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Abstract

For diagnosis and follow up, it is important to be able to quantify limp in an objective, and

precise way adapted to daily clinical consultation. The purpose of this exploratory study

was to determine if an inertial sensor-based method could provide simple features that cor-

relate with the severity of lower limb osteoarthritis evaluated by the WOMAC index without

the use of step detection in the signal processing. Forty-eight patients with lower limb oste-

oarthritis formed two severity groups separated by the median of the WOMAC index (G1,

G2). Twelve asymptomatic age-matched control subjects formed the control group (G0).

Subjects were asked to walk straight 10 meters forward and 10 meters back at self-selected

walking speeds with inertial measurement units (IMU) (3-D accelerometers, 3-D gyro-

scopes and 3-D magnetometers) attached on the head, the lower back (L3-L4) and both

feet. Sixty parameters corresponding to the mean and the root mean square (RMS) of the

recorded signals on the various sensors (head, lower back and feet), in the various axes, in

the various frames were computed. Parameters were defined as discriminating when they

showed statistical differences between the three groups. In total, four parameters were

found discriminating: mean and RMS of the norm of the acceleration in the horizontal plane

for contralateral and ipsilateral foot in the doctor’s office frame. No discriminating parameter

was found on the head or the lower back. No discriminating parameter was found in the

sensor linked frames. This study showed that two IMUs placed on both feet and a step

detection free signal processing method could be an objective and quantitative complement

to the clinical examination of the physician in everyday practice. Our method provides new

automatically computed parameters that could be used for the comprehension of lower

limb osteoarthritis. It may not only be used in medical consultation to score patients but also

to monitor the evolution of their clinical syndrome during and after rehabilitation. Finally, it

PLOSONE | DOI:10.1371/journal.pone.0164975 October 24, 2016 1 / 15

a11111

OPENACCESS

Citation: Barrois R, Gregory T, Oudre L, Moreau T,

Truong C, Aram Pulini A, et al. (2016) An

Automated Recording Method in Clinical

Consultation to Rate the Limp in Lower Limb

Osteoarthritis. PLoS ONE 11(10): e0164975.

doi:10.1371/journal.pone.0164975

Editor: Steven Allen Gard, Northwestern University,

UNITED STATES

Received:October 7, 2015

Accepted:October 4, 2016

Published: October 24, 2016

Copyright: © 2016 Barrois et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: SATT Innov Ile de France. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0164975&domain=pdf
http://creativecommons.org/licenses/by/4.0/


paves the way for the quantification of gait in other fields such as neurology and for monitor-

ing the gait at a patient’s home.

Introduction

Gait analysis plays an important role in the study of lower limb osteoarthritis on two grounds:

first, osteoarthritis has important repercussions on gait biomechanics [1–4]. It rapidly worsen

the prognosis for the affected joints, and on the long term affect the intact ones, which further

compromises the mobility of the patients. Second, the functional syndrome, ie the limp evalu-

ated with infraredmarkers, is well correlated with the severity of the pathology [5]. By using

stereophotogrammetry and force plates in gait laboratories, compared to matched controls,

knee osteoarthritis patients had reductions in walking speed [6–8], lower cadence [9,10], longer

double support time [9,11] and a smaller stride length [12]. That is, gait analysis would be use-

ful to quantify precisely the severity of osteoarthritis in a given patient. However, until recently,

gait laboratories were too expensive and complex to be utilized in daily practice. This explains

that clinical scores remains the gold standard to evaluate the severity of the pathology up to

these days [13–15]. TheWestern Ontario and MACmaster Universities osteoarthritis index

(WOMAC) is actually the most largely used of these scores in rheumatology for lower limb

osteoarthritis to assess pain, stiffness, and physical function in patients. WOMAC is considered

to be reliable, sensitive and adapted to clinical practice [16–18] and therefore, it is used in most

osteoarthritis clinical studies [19,20]. It remains that clinical scores are inherently subjective, as

they are based on the patient’s verbal reports and on the clinician’s visual skills and interpreta-

tions. For instance, theWOMAC index does not accurately reflect walking performances

[21,22] and clinical scores have a lack of sensitivity for identifying changes of balance and walk-

ing in mild to moderate disease severity [23].

In that context, skin-mounted accelerometers seem to be well-suited for investigating gait

kinematics in osteoarthritis patients [24]. They are inexpensive and non-invasive devices and,

more importantly, they are suited for routine clinical practice. In particular, they can be used to

evaluate gait using a standard protocol, which involves walking ten meters forward and ten

meters back on a level surface at a self-selectedwalking speed [25–31]. An essential point using

gait analysis in the everyday consultation is to extract from the raw data, automatically and in

real time, useful parameters for the clinician. To begin, step detection and gait cycle identifica-

tion are critical for computing gait parameters. By hand, it is time consuming and unfit for

clinical practice [3,13,32,33]. On the other hand, the automated routines available for step

detection are not robust because they are based on a priori predetermined threshold values

[34,35]. In addition, step detection automated routines are based on the assumption that steps

have stable kinematics, which is not the case in pathological conditions [34,36–40].

Inertial sensors are suitable for quantifying gait performance directly at the routine consul-

tation level. For this use, the quantification can be driven by real-time and low-powered soft-

ware. Advanced trunk accelerometric parameters have been found useful for detecting

pathological gait [41]. Nevertheless, complex gait parameters often require previous step detec-

tion, which requires extensive and time-consuming computation for sufficient robustness. As

well, the clinical meaning of complex gait parameters is not always clear, although recent

papers have made substantial efforts to clarify this point [42]. Still, this situation is unfortunate

because straight-forward gait parameters (mean or root mean square [RMS]) for the signals

often reveal clinically interpretable results [41,43]. Therefore, simple parameters such as the
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RMS remain commonly used but often only for the lower back sensor [28,41,44–48]. They

often show differences between the pathological and healthy gait. These simple parameters

have not been explored at other key anatomical landmarks of the body.

Finally, the gait parameters have widely been developed in complex neurological limping

models such as Parkinson disease, cerebral palsy or peripheral neuropathy and not in osteoar-

thritis, in which pain is believed to be the major limping cause and for which the simple gait

parameters could have a direct, understandable clinical meaning [41].

Hence, we have tried to revisit the problem of gait analysis in osteoarthritis patients in daily

practice using four inertialmotion units (IMU) strapped to the head, lower back (L3-L4) and

feet.We have also designed a new automated and online method of gait analysis. This method

was then evaluated by comparing its outcome to the severity of the lower limb osteoarthritis

evaluated with theWOMAC index in a cohort of 48 patients and 12 control subjects.

Methods

Subjects

All subjects (patients and control subjects) were coming for a clinical consultation at the ortho-

pedic surgeon’s office (ThG) during three consecutivemonths. All consecutive patients or con-

trol subjects reaching the inclusion criteria during the inclusion periodwere included in the

study.

All patients had hip or knee osteoarthritis diagnosed by an orthopedic surgeon (ThG) and

gradedwith theWOMAC index (0 to 96). Patients had neither vestibular, neurological, or

musculoskeletal disorders, nor any fractures of the lower extremity, nor rheumatoid arthritis

or generalized osteoarthritis. Forty-eight patients with lower limb osteoarthritis were included

(43 to 90 years, mean 70.9 years). Patients were divided into 2 severity groups of equal size sep-

arated by the median of theWOMAC index: the moderately impaired group (G 1) and the

severely impaired group (G 2). The median value of theWOMAC index was 45/96. This

median-based repartition was chosen in order to maximize the power of the statistical analysis.

The control subjects had no orthopedic nor neurological problem that could affect their gait

pattern. Twelve control subjects were included (40 to 87 years, mean 60.8). They formed the

age-matched control group (G 0). The mean and standard deviation (SD) of the age, body

mass index (BMI) andWOMAC index of each group are shown in Table 1.

To assess the test–retest validity of the discriminating parameters, we checked their variabil-

ity with IMU placement. For the sensor-placement control experiment 1, 2 healthy controls

(age 22 and 23 years) performed 5 walking trials with sensors placed by 2 different operators at

each trial. For the sensor-placement control experiment 2, these 2 subjects also performed 9

walking trials with displacement of the sensor along the antero-posterior (AP) axis and the

Table 1. Age bodymass index (BMI) andWOMAC indexmean (upper case) and standard deviation
(lower case) of group 1 and group 2 patients with symptomatic lower limb osteoarthritis and age
matched controls.

Group Number Age BMI WOMAC

0 12 63,2 25,2 0,0

17,1 4,6 0,0

1 24 70.5 26.8 14,1

9.5 5,7 10,0

2 24 70,5 28,2 62,58

14,9 5,5 14,0

doi:10.1371/journal.pone.0164975.t001
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medio-lateral (ML) axis in terms of the reference position (from -20 to +20 mm in 5-mm incre-

ments). Coefficientsof variation (CV ¼ m

s
) were evaluated for these 2 experiments, where μ is

the mean and σ the standard deviation of the parameters over all trials for each sensor control

experiment. A CV< 5% was considered correct and< 10% acceptable.

The study was validated by a local ethic comity (Comité de Protection des Personnes Ile de

France II, n°CPP 2014-10-04 RNI) and both patients and control subjects gave their written

consent to participate.

Instrumentation

Linear accelerations and angular velocities of the head, lower back (L4-L5 vertebra) and feet

were collected using four IMUs including triaxial accelerometers, gyroscopes and magnetome-

ters (XSens1, Culver City, CA, USA,MTw Measurement Units, 3,5h LiPo battery, 27g,

3,5x5,8x1,0cm^3, +/-16g, +/-1200deg/s, 100Hz, errors 0,003m/s2 and 0,05deg/s), fixed with

manufacturer-designed adhesive straps and connected throughWiFi with a computer.

Defining the sensor linked frame and the doctor’s office linked frame

The accelerations and the angular velocities of the four IMUs can be expressed in the sensor

linked frame and in the doctor’s office linked frame.

The IMUs were fixed and alignedwith respect to the body in the following way. The head

sensor was positioned on the center of the forehead. The antero-posterior (AP) axis of the

frame linked to the head sensor was the normal to the forehead surface. The medio-lateral

(ML) axis was set parallel to the line joining the left temple and the right temple. The vertical

(V) axis completed the orthonormal frame. The lumbar sensor was positioned at L4-L5 level.

The AP axis of the frame linked to the lumbar sensor was normal to the back surface. The ML

axis was set parallel to the line joining the right anterior superior iliac spine and left anterior

superior iliac spine. The V axis completed the orthonormal frame. Each foot sensor was posi-

tioned at the center of the dorsal face of each foot. The V axes of each frame linked to each foot

sensor were the normals to the dorsal surfaces of each foot. The AP axis was set parallel to the

longitudinal direction of the foot. The ML axis completed the orthonormal frame. Positive

directions for the axes were not defined because all computed gait parameters are independent

of this orientation.

The doctor’s office frame was the fix frame linked to the doctor’s office. The V axis of the

doctor’s office linked frame was alignedwith the gravity. The horizontal plane (H) was the

plane normal to the V axis. AP and ML axes were not defined in the doctor’s office linked

frame. The change of frame from the sensor linked frames to the doctor’s office linked frame

was done with an algorithm [49,50] based on the XSens1 3Dmagnetometer measurement.

We used the manufacturer’s rotation matrix as described and validated by Cognolato [50].

Experimental design and data acquisition

TheWOMAC index was evaluated and recorded by the same experimented orthopedic sur-

geon (ThG). The questions were always asked in the same order with the validated text. After

the sensor fixation, the participant was instructed to execute the following steps: stand quiet for

six seconds, walk ten meters at a preferred walking speed,make a U-turn, walk the ten meters

back and stand quiet for two seconds.

Participants could keep their clothes and their shoes on. Participants with high heels (>2

cm) were asked to do the exercise without their shoes. Each participant completed two trials of

this exercise to improve the reliability of the measure.
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Data processing

Each phase of the exercise (quiet standing, walking and U-turn) was manually annotated with-

out any step detection (RB). All parameters were computed on the concatenated signal of the

walk phases of the exercise (Fig 1). One given parameter p is defined by a sensor = {head, lower

back, ipsilateral foot, contralateral foot}, a frame = {sensor, office}, an axis = {AP,ML,V} if the

frame is the sensor-linked frame or an axis = {H, V} if the frame is the doctor’s office-linked

frame (H for horizontal plane), a signal sig = {acceleration, angular velocity} and a statistical

tool stat = {mean, RMS}. Thus we computed the following:

psensor;frame;axis;sig ;mean ¼ meanjsigsensor;frame;axisj

psensor;frame;axis;sig ;RMS ¼ RMSjsigsensor;frame;axisj

where |.| is the absolute value and where in the case of n values x = {x1,x2,. . .,xn}:

• the mean is defined by mean xð Þ ¼ 1

n x1 þ x2 þ � � � þ xnð Þ

• the RMS is defined by RMS xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n ðx
2

1
þ x2

2
þ � � � þ x2nÞ

q

For each parameter, the mean of the two trials was taken. Sixty parameters were computed,

fifteen for each sensor (Table 2).

Fig 1. Representative data andmanual phase annotation result for one healthy participant performing a 10meters go and 10 meters back
walking exercise at self-selected walking speed. Black bars stand for manual annotation. Dashed zone corresponds to the walking phases. The
walking parts of the signal were taken for parameter computation. (A)–Representative ML lateral angular velocity in the sensor linked frame for right
foot. (B)—Representative ML lateral angular velocity in the sensor linked frame for left foot. (C)–Representative V angular velocity in the sensor linked
frame for L3-L4.

doi:10.1371/journal.pone.0164975.g001
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The parameters were also computed by sliding the manually-annotated computation win-

dow one second earlier and one second later to take the error of the manual phase annotation

into consideration (see Results section). The parameters affected by the gravity component

were not studied because they were too sensor’s positioning dependent. These parameters

were: the mean of the norm of the acceleration in the sensor linked frames in the AP, ML and

V directions on the four markers i.e.:

pfhead;lower back;feetg;sensor;fAP;ML;Vg;acceleration;mean

Gravity component of the acceleration was not removed. The angular velocities in the hori-

zontal plane in the doctor’s office frame was not studied because of the absence of clinical

meaning of this parameter i.e.:

pfhead;lower back;feetg;office;H;angular velocity;fmean;RMSg

Mean walking velocity was computed by dividing the walking distance (20 m) by the dura-

tion of the walking phases.

Statistical analysis

A one-way analysis of variance (ANOVA) with Tukey pairwise comparison test and a one-way

analysis of covariance (ANCOVA) with age and BMI as covariate with Tukey pairwise compar-

ison were performed on all three groups on all the 61 parameters. Mean walking velocity was

not taken as covariate because it is known to decrease with lower limb osteoarthritis severity

[25]. We defined a discriminating parameter as a parameter that showed statistical differences

using an ANOVA analysis with a Tukey pairwise comparison test (p-value set under 0, 05)

between all three groups (G1vsG2, G2vsG3 and G1vsG3).

Results

Data processing

We could manually annotate the initial quiet-standing phase, the go-walking phase, the U-turn

and the back-walking phase for all 48 lower limb osteoarthritis patients and the 12 control sub-

jects. Representative data and manual phase annotation results for one control subject

Table 2. Acceleration and angular velocity parameters in the sensor linked frames and the doctor’s
office linked frame. RMS for root mean square.

Sensor linked frame

Axis and plane Acceleration Angular velocity

Meadial lateral (ML) - Mean

RMS RMS

Anterior posterior (AP) - Mean

RMS RMS

Vertical (V) - Mean

RMS RMS

Doctor’s office linked frame

Axis and plane Acceleration Angular velocity

Horizontal (H) plane Mean -

RMS -

Vertical (V) axis Mean Mean

RMS RMS

doi:10.1371/journal.pone.0164975.t002
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performing a 10 meters forward and 10 meters back walking task at a self-selectedwalking

speed are shown in Fig 1. The cumulative error for the manual exercise phase annotation was 1

second. The relative errors due to the manual annotation error on the parameters were 5% on

average for the mean of the acceleration in the horizontal plane on the ipsilateral foot. The

errors did not change the statistical significance of the in-between group differences shown by

the discriminating parameters.

Parameters and statistical analysis

Looking at the 60 IMU-based parameters we found (S1 Table):

• in the sensor linked frames: no discriminating parameters (results not shown).

• in the doctor’s office linked frame: the mean and the RMS of the norm of the acceleration in

the horizontal plane for the contralateral (p-values respectively G0vsG1 = 0.011;

G1vsG2 = 0.013; G0vsG2<0.0001 for mean and G0vsG1 = 0.010 G1vsG2 = 0.026;

G0vsG2<0.0001 for RMS) and the ipsilateral (p-values respectively G0vsG1 = 0.002;

G1vsG2 = 0.0004; G0vsG2<0.0001 for mean and; G0vsG1 = 0.001; G1vsG2 = 0.001;

G2vsG0<0.0001 for RMS) foot were discriminating parameters (Fig 2). In our predefined

formalism these parameters are p{ipsilateral foot,controlateral foot},office,H,acceleration,{mean,RMS}.

• These parameters can be

Fig 2. Selected 24 parameters out of the 60 IMU based parameters computed in the doctor’s office linked frame obtained from 4
IMUs on 12 control subjects and 48 patients during a 10 meters go and 10meters back walking task. Sensor location are shown on the
walking silhouette by colored diamonds: grey for the head, yellow for the sacrum, blue for the contralateral foot and red for the ipsilateral foot.
The red cross of the walking silhouette indicates the ipsilateral foot to the lesion defined by the side where the patient is the more symptomatic.
Each parameter is represented by a bar diagram. The row indicate the location of the sensor and whether the parameters is computed on an
acceleration (A) or an angular velocity signal (B). The columns indicate whether the parameter is computed on the horizontal plane or on the
vertical axis and whether the parameter is a mean or a RMS of the norm of the walking signal. In each bar diagram, the parameter is
represented as a function of the severity. The results are shown by a modulated grey cross: horizontal bar stands for mean and vertical bar
stands for the standard deviation. Light grey represents the healthy group (G0), medium grey the moderately impaired group (G1) and dark
grey the severely impaired group (G2). The parameters marked by a star (*) are the discriminating parameters (parameters that show
significant difference between the threeWOMAC index defined severity groups). The statistical analysis was performed with an ANOVA
analysis and a Tukey pairwise comparison test (p-value set at 0.05). RMS stands for root mean square and V for vertical axis.

doi:10.1371/journal.pone.0164975.g002
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In the sensor linked frame, angular velocities around the ML axis on the ipsilateral and con-

tralateral feet didn’t appear to be discriminating parameters, but showed statistical significant

differences between the group of control subjects and the two groups of patients (results not

shown).

No parameters from the lower back and no parameter from the head were discriminating

parameters.

We found that the mean and RMS of the norm of the acceleration in the horizontal plane in

the doctor’s office linked frame for contralateral and ipsilateral feet still met our definition of

discriminating parameters with age and BMI as covariate.

For walking velocity, differences were significant betweenG0 and G2, G1 and G2. No signif-

icant difference in walking velocity was found betweenG0 and G1 (Fig 3). Thus, walking veloc-

ity was not a discriminating parameter.

Sensor-placement control experiment 1 gave a CV< 5% and experiment 2 a CV< 10% for

the mean of the norm of the acceleration in the horizontal plane and the RMS of the norm of

the acceleration in the horizontal plane (Table 3).

Discussion

The correlation between lower limb osteoarthritis severity and stereophotogrammetry is well

established [5,26,27,51–57]. In contrast, only two studies retrieved the same correlation using

inertial sensors [52,54]. We confirm that result here. In addition, to the best of our knowledge,

it is the first lower limb osteoarthritis study where the IMU-based gait parameters were

extractedwithout step detection, which is important for daily clinical use. Finally, our results

suggest that two IMUs placed on the feet are sufficient to quantify the severity of inferior limb

osteoarthritis,which further improves the use of the method in daily practice.

We compared 48 patients and 12 control subjects walking 10 meters forward and 10 meters

back under clinical consultation conditions. The four-IMUs-based method showed a discrimi-

nation capacity of clinical severity groups for 4 of the 60 parameters tested. These discriminat-

ing parameters were: mean and RMS of the norm of the acceleration in the horizontal plane in

the doctor’s office linked frame for the contralateral and the ipsilateral feet. The results

remained statistically significant with BMI and age as covariate. The absence of clinical correla-

tion with parameters in the head and lower back reflected that lower limb osteoarthritis

impacted the kinematics of the painful segment more than the upper body, which, to the best

of our knowledge, has not been specifically shown previously [1,12,56,58–61]. However, it can-

not be excluded that a more precise method of measurement, such as stereophotogrammetry,

could reveal subtle differences. It remains that one important conclusion would be that two

sensors placed at the feet, would be sufficient in daily practice to rate osteoarthritis severity.

Walking speed is known to influence gait parameters [62] and osteoarthritis reduces walk-

ing speed. Hence, the question is whether the influence of osteoarthritis severity on the gait

parameters was solely caused by the reduction of walking speed, or if osteoarthritis per se led to

a change of gait pattern. To analyze the change of walking pattern independently from the

walking speed, a first method is to walk at a predeterminedwalking speed [1,3,12,33,56,58,63–

65]. It requires dedicatedmaterial (treadmill), which is not suited in daily clinical practice and

it does not allow to capture natural and repeatable walking patterns [25]. A secondmethod is

to select subgroups of participants walking at their preferred walking speedmatched in walking

speed [66]. But, the subgroups do not reflect the general populations of the whole severity

groups [25]. A third method would be to set walking speed as covariate [63,67,68]. As walking

speed is inherently linked to disease progress, and its mean value tends to decrease with

increasing levels of disease severity, this technique is inappropriate [25]. Therefore, we chose to
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have participant walking at preferred walking speeds. Using that method, we showed on our

dataset that walking velocity was not a discriminating parameter when comparing G0 and G1.

Altogether, this negative result suggests that osteoarthritis per se caused a change of gait pat-

tern, independent from the walking velocity. Pain could likely be a factor.

Fig 3. Mean walking velocity as a function of theWOMAC index based osteoarthritis severity groups.
The results are shown by a modulated grey cross: horizontal bar stands for mean and vertical bar stands for
the standard deviation. Light grey represents the healthy participants, medium grey the moderately impaired
group and dark grey the severely impaired group. Black horizontal bars show the statistical differences
between the groups computed with an ANOVA analysis and a Tukey pairwise comparison test (p-value set
at 0.05).

doi:10.1371/journal.pone.0164975.g003
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Ourmethod gave a global view of the gait kinematics, which summed up the impacts of

ostheoarthritis at the hip, knee and ankle joints levels. Also, ipsilateral and contralateral sides

were definedwith respect to the more symptomatic side of the patient. Therefore, our approach

may help to objectively rate lower limb osteoarthritis severity in daily clinical practice but it is

not suited to gain a detailed insight in the walking pattern of these patients [52].

The manual phase annotation of the walking exercise we used saved time but could have

lowered the robustness of our method. However, we showed that the errors due to manual

annotation didn’t change the statistical validity of the discriminating parameters in our study.

Computation of gait parameters in the sensor-linked frame is prone to lower the reproducibil-

ity of the parameters because it is biased by the inherent variability of the positions of the sen-

sors [44,69]. This explains why in our study, robust discriminating accelerometric parameters

for lower limb osteoarthritis severity were all found in the doctor’s office linked frame.

Two aspects of the positioning of the sensors may affect gait parameters by using IMUs: the

orientation and position of the sensor on the measured body segment [70–73]. In the present

study, all discriminating parameters were computed from the laboratory frame (i.e. the frame

in which the vertical axis and horizontal plane are independent of the initial orientation of the

sensor). Nevertheless, with the effect of the position of the sensor on the body segment, the CV

was< 5% for our discriminating parameters, for realistic placement errors (we estimated our

error as routine to be about 10 mm), and< 10% for extreme placement errors. Indeed, special

care is needed for placement of the sensor, but this positioning had moderate impact on the

parameters we propose.

We compared the IMU-based gait parameters and lower limb osteoarthritis assessed by the

WOMAC index, which is a purely clinical score. Classically, inertial sensor based studies use

the Kellgren and Lawrence radiographic score to rate knee osteoarthritis [5,26,27,53–57].

Radiographic knee osteoarthritis severity is known to have poor correlation with the clinic

namely gait disturbance [74,75]. Radiographic osteoarthritis can be clinically silent [26], which

could explain the inconsistent correlation between gait analysis and radiographic-based lower

limb osteoarthritis severity [59]. Again, it can be hypothesized that pain commands walking

strategies.

Finally, beyond the fact that we designed an automated method of gait quantification,

adapted to daily practice, our results gave some insight in the impact of lower limb osteoarthri-

tis on locomotion. The most relevant results of our study are the decrease of the mean and

RMS of norm of the acceleration in the horizontal plane on both feet with disease severity. It

could result from a diminution of movement in the AP direction due to pain. This interpreta-

tion had been suggested in studies relying on local peak amplitudes [13,54,76,77]. Liikavainio

Table 3. Sensor-placement control experiment 1 (Exp. 1): coefficient of variation (CV; mean/SD) of
the mean and root mean square (RMS) of the norm for acceleration in the horizontal plane in the right
foot for 2 subjects over 5 walking trials with renewal of the sensor placement at each trial. Sensor-
placement control experiment 2 (Exp. 2): CV over 9 walking trials (-20; -15; -10; -5; 0; 5; 10; 15; 20 mm) with
displacement of the sensor in increments of 5 mm along the antero-posterior axis and medio-lateral axis in
terms of the reference position. Values are in percentages.

Mean RMS

Exp. 1 Subject 1 3.5* 4.3*

Subject 2 0.9* 2.1*

Exp. 2 Subject 1 7.4 8.9

Subject 2 2.9* 4.0*

* CV < 5%.

doi:10.1371/journal.pone.0164975.t003
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et al. (2010) have also hypothesized that patients use a different strategy to brake the forward

movement of the swinging leg before floor contact. This strategy could explain both the reduc-

tion of our global parameters and the increase of the local peaks in patients reported by others.

Conclusion

Our study showed that by using two IMUs placed on both feet and a signal processing method

without step detection, we could objectively quantify limp in lower-limb osteoarthritis. This

finding underlines the importance of measuring key anatomical landmarks and accessible gait

parameters in exploring limp by using IMUs and severity grading. Although the proposed

method still had some limitations, it provided new, automatically computed parameters that

could be used for the comprehension of lower limb osteoarthritis in current medical practice. It

may not only be used in medical consultation to score patients, but also to monitor the evolu-

tion of their clinical syndrome during and after rehabilitation. Finally, it paves the way for the

quantification of gait in other fields such as neurology and for home monitoring.

Supporting Information

S1 Table. Lower limb osteoarthritis severity group, WOMAC score, BMI, age, walking

velocity and the 60 parameters for the 12 control subjects and the 48 patients. Each parame-

ter is defined by: a sensor = {head, lower back, ipsilateral foot, contralateral foot}; a frame = {sen-

sor, office}; an axis = {AP,ML,V} if the frame is the sensor-linked frame or an axis = {H, V} if

the frame is the doctor’s office-linked frame (H for horizontal plane); a signal sig = {accelera-

tion, angular velocity} and a statistical tool stat = {mean, RMS}. The parameter ipsilateral foot-

office-H-acceleration-mean-modified corresponds to the parameter ipsilateral foot-office-H-

acceleration-mean computed with the cumulative error for the manual exercise phase annota-

tion that was estimated at 1 second. Accelerations are given in g and angular velocities in deg/s.

AP antero-posterior, ML medio-lateral, V vertical, H horizontal plane, RMS root mean square,

BMI bodymass index.

(XLSX)
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