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Purpose: Breast cancer remains a serious public health problem that results in the loss of
lives among women. However, early detection of its signs increases treatment options and
the likelihood of cure. Although mammography has been established to be a proven
technique of examining symptoms of cancer in mammograms, the manual observation by
radiologists is demanding and often prone to diagnostic errors. Therefore, computer aided
diagnosis (CADx) systems could be a viable alternative that could facilitate and ease cancer
diagnosis process; hence this study.

Methodology: The inputs to the proposed model are raw mammograms downloaded from
the Mammographic Image Analysis Society database. Prior to the classification, the raw
mammograms were preprocessed. Then, gray level co-occurrence matrix was used to extract
fifteen textural features from the mammograms at four different angular directions: 6={0°,
45°, 90°, 135°}, and two distances: D={1,2}. Afterwards, a two-stage support vector
machine was used to classify the mammograms as normal, benign and malignant.

Results: All of the 37 normal images used as test data were classified as normal (no false
positive) and all 41 abnormal images were correctly classified to be abnormal (no false
negative), meaning that the sensitivity and specificity of the model in detecting abnormality
is 100%. After the detection of abnormality, the system further classified the abnormality on
the mammograms to be either “benign” or “malignant”. Out of 23 benign images, 21 were
truly classified as benign. Also, out of 18 malignant images, 17 were truly classified to be
malignant. From these findings, the sensitivity, specificity, positive predictive value, and
negative predictive value of the system are 94.4%, 91.3%, 89.5%, and 95.5%, respectively.
Conclusion: This article has further affirmed the prowess of automated CADx systems as a
viable tool that could facilitate breast cancer diagnosis by radiologists.
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Introduction

Breast cancer is a deadly disease that plagued women population in developing
countries.” However, early detection of the symptoms of breast cancer could
facilitate its treatment and it has been established that mammography is the best
technique for this task.>® This technique involves the examination of X-ray
images of the breast for symptoms such as architectural distortion, calcifications,
masses, etc.

Although mammography has been established to be a viable technique in the
diagnosis of breast cancer, its interpretation by Radiologists’ are most times in
question as different Radiologists may come up with different interpretations.>*
Azar’ argued that interpretation of mammogram is a cognitive skill which
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Radiologists develop over time. Nevertheless, digital
image processing and machine learning approaches can
proffer a solution to many of the inherent problems
encounter by Radiologists when interpreting mammogram
manually.

Mammogram processing (enhancement and segmen-
tation) enhances visual interpretation. Also, intelligent
classifier aids expert in detection and classification of
mammograms.®

Methodology

The detailed steps employed in the classification task are
documented in this section. It involves mammogram
acquisition, mammogram processing, feature extraction
and the classification models, all of which were implemen-
ted in MATLAB 2015.

Mammogram acquisition
were downloaded from MIAS
database.” Out of 322 mammograms available in the data-

Raw mammograms

base, 126 normal, 60 benign and 48 malignant mammo-
grams were carefully selected. Of these, 37 normal, 23
benign, 18 malignant mammograms were used as test data
while the remaining 156 mammograms were used for
training the system.

Mammogram processing

Mammography uses low dose x-ray for imaging which
produces a low qualitymammograms.'® In addition,
Kayode et al'' ascertained that image acquisition
comes with lots of inherent problems which include
scratches, dust artifact, scanner induced artifacts and
excessive background noise which can further under-
mine the reliability of X-ray images, therefore, it is
expedient to pre-process digital images so as to improve
their quality.

Furthermore, image enhancement includes removing
noise and adjusting image contrast so that the identifica-
tion of key features becomes easier. In this article, image
enhancement was achieved using Contrast Limited
Adaptive Histogram Equalization (CLAHE). Also, seg-
mentation was done in order to separate the needed region
also known as the region of interest (ROI) from the entire
breast tissue. Otsu threshold algorithm was implemented
in MATLAB to extract ROI from the entire mammogram
image.

Extraction of features from

mammogram’s ROI

Radiologists analyze ROI found on mammograms by
examining morphological features, such as size, margin
and shape of the ROI; this helps them to differentiate
between normal and abnormal mammograms and also to
differentiate between an abnormal benign mammogram
from an abnormal malignant mammogram. However, it
should be noted that decisions concerning these morpho-
logical features are cognitive and greatly depend on
Radiologists’ experience and opinion; therefore, it is
essential to use computers to facilitate the extraction of
GLCM features related to image texture, coarseness and
heterogeneity, which are not necessarily seen by
unaided eye.

GLCM is the most common statistical method used to
compute textural features from gray level images such as
mammograms. GLCM features consider the spatial rela-
tionship between the pixel of interest and its neighbouring
pixels thereby providing us with textural features. Each
element (m, n) in the resultant GLCM is simply the sum of
the number of times that the pixel with value m occurred
in the specified angular direction and distance to a pixel
with value » in the input image.'?

In this article, the thirteen GLCM features, proposed

1'* with two other features called

and by Haralick et a
cluster prominence and cluster shade, proposed by
Tsatsoulis'* were extracted from mammograms. These
GLCM features have been reported to adequately con-
vey information about the textural characteristics of an
image. The features are listed in Table 1. The detailed

- 13,14

discussion about the features is documented in

respectively.

15718 where a single

Unlike in the existing works,
GLCM feature was created for each image using hor-
izontal direction, @ = 0° and distance, D = 1, this study
is of the opinion that a single GLCM is inadequate to
characterize the textural features of an image, therefore,
in addition to the horizontal direction 8 = 0° and dis-
tance D = 1, two diagonals 6 = {45°,135°} and the ver-
tical direction @ =90° at distance d =2 at distance
D =2 which correspond to multiple GLCMs features
at four directions and two distances 1 and 2 were com-
puted. The following pseudocode was used to extract
the features:
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Objective:

1. To Extract GLCM from mammogram images

Input:

2. ROI of the enhanced image 1

3. The direction to be used for creating a
co-occurrence matrix

Output:

4. The GLCM extracted features vector from the input
image |

F == {ﬁaﬁa--- LflS}

Process:

5. Begin:

6. for 0 = {0°,45°,90°,135°} do

7. create CoocmatrixI(0)//GLCMs at angular
directions 0

8. end loop

9. for distances D = {1,2} do

10. SumCooc = 0 //sum of co-occurrence
matrices

11. for each angle in @ do

12. SumCooc = SumCooc + CoocmartixI (0)

13. end loop

14. end loop

15. for i=1 to 15 do

16. S;(D) = computefeatures(SumCooc, F (i))

17. end loop

18. for i=1 to 15

19. AveSumCooc(i) = mean(S;)

20. features = AveSumCooc(i

21. end loop features

22. Return

23. End

Classification of mammograms

SVM was used for classification purposes. In MATLAB
programming tool, SVM functions support only two
classes based on its fundamental principle as a binary
classifier. Due to three attributes of interest: normal,
benign and malignant, SVM was trained twice, first to
classify mammograms to either normal or abnormal, and
second, to classify abnormal mammograms to benign or
malignant. By this two-stage approach the three attributes
of mammograms will be accommodated as illustrated in

Figure 1.

Table | Textural features extracted from the dataset

S/N | Features Mathematical Expression
1. *IMC fi = 7:1?5?{1;)7)1%)
2. Contrast i Ng )
fo= X |m—n|"P(m,n)
mn=1
3. Correlation Ng Plman)—pp,
f= z*il m(;@u ,
4. Cluster Prominence Ne 4
f4 = Z (m — Hy +n _”y) P(man)
m,n=1
5. Cluster Shade Ng 3
fs= Zl (m —p,+n—p,)" P(m,n)
6. Dissimilarity Ne
fo= X |m—n|P(m,n)
mn=1
7. Energy i Ng
fi= % (P(mn))
mpn=1
8. Entropy Ne
fs == X P(m,n)log(P(m,n))
mn=1
9. *IMC, fo = /(1 — exp(—2(HXY2 — HXY)))
10. Difference Variance i Ne—1 )
fio= % PP \(])
=0
. Variance Ne )
fi= % (1—p)"P(m,n)
mn=1
12. Sum Average ) 2Ng
le = Z l--Px+y(l)
=2
13. Sum Variance y 2N, )
fl3 = Z (l_fR) PX+y(])
=2
14. Difference Entropy Ng—1
Sia=— 125) Py (1) log(Pr—y(1))
15. Homogeneity ) Ne .
fis= % —H(mﬂl)zP(m,n)
mn=1

Note: *IMC, and IMC, are information measure sof correlation | and 2,
respectively.

Experimental results

Figure 2 illustrates the Graphic User Interface (GUI)
designed for the preprocessing stage. Raw mammograms
were fed into the system one after the other then
CLAHE was
Afterwards, the suspicious region otherwise known as

employed for the preprocessing.

ROI was extracted from the enhanced image; this is
illustrated in Figure 3.
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Figure | Two-level classification approach using support vector machine (SVM).

Fifteen GLCM features presented in Table 1 were
extracted from the ROI as illustrated with Figures 4 and
5 respectively. The averages of the features at the two
distances were calculated as shown in Figure 6 while the
overall averages of each of the features which serve as
input to SVM classifier, were also calculated as shown in
Figure 7.

The first-stage classification entails categorizing the
mammograms as either normal or abnormal as illu-
strated in Figure 8; this is termed the first-stage classi-
fication. If the image is normal the algorithm stops.
However, if any abnormality is detected, the algorithm

further classifies the abnormality into benign or

malignant (see Figure 9); this is second-stage
classification.
LB Tol = el
Image Processing Results
Init:al image Aner Cdge Detection ARer CLAHE
Crop Suspicious region |
Figure 2 Mammogram enhancement using Contrast Limited Adaptive Histogram Equalization (CLAHE).

Croging 33

Figure 3 Region of interest (ROI) extraction.
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Figure 4 Gray level co-occurrence matrix (GLCM) features computed at D=1.
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Figure 5 Gray level co-occurrence matrix (GLCM) features computed at D=2.
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Figure 6 Weighted gray level co-occurrence matrix (GLCM) features computed at distances | and 2.

System testing and performance one hand and malignant and benign on the other
evaluation hand.
The model was tested to determine if the learning The aim of this step is to introduce the model to the

algorithm really performed its recognition task 78 unseen mammograms after it has been trained with a

of differentiating normal and abnormal image on training dataset so as to test how well it performed.

(B average el = |[—E-]
Weighted Average GLCM Feature
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Contrast D.14112
Correlation D.927386
Cluster Prominence 49 6756
Cluster Shade 553218
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mcz 0.930237
Difference Variance 0.930171
“ariance D 456663
Sum average 158164
Sum variance 7. 72980
W—— — Select Features for Classification
Sicnsrpa iy 0.997831 Classif

Figure 7 Overall average gray level co-occurrence matrix (GLCM) features computed.
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Figure 8 First-stage of classification: (A) normal mammogram classification; (B)
abnormal mammogram classification.

First-stage classification

Using the expert’s classification provided alongside the
dataset as the actual class, in the first-stage classifica-
tion, all the 37 normal images were classified as

normal (no false positive) and all 41 abnormal images
were correctly classified to be abnormal (no false
negative) meaning that the model can accurately detect
abnormality, that is, each of the sensitivity, specificity
and accuracy of the model in detecting abnormality
is 100%

Second-stage classification

After the detection of abnormality, the system further
classified the abnormality on the mammograms to be
either “Benign” or “Malignant”. This is the second-stage
classification. Out of 23 benign images, 21 were classified
as truly benign while 2 are misclassified to be malignant.
Also, out of 18 malignant images, 17 were classified to be
malignant while an image was misclassified to be benign.
These values are entered into a confusion matrix as shown
in Table 2.

Results from proposed technique and

existing works

Table 3 presents the results of existing works who also classi-
fied MIAS database mammograms using SVM. These are
compared with the results obtained from the proposed techni-
que. Results obtained from existing works have classified
mammograms in MIAS database to either normal or abnormal

A "B finatresul

| Suspicious Region

Home

= O ||

Result

The suspicious region
is abnormal, Benign

-—u finalresuit

| Suspicious Region

= e

| Resuit

| The suspicious region
is abnormal, Malignant

Figure 9 Second-stage classification: (A) benign; (B) malignant.
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Table 2 The system’s confusion matrix

Expert’s classification System classification Total
Benign Malignant

Benign TN=21 FP=2 23

Malignant FN=1 TP=17 18

Total 22 19

Abbreviations: TN = True Negative; FN = False Negative; FP = False Positive and
TP = True Positive.

mammograms or benign or malignant mammograms.
However, this work reported an automated MIAS database
mammograms classification in which mammogram are classi-
fied first to abnormal and normal, after which the abnormal
mammograms were further classified into benign or malignant

mammograms.

Results and discussion
For the first stage classification, the sensitivity, specificity,
PPV and NPV of the model are all 100%. This means that
the system is 100% accurate of differentiating abnormal
mammograms from normal ones.

Using the information on the confusion matrix
labeled Table 2, the second level sensitivity, specificity;
PPV and NPV of the model were calculated thus:

TP

TP+ FN
17
=—x(1

™ (100%)

= 94.4%

Sensitivity = * (100%)

)

Table 3 Results from proposed technique and existing works

TN
21
|
3t (100%)

=91.3%

2

PPV * (100%)

“ TP Y FP
17

=19* (100%)

= 89.5%

)

N

TN+ FN
21

=25 (100%)

=95.5%

NPV % (100%)

“4)

From the performance metrics, the probability that the sys-
tem would detect a malignancy among patients that have
cancer is 0.944, that is, sensitivity =94.4%; the probability
that the system would classify a patient’s mammogram
image as benign among patients that do not have cancer is
0.913 (specificity =91.3%). Also, the probability that a mam-
mogram would be actually malignant when it is classified to
be cancerous by the system is 0.895 (PPV =89.5%) and the
probability that the mammogram would be benign when the
system says it is not malignant is 0.955, that is, NPV =95.5%.

Conclusion
The significant variability that occurs when interpreting the
same mammogram independently by different radiologists

S/N Authors Classification category Sensitivity (%) Specificity (%) Accuracy (%)

I Lothe et al'’ NA 92.30 62.50 86.84
Dominguez and Nandi*® BM 55 85 PPV 0.71

NPV 0.75

3. Rejani and Selvi?' NA 88.75 - -

4, Moayedi*? NA 95.8 99.0 96.60%

5. Dheeba and Tamil*® NA - - 86.1%

6. Kavitha and Thyagharajan®* BM 100 9% 98.00

7. Zhang et al®® BM 94.85% 78.20 -

8. Kamra et al*® BM 71.43 97.22 93.02

9. Rouhie et al”’ BM 85.41 91.89 88.65

10. Damasceno et al*® BM 99.41 99.84 99.73

. Kaur et al®® NA - - 96.90
Proposed method NA (BM) (100) 94.4 (100) 91.3 (100) 92.68

Abbreviations: NA, MIAS classification into normal and abnormal mammograms; BM, MIAS classification into benign and malignant Mammograms; MIAS, Mammographic

Image Analysis Society; NPV, negative predictive value; PPV, positive predictive value.
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leads to diagnostic errors. It is therefore imperative to find an
improved method to aid the detection and classification of ROI
on mammograms. This article has discussed an automated
mammogram classification system that uses a modified SVM
classification technique. Performance evaluation results
obtained suggested that the system could be used as radiolo-
gists’ potential tool for supporting decision making in mam-
mogram interpretation. This could in turn help Radiologists to
make an accurate and timely decision, thereby increasing the

efficiency of their diagnostic skills.

Data availability
Raw mammograms used in this work are publicly avail-
able at mini-MIAS: http://peipa.essex.ac.uk/pix/mias/.
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