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An automated method for 
identifying an independent 
component analysis-based 
language-related resting-state 
network in brain tumor subjects for 
surgical planning
Junfeng Lu1, Han Zhang  2, N. U. Farrukh Hameed1, Jie Zhang1, Shiwen Yuan1,  

Tianming Qiu1, Dinggang Shen2,3 & Jinsong Wu1

As a noninvasive and “task-free” technique, resting-state functional magnetic resonance imaging (rs-

fMRI) has been gradually applied to pre-surgical functional mapping. Independent component analysis 

(ICA)-based mapping has shown advantage, as no a priori information is required. We developed an 

automated method for identifying language network in brain tumor subjects using ICA on rs-fMRI. 

In addition to standard processing strategies, we applied a discriminability-index-based component 

identification algorithm to identify language networks in three different groups. The results from the 
training group were validated in an independent group of healthy human subjects. For the testing 

group, ICA and seed-based correlation were separately computed and the detected language networks 

were assessed by intra-operative stimulation mapping to verify reliability of application in the clinical 

setting. Individualized language network mapping could be automatically achieved for all subjects 

from the two healthy groups except one (19/20, success rate = 95.0%). In the testing group (brain 
tumor patients), the sensitivity of the language mapping result was 60.9%, which increased to 87.0% 
(superior to that of conventional seed-based correlation [47.8%]) after extending to a radius of 1 cm. We 
established an automatic and practical component identification method for rs-fMRI-based pre-surgical 
mapping and successfully applied it to brain tumor patients.

In functional surgical neuro-oncology, the precise localization of brain language areas contributes to both max-
imum resection and minimum functional injury, as well as prolonging survival time and improving quality of 
life1,2. Functional imaging-based pre-surgical mapping provides essential information for intra-operative localiza-
tion of eloquent regions3,4. Although task-based functional magnetic resonance imaging (fMRI) has been widely 
applied for preoperative language mapping5–7, there still remain concerns of instability and variability8. Both sen-
sitivity and speci�city were unsatisfactory according to a systematic review9 and a recent study10 using 3 T fMRI 
reported that the sensitivity was only 37.1%, suggesting that task-based fMRI is not yet ready for prime-time 
guidance of glioma resection11. Moreover, it is inconvenient for both doctors (di�cult-to-implement and compli-
cated experimental design) and patients (time-consuming and highly demanding)9,12. For patients with language 
de�cits, such as aphasia and alexia, or cognitive de�cits, who need extensive preoperative planning, poor task 
performance may cause failure in language mapping.
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Signi�cant evidence has suggested that spontaneous brain activity observed in resting-state fMRI (rs-fMRI) 
without any explicit task performance can reveal various primary and high-level cognitive systems including the 
language network13–16. Brain areas belonging to the same functional system or network share similar spontaneous 
blood oxygenation level-dependent �uctuations (that is, functional connectivity, or FC), which di�er from those 
of other systems17,18. Over the past decade, although most researches13,19,20 focused on group-level rather than 
individual level studies, these studies did not indicate the potential of implementing rs-fMRI in individualized 
language network mapping for preoperative planning. In our previous study21, our group demonstrated the feasi-
bility of rs-fMRI in language mapping in glioma patients using a seed-based correlation approach, indicating the 
promising clinical prospect of this technique.

However, in seed-based FC, the position of a seed region could greatly a�ect the resulting pattern of the func-
tional system, such as the language network. Also, the Pearson’s correlation implemented in the previous study 
suggests sensitivity to systematic noise such as head motion and physiological nuisance signals, easily leading to 
false positive (mistakenly identifying non-language areas) and false negative (missing detection of putative lan-
guage areas) results. �erefore, these issues have limited the clinical application of seed-based rs-fMRI in language 
mapping. Independent component analysis (ICA) is one of the two most commonly adopted analytical methods 
for rs-fMRI data13,14. It is a blind source separation approach without any pre-de�ned seed region. Tie et al.22 have 
tried to implement ICA to de�ne language areas in individual healthy subjects. �ey successfully mapped the 
language networks for all 18 subjects. However, they analyzed only healthy subjects rather than tumor patients. 
�e clinical application of ICA on individual rs-fMRI from patients remains unknown. �e lesioned brain, par-
ticularly due to the mass e�ect and functional reorganizations caused by the tumors, may add more complexity to 
ICA-based rs-fMRI language mapping23–25. Moreover, their semi-automated data processing method requires a 
further visual identi�cation step, which is not easily applicable to clinical practice because the identi�cation of the 
“correct” language network-related component from the automatically suggested multiple language network can-
didates by doctors poses additional di�culty. Finally, in the clinical setting, the signal-to-noise ratio of rs-fMRI 
data could be lower than that in a research dedicated environment.

In this study, we investigated the feasibility of applying individual ICA on rs-fMRI to map language areas pre-
operatively in patients with brain tumors. We aimed to investigate and establish a clinically feasible and accept-
able procedure for clinicians. We adopted an automated language-component identi�cation approach, which 
is di�erent from, and also easier than, the previous method22 and it even requires no expertise on ICA-derived 
components. Most importantly, the feasibility and robustness of our approach have been veri�ed in healthy sub-
jects from di�erent centers as well as in tumor patients using gold standard putative language mapping results.

Methods
We will �rst describe the automatic language network mapping algorithm based on individual ICA and rs-fMRI 
in a cohort of healthy subjects (training group, TR). Task fMRI results from the same cohort will be used for 
comparison with the rs-fMRI-based mapping results. Second, this method will be validated using an independent 
cohort of healthy subjects with a di�erent imaging protocol (validation group, VA). �ird, the language network 
will be mapped preoperatively in a patient group with gliomas (testing group, TE) to assess feasibility in a clinical 
setting. �e results will �nally be compared with intra-operative electrocortical mapping result which is o�en 
regarded as the gold standard for language mapping.

ICA-based automatic language network mapping in TR group. Subjects. Ten healthy subjects, of 
ages between 24 and 54 years (with an average age of 30.9 years), including six males and four females, were 
enrolled in the TR group from Huashan Hospital, Fudan University. All subjects were right-handed and native 
Chinese speakers. In addition, none of the subjects had any previous history of neuropsychological diseases 
or any form of language, auditory, or visual impairments. �e Huashan Institutional Review Board approved 
this study, and all subjects signed the informed consent form before the scan. �e procedure was carried out in 
accordance with approved guidelines.

Protocol. �e subjects were asked to perform a language task of picture naming. �e task paradigm was a block 
design, with alternating “rest – task – rest – task…” blocks. Each block lasted 24 s, and equal time was allocated to 
task and rest periods. �e task paradigm included �ve task blocks separated by six resting blocks. An 8 s dummy 
scan was performed to stabilize the magnetic �eld prior to MRI scanning. �ere were 136 time points during the 
entire task sessions, with a total duration of 4 min and 32 s. �e pictures were projected onto a screen placed at 
the heads of the subjects through an MRI-compatible visual and auditory stimulation device. �e subjects were 
required to “silently” name the pictures: this was a language task in which subjects were required to not overtly 
speak out the names of the presented pictures, but to covertly (silently) name them in order to avoid lip and 
tongue movement. During the resting state sessions, they were asked to relax and look at the “+” sign at the center 
of the screen (�xation).

Image acquisition. MRI was acquired using a 3.0 T MRI (MAGNETOM Verio 3.0 T, Siemens AG, Erlangen, 
Germany) with an eight-channel coil. �e parameters of rs-fMRI using echo planar imaging (EPI) were set 
as follows: TR/TE = 2,000/30 ms, FA = 90°, slice number = 33, matrix size = 64 × 64, FOV = 220 × 220 mm, 
slice thickness = 3 mm, gap = 1 mm (voxel size 3.4 × 3.4 × 4 mm3), dummy scan = 6 s, number of acquisi-
tions = 240. Task-based BOLD-fMRI imaging used the same parameters (but with fewer [136] acquisitions). 
�ree-dimensional (3D) T1-weighted magnetization-prepared rapid-gradient echo (MPRAGE) imaging was 
applied to acquire structural images (acquired through the sagittal plane, TR/TE = 2,530/3.45 ms, FA = 7°, slice 
number = 176, matrix size = 256 × 256, FOV = 256 × 256 mm, slice thickness = 1 mm).
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Language task activation analysis (group-level). Similar to previous studies22, a language area template is 
required to automatically select the best match from the resting-state components. Using both task-related and 
resting-state fMRI data, the TR group was used to generate language templates. We applied Statistical Parametric 
Mapping (SPM8, http://www.�l.ion.ucl.ac.uk) for preprocessing and statistical analyses to generate the activa-
tion images with the conventional processing pipeline. Data at the �rst four time points were discarded prior to 
preprocessing. A�er slice timing, the EPI data were corrected for head motion using rigid body transformation 
with 6 parameters. Data with head motion exceeding 2 mm in transformation or 2° in rotation were treated 
as excessive head motion and should be excluded. However, no data in this group met this exclusion criteria. 
Following this, the data were spatially normalized to Montreal Neurological Institute (MNI) standard space, 
and Gaussian smoothening with an 8-mm full-width-half-magnitude (FWHM) kernel was then performed to 
spatially smoothen the fMRI data.

For task activation analysis, a generalized linear model (GLM) was used to model the individual-level 
task e�ect for each subject; following this, a random-e�ect model with one-sample t-test was applied to the 
individual-level contrast images from the 10 subjects to generate a group-level t map (language task activations). 
�e threshold was set at q < 0.005 (false discovery rate [FDR] corrected) and the extension threshold was set at 

Figure 1. �e creation of language network template and comparison of ICA and task fMRI results in the 
TR group. (A) Top: group-level task activation map in the picture naming task from the 10 subjects in the TR 
group (p < 0.005, FDR corrected); �e green circle indicates the seed region [−57, 15, 24]. Bottom: group-
level resting-state functional connectivity based on the seed region (p < 0.001, FDR corrected, extension 
threshold = 20 voxels), which served as template for further component identi�cation. (B) Comparison between 
the ICA results when DICI value reached its highest value (the IC was 60) (t > 2.8) and the task fMRI results of 
the TR group (p < 0.005, FDR corrected; t > 4.3).

http://www.fil.ion.ucl.ac.uk
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20 voxels to ensure robust activation of picture naming (Fig. 1). �eoretically, the task activation map should 
be used as the template to identify resting-state language network; however, in practice, the group-level task 
activations in the picture naming task also included other task-related clusters beyond the essential language 
areas. Speci�cally, we found that the task activations also involved other functional systems such as primary and 
high-order visual areas (see Result), which could be due to visual stimulation during the task rather than language 
function. �erefore, we did not directly use the task activation as the template to avoid bias in following language 
network detection. Instead, we used the rs-fMRI data to generate the language template based on the group-level 
task activation information.

Creating language network template (group-level). �e rs-fMRI data was preprocessed using DPARSFA (www.
restfmri.net/forum) so�ware, which involved removing the �rst 10 time points, slice-timing, head motion correc-
tion, registration to an EPI standard template in the MNI space, resampling to 3 × 3 × 3 mm3, Gaussian smooth-
ening (FWHM = 8 mm), temporal detrending, and band-pass �ltering (0.01-0.08 Hz). �ree peak coordinates 
were located in the frontal lobe from the group-level picture naming task activations and we attempted using all 
three to construct the optimal language template. �e �rst seed [−36, 0, 51] was located in Brodmann area (BA) 
#6 (middle frontal gyrus), the second [−51, 27, 24] in BA #45, and the third [−57, 15, 24] in BA #44. We went 
on to separately use the three coordinates as seeds to generate seed-based FC maps based on the TR group. We 
found that the third seed led to a resting-state language FC pattern best matching with the language meta-analysis 
result (generated by using the keyword “language” on http://neurosynth.org, a website-based meta-analysis tool-
box). �is seed was then chosen as the optimal language seed region. Seed-based correlation was conducted for 
each subject, and the resulting Pearson’s correlation maps were transformed to z maps. Group-level analysis was 
conducted on the z maps using a one sample t test (q < 0.001, FDR corrected, extension threshold = 20 voxels), 
producing a binarized template of the language networks for automatic component identi�cation. We named this 
template the “TR template” as it was derived from the TR group.

Group ICA analysis (data quality validation). Group-level ICA (GICA) was �rst performed to validate our data 
quality by comparing the resultant group level intrinsic connectivity networks, including the language network, 
with previous data18,22,26,27. Individual ICA was then performed for each subject. To perform GICA, a temporal 
concatenation GICA (SOI-GICA, implemented in MICA toolbox, https://www.nitrc.org/projects/cogicat/) was 
used. �e preprocessed data without detrending and �ltering was fed into MICA. GICA was calculated 100 times 
with the initial value and the subject order randomized each time to obtain consistent result28. As model order 
(i.e., total number of components, TNC) is di�cult to prede�ne and can signi�cantly a�ect ICA results29,30, we 
deliberately set various model orders ranging from 20 to 60, with 10 in each increment, to determine the opti-
mized model order (i.e., total component number) for the language network.

Individual ICA analysis (language network detection). Individual ICA was also conducted using the MICA 
toolbox with a procedure similar to that in GICA, except that data from only one subject was used each time 
(there was no subject order randomization). Another di�erence is that individual ICA was applied to fMRI data 
in individual space, rather than the standard MNI space. �erefore, un-registered data was fed into individual 
ICA, while the normalization step was only done to obtain the deformation information through which the lan-
guage network template in the standard space could be projected back to the individual-speci�c space (i.e., native 
space).

DICI algorithm. To automatically identify the language network from individual ICA results, we utilized a 
template matching algorithm, namely Discriminability Index-based Component Identi�cation (DICI), which 
includes two modules. �e �rst module is DICI calculation using discriminability index (also known as d-prime 
or d’) as a metric which compares the similarity between each component and the template. �is is a useful 
concept in the Signal Detection �eory, which can be described using a decision-making scenario. In a simple 
forced choice problem, the experimenter has to correctly identify the existence of signal from a noisy background. 
�e decision-making takes place in the presence of uncertainty caused by either external noise (controllable) or 
internal noise (uncontrollable and immeasurable, re�ecting the variable internal response of “judgment-related 
neurons” in the experimenter’s brain). �e higher both types of noise levels tend to be, the lower the detectability 
becomes. To conclude, DICI provides a precise language and graphical notation for analyzing decision making by 
measuring the signal strength, that is, to what extent the two distributions overlap with each other with the ratio 
“separation/spread”. In ICA studies, component identi�cation is also a decision-making problem. �e researcher 
must identify a component of interest (COI, i.e., signal) in the presence of noise (because imaging noise could be 
also included in the COI) from all other components containing no signal (e.g., physiological noise-related and 
head motion-related components, as well as components with signi�cant voxels in white matter, cerebrospinal 
�uid or other brain areas of no interest). In DICI calculation, we assume that the noise in a component, as men-
tioned above, follows a Gaussian distribution with a �xed variance. DICI is thus, a complete characterization of 
the detectability of a COI. �erefore, both the hit rate (HR) and the false alarm rate (FAR) can be speci�cally 
calculated in DICI to obtain a measure of judgment that is independent of the experimenter’s criterion. As shown 
in Supplementary Table 1, the hit rate is also referred to as “sensitivity”, and the “1- false alarm rate” is referred 
to as “speci�city”. DICI considers both sensitivity and speci�city. �e HR and the FAR are �rst transformed to z 
scores according to an inverted cumulative distribution function of a standard Gaussian distribution (mean = 0 
and standard deviation = 1) and DICI is then obtained by subtracting z(FAR) from z(HR).

A�er calculating DICI values for all components and all ICA runs with di�erent model orders, the second 
module of our method compares DICI values across components and di�erent ICA runs (see Supplementary 
Figure 1). In this way, the component identi�cation can take the total number of components (TNC)-induced 

http://www.restfmri.net/forum
http://www.restfmri.net/forum
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https://www.nitrc.org/projects/cogicat/
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result variability into consideration. First, for each ICA run with a speci�c TNC setting, all components gener-
ated by ICA are ranked in a descending order based on their DICI values. �e component with the largest DICI 
is selected as a “candidate” for the current ICA run, which is further compared with other candidates based on 
all other TNC settings. �e candidate component with the largest DICI value across all TNCs is chosen to be the 
�nal optimal COI. �e corresponding TNC can be de�ned as the optimal TNC for the COI. Of note, we can also 
select the component with the second largest DICI value for each TNC setting; therefore, we can jointly compare 
components with the largest and the second largest DICI values for better component identi�cation and to iden-
tify more than one COI. In this study, we only searched for the largest DICI values for simpli�cation. �at is, we 
aimed to identify one component that best represents the complete language network.

Automatic component identi�cation (group-level). To test the feasibility of our DICI algorithm, DICI was �rst 
performed on TR data at the group level (i.e., for GICA) with the template in the standard space produced in the 
previous step. Speci�cally, for each component, the HR was de�ned as the overlapping area between the binarized 
spatial map of a component and the template, divided by the total “activated” area in the template; the FAR was 
calculated as the area in binarized spatial map of a component but not in the template, divided by the total “inac-
tivated” area in the template. �e component with the highest DICI value across all GICA runs was labeled as 
the best language component at the group level. To binarize the group-level components, t > 1.96 (p < 0.05) was 
adopted as the threshold.

Automatic component identi�cation (individual-level). Similar to the group-level language network detection 
in 2.1.9, for further demonstration of the feasibility of the DICI algorithm in individual-level language network 
identi�cation, we conducted DICI at the individual level to detect the language networks for each subject in the 
TR group separately. Of note, the DICI-based component identi�cation at the individual level was conducted 
at each individual’s own space (each subject’s native space). �e language template was also individualized by 
warping the group-level language template (in standard space) back to each subject’s native space. To binarize the 
individual-level component, the threshold z was set in accordance with the following principles: the threshold 
z value was initially set at 1.96. However, due to heavier noise and artifacts, and fewer samples (rs-fMRI time 
points) at the individual level, sometimes, the z threshold of 1.96 is too stringent to detect any overlap with the 
language template. To make our DICI algorithm tolerable to extreme cases with low signal-to-noise ratio, we 
automatically decreased the threshold until a validated DICI value could be calculated (i.e., there were at least 
some overlapping voxels between individual components and the template). Speci�cally, this strategy was realized 
by: 1) First calculating DICI based on z > 1.96; 2) If, for at least one model order setting, there is at least one over-
lapping voxel between the thresholded component and the template, i.e., the sensitivity is larger than zero, or the 
speci�city is less than one, conventional DICI algorithm will be conducted to select the best-�tted component; 3) 
If, for all model order settings, there is no overlap a�er thresholding, the threshold will be continuously dropped 
by 0.2 until validated DICI values can be calculated, or until the threshold has dropped to the “red line” (z > 0.8). 
If the threshold of z > 0.8 still cannot result in an overlap, experts will visually analyze the data quality to further 
evaluate whether the data is useful or not. In the toolbox “PreSurgMapp” described later, we have added such a 
function to fully automate the DICI algorithm.

Method validation using an independent healthy VA group. To validate the �ndings from the TR 
group, we enrolled another independent group of healthy subjects. Sixty-�ve healthy subjects from another 
research center (Center for Cognition and Brain Diseases, Hangzhou Normal University), aged between 20 and 
29 years (with an average age of 20.8 years), including 39 males and 26 females, were included in this group from a 
local university in Hangzhou. All subjects were native Chinese speakers and right-handed. �e ethics committee 
of the Center for Cognition and Brain Diseases in Hangzhou Normal University approved the experiment on 
this group of subjects. Informed consent was obtained before the experiment. �e methods were carried out in 
accordance with the approved guidelines.

�e subjects underwent a rs-fMRI scan during which they were asked to keep still, close eyes, and not to 
think of anything in particular. The rs-fMRI images were collected using a GE MR750 3.0 T MRI (General 
Electronic, Milwaukee, WI, USA) with an eight-channel coil under the following parameters: TR/TE = 2,000/30 
ms, FA = 90°, slice number = 43, matrix size = 64 × 64, FOV = 220 × 220 mm, slice thickness = 3.2 mm, gap = 0, 
voxel size 3.4 × 3.4 × 3.2 mm3, dummy scan = 0, number of acquisitions = 240. �e rs-fMRI scan was followed by 
several task fMRI scans, which are not described here as they hold no relation to the purpose of the current study. 
�e structural MRIs were acquired using a fast spoiled gradient echo (FSPGR) sequence (TR/TE = 8100/3.1 ms, 
TI (preparation time) = 450 ms, matrix size = 250 × 250, FOV = 250 × 250 mm, FA = 8°, slice thickness = 1 mm, 
gap = 0, sagittal slices, and slice number = 176). �e rs-fMRI data preprocessing and ICA procedures were same 
as those of the TR group. Following pre-processing, seven subjects were excluded because their head motion 
exceeded 2 mm in translation or 2° in rotation along any direction during the scan. 58 subjects were included in 
the subsequent analysis.

�e language template, derived from the VA group, was used for component selection in the VA group. We 
used the same seed coordinates [−57, 15, 24] in BA #44 as the seed region to generate the group-level resting-state 
FC map for the VA group. Since the VA group did not have task-related fMRI data, this coordinate was derived 
from the language task activations in the TR group. We adopted this strategy based on the consideration that for 
future datasets that did not have task-related fMRI but only had rs-fMRI, the task activation result derived from 
another dataset will be used to obtain the group-level resting-state FC template for their own rs-fMRI datasets in 
DICI analysis.
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�e purpose of generating a di�erent, data-specifc language template for the VA group was to ensure the best 
�t between the components and the template (since they were derived from the same dataset). However, in order 
to check if the template generation strategy would in�uence the �nal result, we also used the VA template (gen-
erated using the VA dataset) to identify language components from the TR subjects. We anticipated that di�erent 
language network templates would still yield consistent result.

Following the identi�cation of the group-level language network using DICI on the VA group, individual 
ICA was performed for ten subjects randomly selected from this group. �e DICI algorithm was applied to 
individual-level language network identi�cation for the VA group.

Applying to language mapping in the TE group of glioma patients. Seven right-handed patients 
with gliomas in the le� hemisphere, admitted into Department of Neurosurgery in Huashan Hospital, were 
included in the TE group. �e general information of the included patients is listed in Table 1. �e inclusion 
criteria were as follows: patients that received awake surgery and intra-operative language mapping; patients with 
tumors with small mass e�ect to achieve better registration. All patients underwent preoperative rs-fMRI scan.. 
�e methods were carried out in accordance with the approved guidelines. �e Huashan Institutional Review 
Board approved all experimental protocols.

�e rs-fMRI was performed using an EPI sequence under the following settings: TR/TE = 2,000/35 ms, 
FA = 90°, slice number = 33, matrix size = 64 × 64, FOV = 210 × 210 mm, slice thickness = 4 mm, gap = 0, voxel 
size 3.3 × 3.3 × 4 mm3, dummy scan = 6 s, number of acquisitions = 240. �e clinical scans varied across subjects 
and depended on the requirements of surgery. 3D T1-weighted MPRAGE sequence (acquired through the axial 
plane, TR/TE = 1,900/2.93 ms, FA = 9°, slice number = 176, matrix size = 256 × 215, FOV = 250 × 219 mm, slice 
thickness = 1 mm, acquisition averages = 1) and/or T2-FLAIR sequence (acquired through the axial plane, TR/
TE = 9,000/99 ms, TI = 2,500 ms, FA = 150°, slice number = 66, matrix size = 256 × 160, FOV = 240 × 214 mm, 
slice thickness = 2 mm) were used as anatomical templates for super-positioning on the functional mapping 
results. Before the examination, written informed consent was obtained from the patients’ family members.

Data preprocessing and individual ICA procedures for the seven tumor patients were exactly the same as 
above. �e DICI value-based component identi�cation was performed with the language template derived from 
the TR group because the TR and TE groups were scanned with the same scanner. Because the tumors were 
located in the le� language regions, an intraoperative language mapping by direct cortical stimulation under 
awake anesthesia was adopted. The details about awake anesthesia procedures and stimulation parameters 
have been documented in our previous studies31,32. �e positive sites during intra-operative language map-
ping were recorded by neuronavigation and intra-operative images. We adopted the same method10 to compare 
intra-operative stimulation mapping (ISM) with the rs-fMRI data. A site-by-site comparison between fMRI and 
ISM maps was applied to obtain true-positive, false-positive, true-negative, and false-negative rs-fMRI sites.

Results
In this section, we report the automatically identi�ed language components by the DICI approach for each indi-
vidual in the TR and TE groups. For each subject in the TR group, the individual ICA mapping result was com-
pared with task-activation maps. For the ten subjects in the VA group, the automatically selected individual 
language network was con�rmed by two experienced neurosurgeons (JW and JL). If inconsistent visual veri�-
cation results presented, a third expert (HZ, a neuroscientist) conducted further evaluation and made the �nal 
decision. For each patient in the TE group, the ICA result was validated by ISM techniques performed by the same 
two neurosurgeons (JW and JL).

Language mapping in TR group. �e group-level picture naming task activation map from the TR group 
is presented in Fig. 1A (for a complete task activation pattern, please see Supplementary Figure 2). �e peak voxel 
with MNI coordinates [−57, 15, 24] (see Fig. 1) was chosen as seed. Figure 1B shows the group-level FC map 
for the TR group by using seed correlation (for more details, please see Supplementary Table 2). �e language 
networks were mainly distributed over the bilateral inferior/middle/superior frontal gyri, superior temporal 
gyrus, heads of the bilateral caudate nuclei, bilateral lentiform nuclei, and bilateral fusiform gyri (see Fig. 1 and 
Supplementary Figure 3). �e group-level language template generated based on seed-based correlation from the 
rs-fMRI data showed bilateral clusters (see the second row in Fig. 1A) with both the frontal and parietal clusters 
having a slightly le�-sided dominance. In contrast, as shown in the �rst row of Fig. 1A, we observe that the lan-
guage task-activation map has a prominent le�ward dominance. At the group level, our result is quite consistent 

Patient ID Sex Age (y) Tumor location Tumor volume (cm3) Pathology

1 M 23 Le� frontal 49.7 Oligodendroglioma (WHO II)

2 F 48 Le� frontal 5.3 Astrocytoma (WHO II)

3 M 26 Le� insular 46.8 Glioblastoma (WHO IV)

4 M 39 Le� insular 53.4 Oligodendroglioma (WHO II)

5 M 31 Le� frontal 10.5 Astrocytoma (WHO II)

6 F 44 Le� insular 53.4 Astrocytoma (WHO II)

7 M 32 Le� frontal 40.4 Astrocytoma (WHO II)

Table 1. Demographic and clinical information of the seven glioma patients.
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with previous studies, where resting-state FC for the language system had usually been reported to be more sym-
metric as compared to language-related task activations22. Interestingly, in our study, individual-level ICA seemed 
to have produced more lateralized language-related components showing signi�cant le� lateralization for most 
of the subjects (Supplementary Figure 4). As shown in this result (10 subjects from the VA group, also shown in 
Fig. 2 for the sagittal view from the le� side), 6 out of 10 subjects had prominent le�-sided language resting-state 
FC patterns; 3 other subjects had less prominent, but still le�-sided, language resting-state FC patterns; only one 
subject (#8) had a symmetric language FC map.

�e DICI calculation at the group level demonstrated that the largest DICI value became higher when the 
model order was set to a larger one (red line in Supplementary Figure 6). Regardless of what the model order was, 
the largest DICI value could always identify language networks, and the component with the second largest DICI 
value was not a typical language network.

For the �nal group-level result, we chose the component for which the DICI value reached its maximum 
when the TNC was set to 60 in the TR group (Fig. 1B). �is group-level ICA result largely overlapped with the 
group-level picture naming task activation pattern in the frontal lobe, especially on the le� side (Fig. 1B).

At the individual level, the language networks in the inferior frontal gyri were identi�ed successfully in 9 out 
of 10 subjects by choosing the component with the largest DICI value in all TNC settings (20, 30, 40, 50 and 60) 
with only one (subject #3) failing in identi�cation. In this subject’s case, the language network corresponded to 
the component with the second-largest DICI value; whereas the components with the largest DICI values in 
all TNC settings were the motor network. We carefully compared the two largest components in this case. One 
explanation for the failure of detection here could be due to the cluster of language networks being small whereas 
the motor network is large in this case. �erefore, the language template has a larger overlap with the motor net-
work rather than the language network.

As subjects in the TR group had individual picture naming task activations, they are also presented in Fig. 3 
along with the ICA-derived language map for comparison. Although at the individual level, the task language 
mapping results overlapped with the ICA-based rs-fMRI results, especially at the le� inferior frontal gyrus 
(Fig. 3), such an overlap was not as signi�cant and overwhelming as that at the group level (Fig. 1B). Furthermore, 
the ICA-based rs-fMRI individual language mapping was more consistent across subjects, and had a more local-
ized pattern (at the Broca’s area) than the task one (Fig. 3).

Validation in the VA group. �e group-level language FC map (VA template) applying the same seed 
region [−57, 15, 24] to the VA group was quite similar to, and highly overlapped with, the TR template (see 
Supplementary Figure 5). Our language component identi�cation algorithm was proven to be robust. �at is, 
the language networks of all subjects in the TR group were again successfully identi�ed using the VA template 
and were highly consistent with those identi�ed using the TR template (see Supplementary Material). For the 10 
randomly selected healthy subjects in the VA group, the language networks at the individual level were all iden-
ti�ed successfully (Fig. 2) by choosing the component with the largest DICI value in all TNC settings (20, 30, 40, 
50 and 60).

Individual-level language mapping in tumor patients (TE group). In all seven patients (TE group) 
with glioma in the le� hemisphere, the rs-fMRI and ICA-based approach successfully identi�ed the language 
network in the le� frontal lobe. All the identi�ed language networks corresponded to the components with the 
highest DICI value in all model order cases. �e comparison of the language networks obtained based on ICA 
and rs-fMRI with the ISM results (i.e., the gold standard) indicated that the two results were generally con-
sistent. Speci�cally, of the total 23 ISM-positive sites related to language production function, 14 were located 

Figure 2. Individual language mapping result for 10 randomly selected subjects from the VA group, based on 
rs-fMRI and ICA. �e result was z transformed and thresholded, with z > 1.96 (p < 0.05), uncorrected. �e 
functional mapping results were superpositioned onto each individual’s T1 structural MRI. �e identi�ed 
components were all based on the largest DICI value across all model order cases (20, 30, 40, 50 and 60). �e 
template used for DICI value-based automatic component identi�cation was derived from the whole VA group.
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in the ICA-based rs-fMRI result (Sensitivity = 14/23, 60.9%), and 6 were located within a 1 cm radius of the 
ICA-based rs-fMRI result (Sensitivity = 20/23, 87.0%) (see representative cases in Figs 4 and 5, and other cases in 
Supplementary Figure 7). However, the seed-correlation mapping using a seed in the contralateral inferior frontal 
cortex with canonical coordinates showed a lower sensitivity (with 3 located in the activation (3/23, 13%), and 8 
located within 1 cm (11/23, 47.8%)).

Representative case 1. �is patient was a 39-year-old male who was admitted to the hospital due to “le� insular gli-
oma”. We performed cortical electrical stimulation (a neuronavigation screenshot is shown in Fig. 4A) for language 
localization and determined the location of the language area to be at the posterior inferior frontal gyrus. Based on 
the screenshots and the landmark sulci and gyri, three ISM positive points were found (see green squares in Fig. 4B, 
and also a picture labeled with Arabic numbers in Fig. 4D). Using ICA on rs-fMRI, the DICI value approached 
identi�ed component #18 with TNC of 60 being the best language component (thresholded by z > 1.96, p < 0.05, 
uncorrected, as shown by the warm colored areas in Fig. 4B,C). �e functional mapping blobs were located in Broca’s 
area and Wernicke’s area as well as the premotor and primary mouth motion areas. Of the three ISM positive points, 
two were observed in the rs-fMRI derived area, and the other was observed inferior to it within a 1-cm range. �e 
bone window was depicted with a blue circle, within which we could see that the rs-fMRI-ICA-derived positive areas 
were in consistency with the ISM derived ones. However, using the same rs-fMRI data, with the seed region de�ned 
in the canonical counterpart of the Broca’s area according to the standard coordinates, the seed-based FC mapping 
(Fig. 4E,F) failed in the detection of positive language areas in the le� hemisphere. At the three ISM positive areas, 
the seed-based FC values were all low (r = 0.002, 0.120, and 0.011).

Figure 3. Comparison between the ICA results and the task-state results of the TR group at the individual level 
using the DICI value method.
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Representative case 2. �is patient was a 32-year-old male with glioma in the le� frontal lobe. We used his 
preoperatively obtained rs-fMRI data to conduct ICA-based functional mapping using the DICI method. 
Component #26 with the TNC of 30 was determined as the language-related component (see the warm colored 
blobs in the le� column of Fig. 5). �e two ISM positive sites associated with anomia lay within the rs-fMRI 

Figure 4. Comparison of language mapping and ISM results for the representative patient #4. �e labels 1, 2 
and 3 indicate the positive sites inducing speech arrest during number counting. �e green cross indicates the 
ISM positive site of speech arrest, which was recorded using neuronavigation.

Figure 5. Comparison of language mapping and ISM results for the representative patient #7. �e green cross 
indicates the ISM positive site of anomia which was recorded using neuronavigation.
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and ICA-derived mapping result. In contrast, seed-based FC mapping only found activations in the parietal 
lobe and the dorsal part of the inferior frontal gyrus. In ISM positive regions, the seed-based FC values were 
low (r = 0.008 and 0.146).

Discussion
General discussion. In this study, we introduced a discriminability-index-based component identi�cation 
algorithm for automatic language network extraction33, and investigated its feasibility, robustness and reliabil-
ity for preoperative eloquent language area mapping in both healthy subjects and glioma patients. Two healthy 
cohorts were included, and the results were cross-validated. Individualized language network mapping could 
automatically be achieved without any human interference for all healthy subjects from the two groups except 
for one case (success rate = 95.0%). For this failed subject, the best language network identi�ed by experts’ visual 
inspection corresponded to the component with the second largest DICI value; whereas the component with the 
largest DICI value across all model orders was less related to language function. For this case, the reason of DICI’s 
failure may be that the language template generated for the TR group had overlaps with the motor network in 
several ventral motor areas (related to the mouth and tongue movement). �us, with this template, our algorithm 
tended to detect ventral motor areas as well. �e second reason could be that the �rst and the second largest DICI 
values were so similar that one independent component could not cover the whole language network. �at is, 
both of them could be regarded as the candidate components of interest but each one of them captured only part 
of the language network. �e results showed that the rs-fMRI and ICA-derived language networks were highly 
consistent with the task activation results in the dominant hemisphere. In the clinical cohort consisting of 7 gli-
oma patients, our automatically detected language areas were in concordance with the intraoperative stimulus 
mapping-derived gold standard (sensitivity = 87.0% while extending to a radius of 1 cm from ICA results). In 
contrast, the conventional seed-based correlation using “standard” coordinates achieved a sensitivity rate of only 
47.8%. Such an improvement could be due to the noise reduction ability of ICA.

In recent years, rs-fMRI has greatly advanced and the basic research achievements in spontaneous brain 
activity and FC have been gradually applied to clinical studies of various diseases of the nervous system14,17,34,35. 
Among these applications, the implementation of rs-fMRI-based functional localization for pre-surgical planning 
is one of the newest and the most clinically relevant8,22,24,36–39. In our previous study, we conducted preliminary 
applications of seed-based rs-fMRI in locating eloquent language areas preoperatively21. Although a higher sen-
sitivity (47.8%) as compared to the task fMRI result (35.1%) was reported, it was still not accurate enough for 
reliable clinical application. In the current study, we adopted a data-driven, multivariate FC analysis method to 
decompose rs-fMRI data, which was aimed at improving the rs-fMRI-based language mapping result. �e sen-
sitivity increased to 60.9% (87.0% when extending to a radius of 1 cm from the ICA results) and this signi�cant 
improvement indicates a promising future for rs-fMRI-based pre-surgical mapping.

Although high sensitivity is reported, our approach is not yet adequate to replace the existing gold standard 
procedures such as ISM, considering the possible mistakes made by such an automated component identi�cation 
algorithm. �e ultimate goal of pre-surgical mapping is to reduce the probability of misjudgment of critical areas 
in surgery. Any means that can achieve this goal should be implemented. For example, based on the automatically 
suggested components, experts’ re-checking is of great importance. �e fully automatic algorithm presented in 
this study is by no means a replacement of such a visual con�rmation by experts, nor a replacement of the ISM 
technique. In addition, task activation-based pre-surgical mapping, as a traditionally well-adopted technique, 
should not be discarded. �e rs-fMRI FC-based mapping result can be used as a good supplement in some di�-
cult cases where gold standard procedures cannot be applied10,11, particularly for patients with language de�cits 
prior to the surgery, or those with signi�cant cognitive impairments who cannot perform complex language tasks. 
Another potential promising clinical usage of the DICI algorithm is that, based on the automated algorithm, mul-
tiple ICA runs with di�erent TNC settings can be conducted and the most likely language-related components 
can be identi�ed (e.g., the components with the �rst two largest DICI values in all TNC settings), which will 
dramatically reduce human labor and potential error in visual identi�cation.

�e novelty of the usage of the DICI-based post hoc analyses for individual ICA should be emphasized. 
Before this study, no previous studies have used a fully automated component identi�cation method to locate 
the language areas individually. Visual identi�cation8,36 and multiple experts’ agreement-based identi�cation22 
are too subjective and laborious in clinical application, and that is why ICA-based pre-surgical mapping is still 
not extensively used. Although Tie et al.22 attempted to adopt a goodness-of-�t (GOF) algorithm, which has been 
widely adopted in group ICA studies, this method has produced several “candidate” language components that 
necessitate further human-based identi�cation. Our DICI approach produced only one best-�tted component, 
which was consistent with visual identi�cation in 95% of the healthy subjects (19/20) and in all patients (7/7). 
Only in one healthy subject did DICI fail in the detection of language areas in the best-�tted component, but it 
was still able to detect them in the second best-�tted component. In contrast, our previous work showed that 
the GOF-based component identi�cation could lead to bias and misidenti�cation in working memory network 
detection (not shown). A detailed comparison of the DICI and GOF algorithms will be discussed later.

Complexity of language area mapping. Locating eloquent language areas is more complex than de�ning 
motor areas. Studies concerning the application of rs-MRI in neurosurgery have been initiated since 2009, but 
most papers have reported sensorimotor mapping8,36,38,40. However, for language mapping, several concerns must 
be addressed, as elaborated below.

First, task fMRI-based language mapping has a dominant hemisphere, while rs-fMRI-derived language net-
work is usually bilaterally distributed. �e interpretation of the motor network becomes fairly straightforward by 
performing the “task-rest overlap” analysis38,41. However, in studies of language networks, a unanimous de�nition 
has never been made and language networks could easily be misidenti�ed as frontal, frontal temporal, or frontal 



www.nature.com/scientificreports/

1 1SCIENTIFIC REPORTS | 7: 13769  | DOI:10.1038/s41598-017-14248-5

parietal networks. Not as consistent and reliable as the well-known default-mode network, some rs-fMRI-ICA 
literature did not even report language networks42. In this study, we also observed such a “task-rest” discrepancy 
in the spatial pattern. �erefore, directly using task language activation as a template to identify resting-state 
language network could have been sub-optimal. We used the task-related peak voxel as a seed (de�ned by picture 
naming task activation), and then generated a language template using seed-based correlation on rs-fMRI data, 
with which a reliable language network could be de�ned for subsequent DICI calculation20,43. We also com-
pared our language template to the language task activation meta-analysis result (generated by searching the 
keyword “language” on “Neurosynth” website). Neurosynth (http://neurosynth.org) is a platform for large-scale, 
automated synthesis of fMRI data. It uses more than 400,000 activations reported in more than 10,000 studies, 
which are suitable for meta-analysis. Speci�cally, we used the keyword “language” and found 885 studies with 
35,041 activations, based on which a language task activation “meta-analysis” map was generated (Supplementary 
Figure 8). As shown in the �gure, our task-activation and resting-state FC results for the language network had 
an intersecting area in the le� inferior frontal lobe (Supplementary Figure 8A), which is similar to the language 
task activation meta-analysis result (Supplementary Figure 8B); in the lower slice, we found four mirrored clusters 
from the language resting-state FC map (Supplementary Figure 8C) in the bilateral frontal and parietal regions 
(i.e., Broca’s area and Wernicke’s area as well as their counterparts), whereas the meta-analysis result only shows 
le�-sided activations (Supplementary Figure 8D) with quite similar locations to our result. Our seed de�nition 
for template generation was also validated by using two independent cohorts and we found a highly overlapping 
group-level language connectivity pattern (see Supplementary Figure 5). Interestingly, at the individual level, 
task activations were more scattered and “noisy” than the rs-fMRI-ICA-derived language mapping result (see 
Fig. 2), although the former were signi�cantly overlapping at the frontal region. In future, task and resting-state 
fMRI-based language mapping should be further compared with ISM to systematically evaluate the feasibility of 
the two modalities.

Secondly, language processing involves many systems, including phonologic, morphologic, and semantic sys-
tems ranging from speech perception to production44–47. Experimental design for language mapping using task 
fMRI is complex and the results depend on the chosen language task9–11. �is will result in signi�cant variability 
across research centers and studies using di�erent language task protocols9. In a recent study evaluating the accu-
racy of task fMRI compared with ISM10, the sensitivity of 37.1% greatly limited its use in clinic. Resting state is a 
natural experimental design that facilitates result comparison and integration across centers, thus making it more 
suitable for pre-surgical language mapping. �e “data-driven” characteristic of ICA provides unique advantages 
in neurosurgical functional localization, particularly, in the complex language network localization. Based on our 
previous experience and the reports from literature22, there are two components belonging to typical language 
networks: one is a “frontal sub-network” and the other is “temporal sub-network”. In this study, we intended to 
use DICI to identify the “complete” language network including both sub-networks. To do this, DICI would �nd 
an optimized ICA model order (i.e., TNC setting) to generate a single language network. �is will signi�cantly 
reduce the complexity of language mapping since only one best-matched language component will be identi�ed. 
We must admit that since the seed region was located in the frontal lobe, and, the language template we used 
was also frontally dominant, the obtained ICA results could be frontally dominant. However, since language 
area localization in the frontal lobe is the most pivotal (as it is related to language production, an ability that is 
important to the quality of life) in clinical practice, our method is adequate for clinical usage as it can successfully 
recognize the “frontal component” of language networks. As a result, we found nearly all subjects (except subject 
#8, who had an equally signi�cant parietal subdivision selected) to have a dominant frontal subdivision of the 
language network identi�ed by ICA and DICI-based component selection method. �e direct cause of the more 
frontally distributed language networks is that we selected the “language template” based on the resting-state FC 
analysis using the seed region de�ned by the picture naming task. During the picture naming task, the language 
production-related area, i.e., Broca’s area, was more strongly activated (see Fig. 1A, the �rst row). Seed-based 
correlation according to the le� frontal language subdivision will more likely generate a connectivity map with 
larger and more extensive frontal area involved. �us, when using such a template for individualized language 
network identi�cation, the component with more frontal area involvement could more likely be selected by tem-
plate matching. We have noticed that in previous studies22, the researchers separately used the frontal and the 
parietal parts (also, a joint map including both parts) as templates to identify the language network. When com-
pared with expert-selected language components, the joint map-based template, and the frontal subdivision-only 
template resulted in better solutions22. �is again indicates that the frontal subdivision of the language network 
could be more important for identifying language-related components using template-matching algorithm, and 
this is further validated by our study. Another consideration for future template selection is that if one needs to 
identify language production areas for surgical mapping, the current strategy can be used to generate a template 
with more frontal areas involved. If the goal is to identify language comprehension-related components, another 
template should be generated, e.g., a template based on the seed region placed in the temporal parietal area 
(Wernicke’s area), or on language interpretation-based task-related experimental design (e.g., wording listening, 
phonological/rhyming, and noun-verb semantic association task.). �erefore, we suggest that in the future, di�er-
ent templates should be prepared for di�erent purposes, depending on the location of the tumor in the language 
network48. From the methodological viewpoint, with our DICI algorithm, we can detect multiple components 
(i.e., several highly ranking components) according to the two largest DICI values, higher model orders (80, 90, or 
more), and using templates with both frontal and parietal subdivisions included. In this way, the usage of a single 
template only can also achieve the detection of multiple language-related components.

�irdly, because of the complexity and signi�cant individual variability of language networks, and due to 
the absence of anatomical landmarks (unlike the “hand knot” for the motor area), direct seed-based language 
mapping could be problematic. In addition, lesions tend to cause displacement and functional plasticity of lan-
guage areas49–51. �is explained why our previous attempt for seed-based (using standard Broca’s counterpart 
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coordinates as seed) language mapping only achieved 47.8% sensitivity. Although in one case (patient #1), 
seed-based language mapping generated a result that highly resembled the ICA-based result, our representative 
case report showed that the seed correlation resulted in either scattered FC pattern, or failure in detecting elo-
quent language areas. �erefore, we think that seed-based FC might be more suitable for motor area mapping, but 
it still remains questionable in language mapping. Without the requirement of a priori seed information, ICA thus 
acts as a suitable technique, especially when the artifact or noise problem is serious. However, in patients with 
serious brain distortion or signi�cant language functional plasticity, the usage of ICA should be cautious. �is is 
because ICA result requires further interpretation for COI identi�cation, and template matching is the commonly 
adopted way to “interpret” the ICA result. Since our template in this study was generated using a healthy cohort, 
if the language areas were far away from their “normal” location, the DICI algorithm might not be able to identify 
language networks accurately. If the brain is much distorted by tumor mass e�ect, the registration error could lead 
to inaccuracy of the individualized template for DICI, which may lead to error in DICI. �is, however, is a general 
problem for all functional localization algorithms using rs-fMRI and template matching. In addition to using 
more sophisticated registration algorithms52,53 that can take brain distortion and large lesions into account, based 
on our best clinical application experience, we would rather recommend using seed-based correlation based on 
the seed region de�ned from the una�ected side, or from the other una�ected area that has been demonstrated to 
be strongly functionally connected to the a�ected area (e.g., the Wernicke’s area to the Broca’s area). In this way, 
the FC map can be directly developed based on the unregistered data in the native space. A task-based fMRI ses-
sion can also be of great help. In practice, we have developed a fast and easy-to-use toolbox, namely PreSurgMapp, 
for such type of native-space-based seed correlation analysis which can let users de�ne the seed region in an inter-
active way (i.e., by a simple click, one seed region can be selected based on the T1-weighted image of the subject; 
doing so multiple times de�nes multiple seed regions for subsequent rounds of seed correlation analysis). �e 
users can then compare all seed-correlation results and choose the best one as the language template for DICI. 
�is so�ware is a MATLAB-based toolbox, which is publicly available on a source code management website, 
GitHub (https://github.com/missy139/PreSurgMapp), as well as in the rs-fMRI forum (http://restfmri.net/forum/
node/2382). �e detailed manual of this toolbox can be referred to in our previous paper48.

Comparisons with the traditional component identification method. In our �rst attempt to iden-
tify language component, we had considered achieving automatic component identi�cation via GOF. However, 
the performance of GOF was not as good as we imagined (see Table 2). We further tried using GOF to identify 
other functional networks, such as sensorimotor and executive control networks, but the results were still not 
comparable to those obtained by using our algorithm (i.e., DICI). Based on Table 2, we found that the best-�tted 
language-related components based on the same data, and the same language template, as suggested by the GOF 
algorithm, were in agreement with those of the DICI algorithm for only 50% (5/10) subjects. As far as the opti-
mal model orders suggested by the two algorithms are concerned, there was no systematic di�erence (i.e., GOF 
did not tend to suggest a smaller or larger model order). �e components identi�ed by the two algorithms were 
further visually compared in Supplementary Figure 9 for the �ve subjects with inconsistent �ndings. As shown in 
the �gure, we found that for all the �ve subjects, DICI performed better than GOF, leading to much cleaner and 
more reasonable language networks. For example, for subjects #1 and #6, there were signi�cant false positives in 
the parietal or occipital lobes (as indicated by the red arrows).

�e fundamental reason for such a di�erent performance between the two component identi�cation algo-
rithms is that, even though both algorithms are template matching in nature, they have a fundamental di�erence 
in de�nition. GOF subtracts the sum of (or the averaged) component’s z-value outside of the template from the 
sum of (or the averaged) its z-value within the template; whereas DICI is calculated based on the signal detection 
theory from theoretical analysis of information with more meaningful de�nitions (to what extent the signal can 

Subject 
ID

DICI

Subject 
ID

GOF

Optimal 
model order

Best 
IC #

Optimal 
model order

Best 
IC #

1 50 18 1 20* 18*

2 30 15 2 50* 35*

3 60 34 3 60 34

4 50 21 4 50 21

5 40 20 5 50* 43*

6 60 16 6 30* 13*

7 60 44 7 60 44

8 40 37 8 30* 11*

9 50 40 9 50 40

10 50 46 10 50 46

Table 2. Comparison of performance between DICI and GOF algorithms. DICI: discriminability-index-based 
component identi�cation algorithm; GOF: Goodness of Fit-based component identi�cation algorithm. �e 
comparisons were based on the subjects in the validation (VA) group. �e optimal model order is determined 
based on DICI and GOF separately for each subject. Best IC #is the index of the best-�tted component 
identi�ed. Model orders with *indicate that the two algorithms produced di�erent results.

https://github.com/missy139/PreSurgMapp
http://restfmri.net/forum/node/2382
http://restfmri.net/forum/node/2382
http://9


www.nature.com/scientificreports/

13SCIENTIFIC REPORTS | 7: 13769  | DOI:10.1038/s41598-017-14248-5

be separated from the noise, calculated by the standardized hit rate subtracting the standardized false alarm rate). 
First, when calculating hit rate and false alarm rate, the component’s spatial map needs to be binarized, thus alle-
viating the possible negative e�ect caused by extreme values (which o�en exist in the ICA-derived component’s 
spatial maps). Secondly, GOF works on the raw z-values in the spatial maps; the z-value was calculated in an 
oversimpli�ed way: for each voxel, subtracting the global mean and dividing by the standard deviation. Since 
ICA does not scale each component consistently (i.e., di�erent components have di�erent global means and 
standard deviations), the z-values across di�erent components may not be easily comparable. However, DICI 
uses a reasonable distribution-based standardization and is more suitable to be used for a cross-component com-
parison. �irdly, the GOF algorithm simply combines in-template z-scores and out-of-template z-scores with 
equal weight, but DICI balances well the sensitivity and speci�city through a reasonable way (d-prime has a clear 
physical meaning, i.e., the distance between signal and noise distributions).

Automatic or visual inspection-based component identification. It must be clari�ed that human 
interpretation and con�rmation of the language components detected may still be required a�er automatic selec-
tion as another “traditional component identi�cation method”, particularly in situations of pre-surgical evalu-
ation, and at least certain expert input should be employed to inspect the components with high to highest d’ 
values. For any automatic component identi�cation method (including DICI and other algorithms such as GOF), 
visual inspection is always required, especially when the result is to be used for pre-surgical planning which 
requires high accuracy. On the other hand, the role of automatic component identi�cation should not be over-
looked due to the following reasons.

First, for pre-surgical mapping, one may need to identify COI from the ICA results, rather than just separat-
ing noise-related components from biologically meaningful components. To achieve this, individual-level ICA 
decomposition must be conducted and individual-level components must be compared (either explicitly by a 
template-matching algorithm or inherently, by experts’ visual checking) to �nd out the best COI. Even an expert 
could sometimes make mistakes a�er laborious component checking. �e probability of making a mistake could 
be increased when conducting ICA with multiple TNC settings since this parameter can signi�cantly in�uence 
ICA result. Automatically suggested component(s) can serve as a reference for the expert to make a decision and 
reduce subjective errors.

Second, a�er obtaining ICA decomposition results, an automatic component identi�cation algorithm can help 
perform the �rst round of component screening to remove the most irrelevant components, which can narrow 
down components and thus reduce human labor. A�er a rough screening by only selecting components with, for 
example, the �rst �ve largest DICI values, for the next round of visual screening by experts, the component selec-
tion process can be more accurate and time-saving. �is paper is just a demonstration of the ability of DICI-based 
component identi�cation. We do not recommend selecting only one component in such a highly demanding clin-
ical application. In future, a simple modi�cation of the DICI algorithm can be selecting the �rst �ve components 
as candidates and seeking expert input.

�ird, in our study, we have conducted visual inspections on all components to further validate the perfor-
mance of our algorithm. For all subjects, all of their components were visually evaluated by two experts and com-
pared with the automatically chosen ones. In the event of inconsistent visual identi�cation, a third expert helped 
to decide on the �nal result. Since the accuracy of the DICI-based language component identi�cation is 95%, we 
can make a preliminary conclusion that the automatic component identi�cation is highly accurate.

Finally, another novelty is in the performance of language network identi�cation, where the DICI algorithm 
also considered di�erent model orders’ in�uence on the ICA result. Rather than trying to determine an optimized 
model order for ICA before the decompositions, DICI did this in a more intuitive and straightforward way: going 
through a set of model order settings and performing ICA separately, and choosing the “best” result from the 
“best” results for di�erent model orders. From our experience, this result-based algorithm was demonstrated to 
be better than the information theory-based algorithm such as that of Li et al.54 Our result further demonstrated 
that for language mapping, the model order has little e�ect on individual ICA. �e language network got consist-
ent when the model order was set to be higher. For individual ICA, the model order of 60 was recommended to 
produce better language mapping results.

Choosing optimal ICA model order setting. We believe that there is no such relationship between the 
total number of rs-fMRI time points (frames) and the optimal component number (ICA model order) for iden-
tifying a particular component. Whether or not there is such an optimal component number remains an open 
question (see discussions below). We found from previous studies that such an empirical suggestion has been 
provided as a recommended setting for the total component number in ICA, such as that in Greicius et al.55, 
where the chosen component number is “approximately one-fourth to one-��h the number of time points in the 
respective scans”. Regarding this recommendation, we believe that it may have some practical value in deciding 
the model order without making any assumptions, however, it cannot be considered a “rule of thumb” for decid-
ing the setting of total component number. As an alternative, we believe that “researching goal-speci�c total com-
ponent number optimization” could be a better way. �is is the aim of our study, to use the component-of-interest 
and template matching-based algorithm to decide on which parameter setting is best �tted for the current compo-
nent of interest and for the current data. �ere are no universal rules on how to choose the “correct” component 
number. We next present an analysis of potential factors that may a�ect such a parameter and give suggestions on 
how to choose such a parameter for di�erent purposes.

�ere are several factors that may a�ect the “optimal” TNC. First is the signal-to-noise ratio of the rs-fMRI 
data. �e higher level of noise the data has, the larger the component number should be set, in order to cancel 
out the increased noise contamination. Second is the length of the rs-fMRI data. �eoretically, this is not a factor 
dependent on the optimal total number of components. However, in practice, the larger our sample sizes, the 
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more robust our components will be. �erefore, one may set a relatively small TNC if the scanning duration is 
very long for such a bene�t. Lastly, the TNC settings can depend on the primary research goal. If we aim to �nd 
out a speci�c component, we may choose a TNC that can best produce this component from ICA. If, however, our 
goal changes to generating a dozen (~10) functional networks that are mostly reproducible by several previous 
ICA studies, we may need to choose 20–30 as the TNC for ICA, which would be similar to the previously widely 
adopted settings26. However, if the goal is to conduct rs-fMRI based functional parcellation of the brain for the 
construction of a whole-brain FC network, a larger TNC must be chosen in order to make a �ne parcellation, and 
to ensure that the graph built has adequate nodes (each node is represented by a component). In summary, there 
are no universal rules on how to choose the correct TNC setting, but there are several practical suggestions, as 
highlighted above, for choosing a suitable parameter setting.

In this paper, ICA was conducted individually on each subject’s rs-fMRI. Compared to the group ICA, the 
above general methodological guidelines for individual ICA were still applicable. However, the situation can 
become more complicated since individual rs-fMRI data are noisier and individual ICA can lead to much greater 
variability. In this case, decision-making should be more case-speci�c, i.e., di�erent data and di�erent subjects 
may require di�erent optimal TNC settings. In our study, we explicitly ran ICA multiple times and chose the 
best-�tted component from all the results and this is the main motivation of this study. Although to our best 
knowledge there are no studies that have done this before, of note, changing model orders and checking the 
resultant ICA decomposition variability has been one of the commonly used strategies in previous studies26,55.

Limitations and future works. �e present study has various shortcomings that must be addressed in the 
future. First, the threshold for ICA results is di�cult to decide. In the current study, we used a �exible threshold 
setting strategy and determined it based on training results. In the future, automatic threshold calculation should 
be adopted56,57. Second, following further analysis of our data by the DICI method with 70 and 80 components, 
we discovered that with such a large model order, the language network started splitting into more components, 
which made it even more di�cult to extract meaningful language networks. �e results became more complex 
and the increased model-order made the ICA decomposition result more di�cult to interpret. Several other 
components such as attention and executive control networks started to split, many of which share similar loca-
tions to that of the language subdivisions (sub-networks). In these instances, the DICI values were even smaller 
than those with lower (60 or lower) model orders. �is is explained by more component numbers dividing the 
language networks as frontal and temporal-parietal components. �ese �ndings suggested that our template for 
the DICI-based method in this study should also be altered in order to capture language network splitting for 
accurately selecting the best components. In the future, we need to use a larger dataset to conduct group-level 
ICA with di�erent model orders (including higher model orders) with the aim of generating di�erent language 
templates for more comprehensive language component selection. �ird, we only selected 10 subjects to perform 
individual level analysis from the VA group. In the future, we shall optimize the procedure and apply it to more 
individual healthy subjects. Lastly, more tumor patients should be involved in the future to further validate our 
method. For patients, ISM can be used as gold standard, whereas for healthy subjects whose data can be easily 
collected, transcranial magnetic stimulation (TMS) can be used to create a gold standard for language mapping.

Conclusion
We propose an ICA-based language localization method for automatically identifying language networks from 
rs-fMRI data. Our results con�rmed that preoperative language localization using the DICI value-based method 
is feasible. �e individual-level validation using electrophysiological methods demonstrated that the application 
of this localization approach for identifying language components in tumor patients is promising. However, fur-
ther validation studies involving larger number of patients are still necessary.
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