than sufficient to

ensure numerical stability in target expressions for the purposes of the comparison. We note

that the ability to switch easily to higher precision is quite helpful in assessing numerical

stability in any new calculation.

First consider the MHV six-point amplitude A6(1
−, 2−, 3+, 4+, 5+, 6+). Fig. 8 illustrates

the numerical stability of BlackHat for this amplitude, with and without the use of higher

precision on the points identified as unstable. The plots show the distribution of relative

errors for the 1/ǫ2, 1/ǫ and ǫ0 components over 100,000 phase-space points. The 1/ǫ2

distribution has extremely small errors, peaking at a relative error of nearly 10−15, while

the right-side tail falls rapidly. For the 1/ǫ and finite ǫ0 components the peaks shift to the

right, to a relative precision of around 10−14 and 10−11, and fall less steeply. This feature is

not surprising, because of the larger number of computational steps needed for these parts

of the amplitudes: for 1/ǫ2 terms, only box coefficients contribute (for this helicity pattern

triangle integrals do not appear); for the 1/ǫ contribution, bubble coefficients contribute too;

for the finite part, rational terms contribute as well. As one proceeds from box to triangle,

bubble, and then to rational terms, each step relies on previous steps, and so numerical

errors accumulate.

In each plot in fig. 8 the solid (black) curve corresponds to the exclusive use of ordinary

double precision (16 decimal digits), showing good stability for the raw algorithm for all

three components. The dashed (red) curve shows the effect of turning on higher precision

for contributions identified as unstable, using the criteria discussed in section III. This

completely suppresses the already-small tail above a relative error of about 10−5. The

points populating the right-hand tail in the ordinary double precision calculation, displayed

in the solid (black) curve, then move to the left in the dashed (red) curve, giving rise to

a secondary peak around a relative error of machine precision, or 10−16. (The comparison

with the target is performed in ordinary double-precision, even though higher precision is
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FIG. 9: The distribution of the logarithm of the relative error over 100,000 phase-space

points for the MHV amplitudes A6(1
−, 2−, 3+, 4+, 5+, 6+), A7(1

−, 2−, 3+, 4+, 5+, 6+, 7+) and

A8(1
−, 2−, 3+, 4+, 5+, 6+, 7+, 8+). The dashed (black) curve in each histogram gives the relative

error for the 1/ǫ2 part, the solid (red) curve gives the 1/ǫ singularity, and the shaded (blue) distri-

bution gives the finite ǫ0 component of the corresponding helicity amplitude. The target expression

is computed from an analytic formula [17, 26, 42, 44].

used in intermediate steps.) This twin-peak feature is visible in the 1/ǫ and ǫ0 components.

It is due our recalculation of the entire cut part, at higher precision, whenever a phase-space

point fails the 1/ǫ consistency check (3.14). When the spurious-pole stability test (3.15)

fails, the point generally falls to the right of the secondary peak, because we only recalculate

those pieces that contain the unstable spurious singularity.

Another important feature that can be observed in fig. 8 is that the “effective cutoff”

is sharp: for the ǫ0 terms almost no points below 10−5 are identified as unstable. In a

practical calculation, given Monte-Carlo integration errors and other uncertainties, a cutoff

in the relative error of 10−5 is overly stringent. It does, however, illustrate the control over

instabilities achieved in BlackHat, which becomes more important for more complicated

processes. It is interesting to note that modest additional computation time is required to

achieve a cutoff of 10−5, compared to, say, 10−2.

Next consider the behavior as the number of external gluons increases. In fig. 9 we

show relative error distributions for the set of MHV amplitudes A6(1
−, 2−, 3+, 4+, 5+, 6+),

A7(1
−, 2−, 3+, 4+, 5+, 6+, 7+) and A8(1

−, 2−, 3+, 4+, 5+, 6+, 7+, 8+). For each of these ampli-
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FIG. 10: The distribution of the logarithm of the relative error for the six-point NMHV amplitudes

A6(1
−, 2−, 3−, 4+, 5+, 6+), A6(1

−, 2−, 3+, 4−, 5+, 6+) and A6(1
−, 2+, 3−, 4+, 5−, 6+). The dashed

(black) curve in each histogram gives the relative error for the 1/ǫ2 part, the solid (red) curve gives

the 1/ǫ singularity, and the shaded (blue) curve gives the finite ǫ0 component of the corresponding

amplitude. The target expression is a quadruple-double-precision BlackHat evaluation.

tudes the dashed (black) curve shows the relative error in the coefficient of the 1/ǫ2 singular-

ity. Similarly, the relative errors in the 1/ǫ and ǫ0 contributions are given by the solid (red)

curve and shaded (blue) distribution. The relative precision of the 1/ǫ2 singularities is better

than 10−11 for these six-, seven- and eight-point amplitudes. The computational-stability

scaling properties in going from six- to seven- and then eight-point amplitudes in fig. 9 are

also rather striking. There is little change in the shape of the curves as we increase the

number of legs.

Even more striking is the modest increase in computation time. As mentioned earlier, the

tree-like nature of on-shell methods leads us to expect only mild scaling for a given helicity

pattern, in stark contrast with the rapid increase in required computational resources for

ordinary Feynman diagrams. These expectations are borne out by the values for the average

computation time shown in Table I. The table shows the average time on a 2.33 GHz Xeon

processor for computing a color-ordered amplitude of a given helicity configuration at a

single phase-space point. The first three rows show the timing for the six-, seven- and eight-

point MHV amplitudes corresponding to fig. 9. Even for the eight-point case we obtain an

average evaluation time of less than 50 ms, including running the phase-space points marked
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TABLE I: The average time needed to evaluate one point in phase space for various helicity

configurations. The time is in milliseconds on a 2.33 GHz Xeon processor. The second column

gives the average evaluation time for the cut part, including the recomputation at higher precision

of points identified as unstable. The third column gives the time for the full amplitude, including

rational terms, using only ordinary double precision. The fourth column gives the average time

using ordinary double precision on stable points and higher precision on contributions marked as

unstable either by the 1/ǫ consistency test (3.14) or the spurious-pole test (3.15).

helicity cut part full amplitude full amplitude
double prec. only with multi-prec.

−−++++ 2.4 ms 7 ms 11 ms

−−+++++ 4.2 ms 11 ms 23 ms

−−++++++ 6.1 ms 29 ms 43 ms

−+−+++ 3.1 ms 18 ms 32 ms

−++−++ 3.3 ms 61 ms 96 ms

−−−+++ 4.4 ms 12 ms 22 ms

−−+−++ 5.9 ms 47 ms 64 ms

−+−+−+ 7.0 ms 72 ms 114 ms

as unstable at higher precision. It is also interesting to note the relatively modest increase

in computation time due to turning on higher precision for unstable points, even in this

initial implementation. (The time in the third column includes the evaluation of bubble

coefficients used in the spurious-pole test (3.15).)

Finally, consider the six-gluon NMHV amplitudes. Figure 10 illustrates the numer-

ical stability properties of the complete set of independent six-gluon NMHV ampli-

tudes not related by symmetries, A6(1
−, 2−, 3−, 4+, 5+, 6+), A6(1

−, 2−, 3+, 4−, 5+, 6+) and

A6(1
−, 2+, 3−, 4+, 5−, 6+), compared against a quadruple-precision target computed with

BlackHat. For each one of these amplitudes, the contributions to the 1/ǫ2, 1/ǫ and fi-

nite ǫ0 terms are shown in a similar format as the MHV case. These NMHV curves are all

shifted to the right compared to the MHV cases in in fig. 9. This property is not surprising;

it is due to the more complicated nature of the NMHV amplitudes. In particular, the am-

plitudes contain higher powers of the box Gram determinants in denominators of the box
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coefficients, which then feed into triangle, bubble and rational contributions. As in the MHV

cases, when one goes from 1/ǫ2 to 1/ǫ to ǫ0, the curves shift to the right again, reflecting the

more complicated calculations. Nevertheless, they all exhibit excellent numerical stability,

with the distributions of relative errors for the finite pieces peaking at 10−8 or better. We

identify points as unstable, and automatically recompute such points at higher precision,

using the same criteria as for the MHV amplitudes. In the NMHV case, the fall-off is not

as sharp as in the MHV case. Nevertheless, the accuracy obtained is more than sufficient

for use in an NLO program.

The average evaluation time in the current version, for all independent six-gluon helicity

configurations needed at NLO, including the NMHV ones, is given in Table I. One can see

that alternating-helicity configurations do take longer to compute. However, in all cases the

cut parts are evaluated in under 8 ms and the full amplitudes in under 120 ms. Although

we have not run systematic tests of NMHV amplitudes beyond six points, initial studies

at seven points indicate that the scaling behavior of the NMHV amplitudes is not quite as

good as for the MHV case, but still very good.

V. CONCLUSIONS

In this paper we presented the first results from BlackHat, an automated implementation

of on-shell methods, focusing on the key practical issues of numerical stability and computa-

tional time. We illustrated the numerical stability by computing a variety of complete six-,

seven- and eight-gluon helicity amplitudes and comparing the results against previously-

obtained analytic results or against higher precision calculations. In this initial version we

achieved reasonable speed, an average computation time of 114 ms per phase-space point

for the most complicated of the six-gluon helicity amplitudes, and substantially better for

the simpler helicities. We expect this speed and stability to be sufficient for carrying out

phenomenological studies of backgrounds at the LHC, even as we expect further improve-

ments with continuing optimization of the code. After the code is stable and tested for a

wide variety of processes, we plan to make it publicly available.

BlackHat uses the unitarity method with four-dimensional loop momenta [17, 42]. This

method allows the use of compact tree-level helicity amplitudes as the basic building blocks.

We compute the box coefficients using quadruple cuts [21]. For box integrals with massless
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internal propagators and at least one massless corner, we presented a simple solution to the

cut conditions. The solution makes manifest the presence of square roots, rather than full

powers, of a spurious (Gram determinant) singularity for each power of the loop momentum

in the numerator. We evaluated the triangle- and bubble-integral coefficients using Forde’s

approach [34] to expose their complex-analytic structure. Another important ingredient in

our procedure is the OPP [31] subtraction of boxes from triple cuts when computing triangle

coefficients, and of boxes and triangles from ordinary (double) cuts when computing bubble

coefficients. Viewed in terms of Forde’s complex-valued parametrization approach, the OPP

subtraction cleans the complex plane of poles, using previously-computed coefficients. We

then introduced a discrete Fourier projection, as an efficient and numerically stable method

for extracting the desired coefficients. In the bubble case, this procedure can be recast in

terms of spherical harmonics.

We computed the purely rational terms using loop-level on-shell recursion, modifying the

treatment of spurious singularities compared to refs. [26, 27]. We used a discrete Fourier

sum to compute the spurious-pole residues from the cut parts. These contributions are

then subtracted from the recursively-computed rational terms in order to cancel spurious

singularities implicit in the latter, and thereby make the full amplitude free of spurious

singularities as required.

The computation of most points in phase space proceeds using ordinary double-precision

arithmetic to an accuracy of 10−5 or less. This is far better than the Monte-Carlo inte-

gration errors that will inevitably arise in any use of amplitudes in an NLO parton-level

or parton-shower code (not to mention parton distribution, scale, shower and hadroniza-

tion uncertainties). Nonetheless, the computation of the amplitude at a small percentage

of phase-space points does manifest a loss of precision, resulting in an instability and larger

error. In order to identify such unstable points as may arise, we impose the requirements

that all spurious singularities cancel amongst bubble coefficients, and that the coefficients of

the 1/ǫ singularity (corresponding to ǫ-singular terms in bubble integrals) be correct. When-

ever the calculation at a given phase-space point fails these criteria we simply recalculate the

point at higher precision. There are other possible means for dealing with Gram-determinant

singularities [1, 5, 48, 55, 56], but we prefer this approach because of its simplicity [36]. In

practice, it has a relatively modest impact on the overall speed of the program. In the most

complicated of the six-gluon helicity amplitudes, higher-precision evaluation causes the time

31



to increase modestly, from 72 ms to 114 ms. We expect to see further improvements with

additional refinements.

It is important to validate a numerical method against known analytic results. For

this purpose, we made use of MHV configurations, which contain two gluons of helicity

opposite to that of the others. In particular, we considered the case where the two opposite

helicities are nearest neighbors in the color order. In earlier work, these amplitudes were

computed for an arbitrary number of external gluons [26, 44], using on-shell methods. We

used these results to confirm that BlackHat returns the correct values through eight gluons.

We also verified numerical stability for non-MHV amplitudes by comparing results for all six-

gluon amplitudes against a reference computation done entirely using quadruple-precision

arithmetic.

We defer discussion of amplitudes with external fermions, or with massive quarks and

vector bosons, to the future. (Some work directly relevant to the question of adding massive

particles may be found in refs. [32, 65, 69].) We will also present further details, including

the integral expansions we use around spurious singularities, in a future publication [61].

The excellent numerical stability and timing performance of BlackHat is due to a variety

of ideas described in this paper. Because the unitarity method uses gauge-invariant tree

amplitudes as the basic input into the calculation, we avoid the large gauge cancellations

inherent in Feynman-diagram calculations. In addition we made use of very compact four-

dimensional tree-level helicity amplitudes as the basic input to the calculations. All steps

in our computation of the rational terms, as well as the integral coefficients, are carried out

in four dimensions. Our simple quadruple-cut solution (2.7) also helps maintain numeri-

cal stability in the box contributions. Our parametrization choices for triple and double

cuts, and the OPP subtraction of previously-computed coefficients are additional important

ingredients. Finally, our use of discrete Fourier projections helps considerably.

The resulting C++ code BlackHat is efficient and numerically stable, as we have illus-

trated with the computation of various one-loop gluon amplitudes and their comparison to

known analytic expressions. Based on the results presented here, we expect BlackHat to

make possible the computation of a wide variety of new one-loop amplitudes for collider

physics that have been inaccessible with traditional methods. We hope that BlackHat, in

conjunction with automated programs [9] for combining the real and virtual contributions

at NLO, will soon enable the computation of phenomenologically important cross-sections
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at the LHC.
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