
An Automated Method for Software Controlled Cache Prefetching

Daniel F. Zucker*, Ruby B. Lee, and Michael J. Flynn

Computer Systems Laboratory

Department of Electrical Engineering

Stanford University

Stanford, CA 94305

Email: {zucker,rblee,flynn} Qumunhum.stanford. edu
Abstract— As the gap between cycle time and main

memory access time increases, memory system per-

formance becomes increasingly important. The trend

to higher instruction level parallelism with superscalar

processors puts even higher demands on the memory
system. Prefetching is a common strategy to tolerate

this increased memory latency. This paper presents a
software only technique to prefetch data to the CPU

cache before it is needed in order combat this problem.

The software prefetching technique presented is moti-

vated by emulation of a hardware stride prediction table
(SPT). Performance similar, and in some cases superior,

to the hardware based technique is achieved with no ad-
ditional hardware costs. In the first step, a simulation of

the hardware SPT is conducted to identify where use-

ful prefetches are best added. In the next step, soft-

ware prefetches are added to the executable code. The

technique is automated and could be implemented by a

compiler as a two phase optimization of a profile step
followed by an optimization step.

Data is presented for both SPEC95 and multimedia

benchmarks. In the best case, a performance improve-

ment of 2.78X is observed over the same code with no

prefetching at no extra hardware costs.

Keywords— prefetching, cache, SPEC95, so ff.ware

prefetching, stride based prefetching, mpeg

I. INTRODUCTION

As the gap between cycle time and main memory

access time increases, memory system performance be-

comes increasingly import ant. The trend to higher par-

allelism with superscalar processors puts even higher

demands on the memory system. Cache prefetching is

a technique used to hide the latency of a main memory

access by predicting in advance what data will be need.

Both hardware and software cache prefetching tech-

niques have been proposed. Hardware prefet thing tech-

niques typically perform prefetching dynamically based

on run time information, while software prefet thing

techniques are based on static analysis done at compile

*Presently at TYiStrata Security Inc., 3 Lagoon Drive, Suite
110, Redwood Shores, CA 94065
1060-3425/98 $10
time. Software prefetching often requires additional

information in the form of hints added by the pro-

grammer. This paper presents an automated software

prefetching technique based on emulation of a hardware

prefetching system. Benefits of hardware prefetching

are obtained without the added cost of dedicated hard-

ware. Performance similar, and in some cases superior,

to the hardware based technique is achieved with no

additional hardware costs.

In the first step, a simulation of the hardware stride

prediction table (SPT) is conducted to identify where

useful prefet ches are best added. In the next step, soft-

ware prefetches are added to the executable code. The

technique is automated and could be implemented by

a compiler as a two phase optimization of a profile step

followed by an optimization step. No special program-

mer input is required.

In this paper data is presented for two SPEC95

benchmarks and for an MPEG decode application

across a range of cache sizes and both direct mapped

and 4 way cache associativity. Compared to the same

cache configuration with no prefetching, execution time

is reduced to 0.36 of unenhanced execution time in the

best case. In the worst case, execution time is degraded

such that execution is slower than the unenhanced code

with no prefetching.

II. RELATED WORK

A number of techniques exist for cache prefetching.

The idea of prefetching is to predict data access needs

in advance so that a specific piece of data is loaded

from the main memory before it is actually needed by

the application.

The earliest hardware prefetching work was reported

by Smith [1] who proposed a one-block-lookahead

(OBL) scheme for prefetching cache lines. That is,

when a demand miss brings block i into the cache, block
.00 (c) 1998 IEEE

i+l is also prefetched. Jouppi [2] expanded this idea

with his proposal for stream buffers. In this scheme, a

miss that causes block i to be brought into the cache

also causes prefetching of blocks i+ 1, i+2, i+n into

a separate stream buffer. Jouppi also recognized the

need for multi-way stream buffers so that multiple ac-

tive streams can be maintained for a given cache. He

reported significant miss rate reduction. Palacharla

and Kessler [3] proposed several enhancements to the

stream buffer. They have developed both a filtering

scheme to limit the number of unnecessary prefetches,

and a method for allowing variable length strides in
prefetching stream data.

Another hardware approach to prefetching differs

from the stream buffer in that data is prefetched di-

rectly to the main cache. In addition, some form of ex-

ternal table is used to keep track of past memory oper-

ations and predict future requirements for prefetching.

This has the advantage of efficiently handling variable

length striding, that is data accesses that linearly tra-

verse a data set by striding through in non-unit steps.

Fu and Patel [4] proposed utilizing stride information

available in vector processor instructions to prefetch

relevant data. They later [5] expanded the application

to scalar processors by use of a cache-like look-up table

called the stride prediction table (SPT).

Chen and Baer [6] have proposed a similar structure

called the reference prediction table. Their scheme ad-

ditionally includes state bits, so that state informa-

tion can be maintained concerning the character of

each memory operation. This is then used to limit un-

necessary prefetching. Further analysis of this scheme

[7] investigate the timing issues of prefetching by use

of a cycle-by-cycle processor simulation. Sklenar [8]

presents a third variation on the same theme of the

use of an external table to predict future memory ref-

erences.

A number of techniques also exist to do software

prefetching. Porterfield [9] proposed a technique for

prefetching certain types of array data. Mowry, et

al [10] proposed an early practical software prefetch

scheme based on information obtained at compile time.

While software prefetching clearly has a cost advan-
tage,itdoes introduce additional overhead to the ap-

plication. Extra cycles must be spent to execute the

prefetch instruction, and the code expansion that is

often required from loop unrolling may result in neg-

ative side effects such as increased register usage. [11]

compares Mowry’s software prefetching scheme to their

hardware prefetching scheme. They determine that

while the software approach can use compile time in-
formation to perform more complex analysis, hardware

prefetching has the advantage of dynamic information.

Furthermore, they determine that while both methods
1060-3425/98 $10
improve the miss rate, the overhead of adding software

prefetch instructions is significant. Santhanam et al.

[12] present a sophisticated compile time algorithm to

insert software prefetch instructions for the HP PA-

8000. The HP compiler, furthermore, has the capa-

bility to add prefetch instructions based on execution

profile data. This is an improvement over Mowry’s

algorithm. Speedups of up to 100% are reported for

SPECfp95.

III. METHODOLOGY

The software prefetch scheme presented here is based

on emulating the hardware SPT by adding software
prefetch instructions. Data on prefetch usefulness is

obtained from profiling simulated SPT execution. This

technique is unique in that it relies completely on pro-

file information to do prefetching. This low complexity

means that the technique can easily add prefetch in-

structions to an existing executable or be used as a

profile based optimization for an existing compiler.

A. Prefetch Methodology

The software prefetching technique works by gath-

ering execution profile information from a simulation

of the hardware SPT. A prefetch hint file is generated

based on tracing which instructions caused the most

useful prefetches in the hardware SPT simulation. The

hint file is then used to insert software prefetch instruc-

tions. To do this automatically in a compiler would be

possible by first profiling, then inserting prefetch in-

structions into the code in two separate steps.

Instr Address Memory Address

v 1

— Instr Address Last Mem Address Valid

I I

&r
i

SPT hit
@

Add

Fig. 1. Stride prediction table architecture.

The profile step simulates a hardware SPT prefetch-

ing into a series stream cache. The SPT architecture is
shown in figure 1 and the series stream cache architec-

ture is shown in figure 2. These architectures are de-

scribed in detail in [13]. The SPT is used to determine
.00 (c) 1998 IEEE

what data will be needed by a given instruction based

on what data it has accessed previously. An attempt

is made to calculate a stride value as if the memory

access is made in a regular stride through the data. A

table, indexed by instruction address, is maintained for

all memory operations executed and holds the address

of the last memory address accessed. When a memory

instruction is executed, its address is compared to the

instruction addresses stored in the SPT. When the in-

struction does not match an instruction stored in the

SPT, an SPT miss occurs. On an SPT miss the new

entry, composed of the instruction address and data

memory address, is added to the SPT replacing the

least recently used entry (LRU). When a memory ac-

cess is made by an instruction already contained in

the stride prediction table, an SPT hit occurs. The

current memory access address is subtracted from the

previously stored last memory address to calculate a

data stride value. If this value is non-zero, a prefetch

is issued. The prefetch address is calculated by adding

the stride value and the current memory address. The

data is prefetched into the series stream cache.

The series stream cache lies on the refill path to

the main cache. The prefetch data is prefetched not

directly to the main cache, but to the series stream

cache. On a main cache miss, the series stream cache

is searched for the miss data before it is retrieved from
main memory. The series stream cache acts a filter

to the prefetch data so that only data that is actu-

ally needed in the main cache is fetched to the main

cache. This prevents excessive amounts of unnecessary

prefetched data from swamping the main cache. The

stream cache simulated is fully associative.

~ Processor I
1

H,
I I Csche

I
I

A
I

SPT t

Stream Cache

7 t

Memory

Fig. 2. Series stream cache architecture.

By tracking which instructions caused which cache

lines to be prefetched, and then keeping track of which

prefetch data is actually used by the application, we de-
1060-3425/98 $10.
termine which instructions were useful in prefetch data

that is subsequently used by the application. Further-

more, by keeping track of the stride value that is used

to prefetch the data, we can determine what the best

value is to use for a static stride prediction.

After obtaining data describing which prefetches are

useful, we selectively insert software prefetch instruc-

tions into the executable code using a static stride pre-

diction. The data we have obtained thus far gives a list

of memory instructions that caused useful prefetches

as well as a static stride value associated with each in-

struction. At this point the best strategy might seem

to add a software prefetch instruction for every mem-

ory operation that caused a useful prefetch instruction.

This, however, is not the case.

Adding additional prefetch instructions increases the

number of instructions that must be executed in the

benchmark. A trade-off is made between the number

of new cycles that must be executed in prefetch instruc-

tions and the number of cycles saved from eliminating

cache misses. In [14] it was determined that approxi-

mately 15% of all instructions causing useful prefet ches

cause over 90’% of useful prefetches. It was also deter-

mined that inserting instructions to cause only 90% of

useful prefetches resulted in the best trade-off between

increased overhead and decreased cache misses. The

benchmarks in this paper are therefore executed adding

instructions to cause only 90% of useful prefetches.

The results in this paper are generated by simulat-

ing a discrete software prefet ch instruction. The par-

ticular prefetch instruction could be implemented in

a variety of ways. For these simulations, an atomic

prefetch-by-stride instruction is assumed. The instruc-

tion prefetches directly into the main cache. This

prefetch-by-stride instruction is invoked with an im-

mediate stride value. The last executed load or store

address is added to the stride value and a prefetch from

this new address is initiated. The stride value is avail-

able at compile time and is derived from the hint file

generated at the profiling step.

B. Simulation Methodology

Trace driven simulations are used to model mem-

ory behavior in order to determine performance re-

sults. SPEC95 benchmarks were executed on a DEC

Alpha. Application code was compiled using the stan-

dard DEC version 4.0 C compiler. Optimization was

set according to the SPEC guidelines. The executable

was then instrumented using ATOM [15] so that library

functions were called for every memory access. The

MPEG code was executed on an HP 9000/725 work-
station and compiled with the HP version A.09.75 C

Compiler. The source code was similarly instrumented

using RYOLS [16], an instruction instrumentation tool
00 (c) 1998 IEEE

written for the PA-RISC architecture.

To save both execution time and disk space, dis-

crete traces are not written to disk files. Instead, the

cache simulator is executed concurrently with the in-

strumented executable so that address references are

dynamically simulated. Because new traces are dynam-

ically generated every execution, variables returned

from system calls may cause slightly different traces at

each run and may result in some run-to-run variation.

The simulator provides data over a wide range of data

cache sizes and associativities. A write allocate policy

is assumed. A line size of 16 bytes was chosen for all

simulations. This line size was chosen so as to better

expose the potential benefits of prefetching. Because

only a single process was simulated for each cache con-

figuration, it is expected that the performance for the

cache sizes reported corresponds to a larger cache size

in a real system. Instruction memory accesses are not

modeled.

C. Performance Metrics

Fraction of misses eliminated is one metric reported.

This metric judges the performance of a given prefetch

scheme independent of the particular cache implemen-

tation. A perfect prefetching scheme would eliminate

all memory misses. This would have a fraction of misses

eliminated value of 1.0 since all misses have been elim-

inated. Similarly, an architecture that eliminates half

of all the misses of a cache with similar size and as-

sociativity would have a fraction of misses eliminated

value of 0.5.

In this way, performance improvement can be judged

independently of other cache design considerations

such as main cache size and associativity. The size of

the main cache will have a dominating effect on miss
rate, so that if results were simply compared in terms

of absolute miss rates, the variation due to cache size

would tend to mask out the variation due to prefetching

scheme. Furthermore, performance can also be judged

independently of memory implementation parameters

such as time to access main memory. If this were not

the case, varying memory parameters such as cycles to

fill a main cache line could have a significant impact on

results.

In deriving fraction of misses eliminated, a mem-

ory access is counted as a hit as long as a prefetch

to that address has been issued. This means data in

the process of returning from memory is counted as a

hit. This is done to compare prefetching performance

of the schemes under the best conditions. Counting

incomplete prefet ches as misses, furthermore, has little

effect on the resulting data.

Results are also reported for execution time in num-

bers of cycles. For these results, an aggressive memory-
1060-3425/98 $10.
limited processor model is assumed. An n-way super-

scalar processor is assumed such that there are suf-

ficient resources to perform any non-memory opera-

tion in a single cycle. Therefore, only memory opera-

tions are counted as instructions executed. The bench-

mark execution time is composed only of loads, stores,

prefetches, and time spent in the memory system due

to cache misses. Relative execution time reports execu-

tion time compared to an identical cache configuration

with no prefetching. A relative execution time of less

than one indicates a performance improvement from

prefetching.

A constant memory access time of 50 cycles for

cache misses is assumed. Furthermore, a fully in-

terleaved memory is assumed such that multiple out-

standing prefetch requests are allowed. Demand misses

block program execution, while prefetch misses are

non-blocking. For software prefetching, execution time

incorporates the cost of the additional prefetch instruc-

tions executed.

These assumptions are made to show the effect of

prefetching on a processor unlimited by other resource

constraints. In [14], the effect of modifying these as-

sumptions is investigated. Execution time is calculated

considering the cost for partially completed prefetches.

Furthermore, an instruction mix in which memory op-

erations make up only a fraction of total instructions is

considered. Finally, different bus models in which only

a fixed number of simultaneous outstanding memory

requests are allowed are also considered.

The data in this case shows the same general trends,

but both the benefits and costs of prefetching appear

less pronounced. The overhead of prefetching is less

of a penalty since additional prefetch instructions add

a smaller percentage of additional overhead, while the

benefits from prefetching are also less since the time

spent in the memory system is a smaller percentage of

tot al execution time.

D. Memory Bandwidth

For the purposes of this study, memory bandwidth

is assumed to be large enough such that it is not a lim-

iting factor on performance. This assumption is made

to study the effects of differing prefetch strategies in-

dependent of memory bus architectures. It is recog-

nized that this assumption may not be valid in terms

of today’s architectures. However, the trend for wider

bandwidth to memory indicates that this may not be

a problem in the future.

The software prefetching proposed in this paper elim-

inates a significant number of unneeded prefetches com-

pared to the hardware prefetching emulated. [10] and
[12] describe additional analytic techniques to limit the

number of prefet ches issued.
00 (c) 1998 IEEE

IV. DATA

In the following sections, data is presented for two

SPEC95 benchmarks, compress and ijpeg, and for an

implementation of MPEG decode. In all cases data is

shown for three cases: the hardware case, the train-

ing data set, and the reference data set. The hardware

curve is labeled hw and reports the simulated perfor-

mance of the hardware SPT and series stream cache

used to generate the hint file. The hardware perfor-

mance is determined using the training data set. The

training curve is labeled train and reports the simu-

lated performance for software prefetching using the

SPEC95 training data. Finally, the reference curve is

labeled ref and reports the SPEC95 reference perfor-

mance using the reference data set. Since the MPEG

application is not part of the SPEC95 benchmark suite,

two input data sets are arbitrarily chosen as reference

and training data sets. A fourth data set is shown for

compress and is described in that section. Base miss

rates for these applications with no prefetching is pre-

sented in figure 3.
~ 0.24

2

,3 0.21
2

[\

A — A compress-ref

o — 0 compress-train

0.18
+—+ ijpeg

x — X mpeg

Cacha Size (KBytes)

(a)

~ 0.24
‘Z
cc

.8 0.21
z

0.18

0.15

0.12 I

A — A compress-ref

0 — 0 compress-train

+—+ ijpeg

X — X mpeg

0.09

0.06

0.03

0.00 I I I I I I

248 16 32 64 128 256 512 1024

Cache Size (KBytes)

(b)

Fig. 3. Base miss rates. (a) is for a direct mapped cache, and (b) is for a 4 way associative cache.
A. fipeg

Performance data for ijpeg is shown in figure 4. Fig-

ures 4a and 4C show that hardware results in the great-

est fraction of misses eliminated for most cache sizes.

This is true for the applications to follow as well. This

metric, however, does not take into account the addi-

tional overhead of executing software prefetch instruc-
tions. In the hardware case it is assumed that prefet ch
instructions are executed concurrently with the appli-

cation code so there is no added overhead charged in
1060-3425/98 $10.0
performing as many prefetches as possible. In the soft-

ware case, however, it is assumed that every software

prefetch must be executed as a discrete instruction and

is added to the execution time of the application. It is

for this reason only instructions causing 90% of effec-

tive prefetches are added to the code. If 100% of the

effective prefetches were added, the fraction of misses

eliminated curve would match the hardware fraction
of misses eliminated curve more closely, but the rela-

tive execution time would be hurt by the greatly in-

creased overhead. Relative execution time would not

be as good as the data reported in figures 4b and 4d.

Relative execution time, then, is the proper metric for

which to optimize.

For both the direct mapped and 4 way associative

caches, the best relative execution time is achieved at

cache sizes of 16KB and 32KB at less than 80% of

base execution time. The curve stays relatively flat to

the left of this region for the 4 way associative cache,

but creeps upward for the very small caches in the the

direct mapped case. For both cases, performance is

degraded compared to the base case for cache sizes of

256KB and larger. At caches of this size, the base cache

architecture captures the working set of the application

well and additional prefetch instructions only add to

execution overhead with no performance benefit.
B. Compress

Performance data for compress is presented in fig-

ure 5. For compress the reference data performance
is significantly different from the training data. This

is because of the size difference between the two data
0 (c) 1998 IEEE

0.40

0.20

248 16 32 64 126 256 512 1024

Cache Size (KByfes)

(a)

J A—A train

0—0 ref

+—+ hw

I I I I I I I I I I
246 16 32 64 128 256 512 1024

Cache Size (KBytes)

(c)

~ 1.20
E.—
1-
C0
“% 1,00
~
u

.5 0.80
g

2

0.60

0.40

0.20

0.00

A—A train
o—o ref

+—+ hw

~ 1.20
E.-
1-
C0
‘% 1.00
%
d

; 0.80

6
a

0.60

0.40

0.20

0.00

246 16 32 64 126 256 512 1024

Cache Size (KBytes)

(b)

A—A train

o—o ref
+—+ hw

J I I I I I I I I I
248 16 32 64 128 256 512 1024

Cache Size (KBytes)

(d)

Fig. 4. Performance data for ijpeg. (a) is fraction of misses eliminated for a direct mapped cache, (b) is relative execution time for a
direct mapped cache, (c) is fraction of misses eliminated for a 4 way associative cache, and (d) is relative execution time for a 4.,
way associative cache.
sets and is explained with the fourth performance curve

labeled small-ref.

The compress application is really composed of two

parts. In the first part, the data to be compressed
is generated at random from a given seed value. In

the second part the data is actually compressed. The

amount of data to be generated is determined by the

input data set. When a small amount of data is gener-

ated, the training data set for example, the data gen-

eration part is the dominant part of the program. The

data generation is a highly regular algorithm and stride

prediction is very effective in predicting its data usage.

In this case the overall performance is significantly im-
1060-3425/98 $10.
proved by prefetching. For the reference data, however,

the dominant part of the program is the data compres-

sion part. The data compression part is irregular and

is not significantly improved by stride-based prefetch-

ing. The curve labeled small-ref illustrates this point.

This data set is different from the training data, but

generates a data file the same size as the training data

set. The performance is similar to the training data

set.

For the reference data, execution time is never re-

duced below approximately 0.9 of what it is without

prefetching. On the other hand, performance is never

degraded by prefetching. The relative execution time is
00 (c) 1998 IEEE

approximately flat across the range of cache sizes. For

the other cases, performance is significantly improved

with a relative execution time minimum for software

prefet thing of 0.36 for the 256KB cache size. Again,

performance is never degraded by applying software

prefetching.
A—A train
0—0 ref
+—+ hw

248 16 32 64 128 256 512 1024

Cache Size (KBytes)

(a)

>
) I I I I I I I I I
248 16 32 64 128 256 512 1024

Cache Size (KByies)

(c)

~ 1.20
E.—
k
c
0
‘~ 1.00
g
w

; 0.80

5
K

0.60

0.40

0.20

0.00

1.20
E.—
+
c

“: 1.00
al
J

.: 0.80~

$

0.60

0.40

0.20

0.00

Q

0—0 ref
+—+ hw

x—x small-ref

248 16 32 84 128 258 512 1024

Cache Size (KBytes)

(b)

A—A train
o—o ref
+—+ hw
x—x small-ref

J I I I I I I I I I
248 16 32 64 128 256 512 1024

Cache Size (KBytes)

(d)

Fig. 5. Performance data for compress. (a) is fraction of misses eliminated for a direct mapped cache, (b) is relative execution time
for a direct mapped cache, (c) is fraction of misses eliminated for a 4 way associative cache, and (d) is relative execution time for
a 4 way associative cache.
C. Mpeg

Finally, data for Berkeley’s mpeg.play [17] is pre-

sented in figure 6. The movie caster.mpg is chosen
as the training data, and the movie hula. mpg is cho-

sen as the reference data. In the range from approxi-

mately 16KB to 256KB, relative execution time is ap-
1060-3425/98 $10.0
proximately 0.70 of what it would be with no prefetch-

ing. A thorough investigation of software prefetching

for MPEG benchmarks across a range of execution pa-

rameters is presented in [18].
V. ANALYSIS

Aside from the comprem reference data, the re-

sults show that the proposed software prefetching tech-

nique is effective in improving performance of certain

SPEC95 and MPEG applications. Even for compress,
although not greatly improved, performance was im-

proved over no prefetching.
The compress reference data illustrates an impor-
0 (c) 1998 IEEE

0.40

0.20

A—A train

o—o ref

+—+ hw

I I II I I I I I I I

248 16 32 64 128 258 512 1024

Cache Size (KByles)

(a)

A—A train
o—o ref
+—+ hw

0,00 ~
248 16 32 64 128 256 512 1024

Cache Size (KBytes)

(c)

~ 1.20
E.—
1-
C
0

“% 1.00
%
J

: 0.80~

2

0.60

0.40

0.20

0.00

L!r

A—,5 train
o—o ref

+—+ hw

I I I I I I I 1 I I

248 16 32 64 128 256 512 1024

Cache Size (KBytes)

(b)

0.60

0.40
[

0.20

A — d, train
o—o ref

+—+ hw

(J,(J) ~
248 16 32 64 128 256 512 1024

Cache Size (KBytes)

(d)

Fig. 6. Performance data for mpeg-play. (a) is fraction of misses eliminated for a direct mapped cache, (b) is relative execution time
for a direct mapped cache, (c) is fraction of misses eliminated for a 4 way associative cache, and (d) is relative execution time for
a 4 way associative cache.
tant point. Because theproposed software prefetching

technique relies on emulating a hardware stride predic-

tion scheme, theunderlying stride prediction method-

ology must be effective for the software prefetching to

perform well. Compress is an example of an appli-

cation that is not amenable to stride prediction, while

ijpeg and mpeg_play exhibit regular data access behav-

ior that is amenable to stride prediction.

[19] and [20] investigate hardware stride prediction

for a number of common benchmarks on a dynamically

scheduled processor model. That work confirms sim-

ilarly poor performance for compress. Based on this

work we hypothesize that scientific applications such
1060-3425/98 $10.00
as linpack, wave, or fft will perform well using the soft-

ware prefetching technique described here. These ap-

plications exhibit regular memory access behavior sim-

ilar to ijpeg and mpeg-play.

The data also shows that prefetching is generally not

effective at improving performance for large cache sizes.

This is because when the main cache is large enough

to capture the working set of the application, the to-

tal number of misses is fairly low. In this case, adding

prefetch instructions increases the time that must be

spent executing the application, since additional in-

structions must now be executed, but does little to

reduce misses since there are so few misses to begin
 (c) 1998 IEEE

with.

The data reported uses an execution model which

makes simplifying assumptions that an access to main

memory returns in a constant time of 50 cycles. [14]

invest igat es execution models taking into account vari-

able latencies based on bus contention as well as mod-

els for access times ranging from 10 to 100 cycles. It

is found that bus contention has little effect on per-

formance when demand loads and stores are given pri-

ority over prefetches. Increasing the memory access

penalty beyond 50 cycles has the effect of improving

the maximum benefit from prefetching while keeping

the general shape of the performance curve relatively

constant. In this case, the application spends a greater

fraction of execution time in the memory system so that

ii greater performance benefit is achieved from prefetch-

ing. Similarly, decreasing memory access cost below 50

cycles tends to flatten the performance curves. In this

case, the application spends less total time in the mem-

ory system from the same number of cache misses and

prefetching performance is less beneficial.

Finally, the data indicates that for smaller caches

ii higher degree of associativity improves software

prefet thing effectiveness. Prefetching speculatively

brings much data into the cache, and for small cache
sizes this cause data to be prematurely eliminated from

the cache before it becomes stale. A higher degree of

cache associativity removes many of the mapping con-

ilicts and prevents the prefetched data from knocking

useful data out of the cache.

VI. CONCLUSIONS

In this paper we presented a software only prefetch

technique that was shown to improve execution time

by 278’ZO in the best case. This scheme takes advan-

tage of the dynamic nature of hardware based prefetch-

ing without incurring the cost of adding additional

hardware. This is achieved by emulating a hardware

based prefetching scheme with the addition of software

prefetch instructions to existing executable code. Data

was reported for two SPEC95 and an MPEG decode

application.

The software prefetching technique presented is fully

imtomated and can be added as an optimization to an

existing compiler. The technique, furthermore, does

not require any programmer input and can be used to

iidd prefetching to existing binaries.

[1]

[2]

REFERENCES

Alan Jay Smith, “Cache memories,” ACM Computing Sur-
Vevs, VOI. 14, pp. 473–530, September 1982.
Norman P. Jouppi, “Improving direct-mapped cache per-
formance by the addition of a small fully-associative cache
and prefetch buffers,” in Proc. of the 17th Annual Inter-
1060-3425/98 $10.
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

national Symposium on Computer Architecture, May 1990,
pp. 364–373.
Subbarao Palacharla and R.E. Kessler, “Evaluating stream
buffers as a secondary cache replacement ,“ in Proc. of the
21st Annual International Symposium on Computer Archi-

tecture, April 1994, pp. 24-33.
John W. C. Fu and Janak H. Patel, “Data prefetching
in multiprocessor vector cache memories,” in Proc. of the
18th Annual International Symposium on Computer Archi-
tecture, May 1991, pp. 54–63.
J. Fu, J. Patel, and B. Janssens, “Stride directed prefetching
in scalar processors,” in Proc. of the 25th International

Symposium on Microarchitecture, December 1992, pp. 102-
110.
Jean-Loup Baer and Tien-Fn Chen, “An effective on-chip
preloading scheme to reduce data access penalty,” in Pro-
ceedings of Supercomputing ’91, November 1991, pp. 176–
186.
Tien-Fn Chen and Jean-Loup Baer, “Effective hardware-
based data prefetching for high-performance processors,”
IEEE Transactions on Computers, vol. 44, pp. 318-328,
May 1995.
Ivan Sklenar, “Prefetch unit for vector operations on scalar

computers,” ACM Computer Architecture News, vol. 20,
pp. 31-37, September 1992.
A.K. Porterfield, “Software methods for improvement of
cache performance on supercomputer applications,” Tech-
nical Report COMP TR 89-93, Rice University, May 1989.

T. Mowry, M. Lam, and A. Gupta, “Design and evalua-
tion of a compiler algorithm for prefetching,” in SZGPLAN
Notices, September 1992, pp. 62-73.
Tien-W Chen and Jean-Loup Baer, “A performance study
of software and hardware data prefetching schemes,” in
Proc. of the 21st International Symposium on Computer
Architecture, April 1994, pp. 223-32.
Vatsa Santhanam, Edward H. Gornish, and Wei-Chung
Hsu, “Data prefetching on the HP PA-8000~ in The 2Jth
Annual International Symposium on Computer Architec-
ture, June 1997.
Daniel F. Zucker, Michael J. Flynn, and Ruby B. Lee, “A

comparison of hardware prefetching techniques for multime-
dia benchmarks,” “m Proceedings of the International Con-

ference on Multimedia Computing and Systems, Hiroshima,
Japan, June 1996, pp. 236-244.
Daniel F. Zucker, Architecture and Arithmetic for MuMme-

dia Enhanced Processors, Ph.D. thesis, Stanford University,
June 1997.
A. Srivastava and A. Eustace, “Atom: A system for build-
ing customized program analysis tools,” in Proceedings of
the SIGPLAN ’94 Conference on Programming Language
Design and Implementation, June 1994, pp. 196–205.
Daniel F. Zucker and Alan H. Karp, “RYO: a versatile in-
struction instrumentation tool for PA-RISC ,“ Technical Re-
port No. CSL-TR-95-658, Computer Systems Laboratory,
Stanford University, January 1995.
K. Patel, B.C. Smith, and L.A. Rowe, “Performance of
a software MPEG video decoder,” in Proceedings ACM
Multimedia 93, August 1993, pp. 75-82.
Daniel F. Zucker, Ruby B. Lee, and Michael J. Flynn,
“Hardware and software cache prefetching techniques for
mpeg benchmarks,” IEEE Transactions on Circuits and
Systems for Video Technology, submitted June 1997.
James E. Bennett and Michael J. Flynn, “Latency toler-
ance for dynamic processors,” Tech. Rep. CSL-TR-96-687,
Stanford University, Computer Systems Laboratory, Jan-
uary 1996.
James E. Bennett and Michael J. Flynn, ‘(Reducing cache
miss rates using prediction caches ,“ Tech. Rep. CSL-TR-
96-707, Stanford University, Computer Systems Laboratory,
October 1996.
00 (c) 1998 IEEE

