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Abstract Quantifying the uncertainty around endpoints

used for decision-making in drug development is essential.

In nonlinear mixed-effects models (NLMEM) analysis, this

uncertainty is derived from the uncertainty around model

parameters. Different methods to assess parameter uncer-

tainty exist, but scrutiny towards their adequacy is low. In a

previous publication, sampling importance resampling

(SIR) was proposed as a fast and assumption-light method

for the estimation of parameter uncertainty. A non-iterative

implementation of SIR proved adequate for a set of simple

NLMEM, but the choice of SIR settings remained an issue.

This issue was alleviated in the present work through the

development of an automated, iterative SIR procedure. The

new procedure was tested on 25 real data examples cov-

ering a wide range of pharmacokinetic and pharmacody-

namic NLMEM featuring continuous and categorical

endpoints, with up to 39 estimated parameters and varying

data richness. SIR led to appropriate results after 3 itera-

tions on average. SIR was also compared with the covari-

ance matrix, bootstrap and stochastic simulations and

estimations (SSE). SIR was about 10 times faster than the

bootstrap. SIR led to relative standard errors similar to the

covariance matrix and SSE. SIR parameter 95% confidence

intervals also displayed similar asymmetry to SSE. In

conclusion, the automated SIR procedure was successfully

applied over a large variety of cases, and its user-friendly

implementation in the PsN program enables an efficient

estimation of parameter uncertainty in NLMEM.

Keywords Sampling importance resampling � Parameter

uncertainty � Confidence intervals � Asymptotic covariance

matrix � Bootstrap � Nonlinear mixed-effects models

Introduction

The added value of modeling and simulation using non-

linear mixed-effects models (NLMEM) for decision-mak-

ing in drug development has long been advocated and

illustrated [1–4]. NLMEM provide a mathematical

description of pathophysiological and pharmacological

processes, as well as a statistical characterization of the

different sources of variability affecting these processes, in

particular inter-individual variability. The model structure

together with the value of model parameters can be used

for a number of applications such as quantifying drug

interactions [5], calculating the power of a prospective trial

[6], proposing dose regimen adaptations [7] or designing

efficient clinical trials [8]. In such applications, the

uncertainty around model parameters typically needs to be

taken into account. Parameter uncertainty can be quantified

using a number of methods, which can lead to different

uncertainty estimates. Despite this and contrarily to the

scrutiny exercised towards structural and distributional

assumptions, the adequacy of uncertainty estimates in

NLMEM is rarely inspected. A diagnostic assessing the

adequacy of uncertainty estimates in NLMEM was recently

developed to start filling this gap [9]. In addition, the

Sampling Importance Resampling (SIR) method was pro-

posed to improve the estimation of parameter uncertainty
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for NLMEM as compared to currently available methods

such as the asymptotic variance–covariance matrix and the

bootstrap [10]. SIR provides many advantages. From a

computational perspective, it is faster than bootstrap. It also

does not require any parameter estimation, which con-

tributes to its speed but also avoids common issues due to

convergence problems. As bootstrap, SIR does not make

any assumptions about the shape of the uncertainty distri-

bution, whereas the covariance matrix is generally used as

a multivariate normal distribution. Lastly, SIR can be used

with any type of data, unlike the bootstrap which is often

limited by design characteristics such as small subgroups

or unbalanced sampling.

SIR provides parameter uncertainty, for a given model

and set of data, in the form of a defined number m of

parameter vectors representative of the true and unknown

parameter uncertainty distribution. The m parameter vec-

tors are obtained by drawing from a set of a defined number

M (M[m) of parameter vectors arising from a proposal

distribution. When using SIR, three settings need to be

chosen: the proposal distribution, the number of samples

M and the number of resamples m. In a previous publica-

tion [10], the authors tested different SIR settings on simple

NLMEM, and also developed diagnostics to assess whether

the chosen settings were appropriate. When using the

covariance matrix as a multivariate normal proposal dis-

tribution and resampling 1000 parameter vectors out of

5000, SIR was able to recover the true uncertainty in two

simulation examples, and led to sensible confidence inter-

vals for three simple, linear pharmacokinetic models.

Based on these initial results, in the present work the SIR

procedure was extended to an iterative procedure, where

the resampled parameters of any given iteration serve as

proposal distribution for the next. This iterative procedure

has the advantage of more efficiently improving the pro-

posal distribution towards the true uncertainty, as well as

enabling direct assessment of the convergence of the SIR

procedure. In addition to the improved procedure, the

present work also extends the scope of NLMEM on which

SIR has been tested from three simple PK models to 25

pharmacokinetic and pharmacodynamic NLMEM featuring

continuous and categorical endpoints, with up to 39 esti-

mated parameters and varying degrees of complexity.

The aim of this work was to evaluate the performance of

the newly proposed SIR workflow to estimate parameter

uncertainty on an array of NLMEM. Parameter uncertainty

obtained with SIR was compared to the uncertainty

obtained with the commonly used methods based on the

covariance matrix, the bootstrap and stochastic simulations

and estimations (SSE).

Methods

SIR workflow

SIR was originally developed in Bayesian statistics [11] as

a non-iterative procedure. It had been adapted to the esti-

mation of parameter uncertainty in NLMEM [10], where

for a given model and set of data, SIR would provide an

estimate of uncertainty in the form of a defined number

m of parameter vectors obtained in the following three

steps:

1. Step 1 (sampling): A defined number M (M[m) of

parameter vectors were sampled from a multivariate

parametric proposal distribution, obtained for example

based on the covariance matrix or a limited bootstrap.

2. Step 2 (importance weighting): An ‘‘importance ratio’’,

representing the probability in the true parameter

uncertainty distribution, was computed for each of the

sampled parameter vectors. According to SIR theory

[11], this probability can be approximated by the

likelihood of the data given the parameter vector

weighted by the likelihood of the parameter vector in

the proposal distribution (Eq. 1).

IR ¼
exp �1

2
dOFV

� �

relPDF
ð1Þ

IR is the importance ratio, dOFV is the difference

between the objective function value (OFV, equal to

minus two times the log-likelihood up to a constant) of

the parameter vector and the OFV of the final param-

eter estimates of the model, and relPDF is the value of

the probability density function of the parameter vector

relative to the probability density of the final parameter

estimates

3. Step 3 (resampling): m parameter vectors were resam-

pled from the pool of M simulated vectors with

probabilities proportional to their importance ratio.

The resampled distribution represents the true uncer-

tainty when the number of samples M tends towards

infinity [11]. When M is finite, SIR results are closer to the

true uncertainty than the proposal distribution, but may still

differ from the true distribution. How close SIR results are

to the true uncertainty depends on both the proposal dis-

tribution and M: the closer the proposal is to the true

uncertainty and the higher M, the closer SIR results are to

the true distribution. Note that the size of M is only

important relative to the number of resamples m, the true

quantity of interest being the ratio M/m. m is chosen by the

user depending on the desired level of precision in uncer-

tainty estimates. For example, if one wants to compute

relative standard errors on parameter estimates, m can be
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set to a much lower number than when one wants to

compute 95% confidence intervals.

Given the unknowns around the choice of SIR settings

which would lead to the true uncertainty, Dosne et al. [10]

proposed two diagnostics to assess how close results of a

SIR with user-chosen settings are to the true uncertainty:

the dOFV plot and the temporal trends plot. The dOFV plot

(exemplified in Fig. 1) is based on the property that if the

m resampled vectors correspond to the true uncertainty, the

distribution of their dOFV, i.e. the difference between the

objective function value (OFV, equal to minus two times

the log-likelihood up to a constant) of the resampled

parameter vector and the OFV of the final parameter esti-

mates of the model, is expected to follow a Chi square

distribution with degree of freedom equal or inferior to the

number of estimated parameters [12]. If this is the case, i.e.

if the dOFV distribution of the SIR resamples lies at or

beneath the reference Chi square distribution on the dOFV

plot, then the temporal trends plot (as displayed in [10]) is

further inspected to ensure that SIR cannot be further

improved. If the temporal trends plot shows that the

resampling proportion in regions of the proposal displaying

high IR does not decrease over the resampling sequence,

meaning that SIR cannot be improved by further increasing

M, SIR settings can be considered appropriate and SIR

results considered final. If this is not the case, SIR has to be

performed again using a different, typically inflated

proposal distribution or an increased M, depending on the

observed trends in the diagnostics.

The idea of the present work was to improve the SIR

procedure to achieve final results in an automated way. To

this end, the procedure was extended to an iterative pro-

cedure, where the resamples of one iteration were used as

the proposal distribution of the next iteration. This was

performed by fitting a multivariate Box-Cox distribution to

the resamples at each step, and then using this distribution

to generate the samples of the next step. The Box-Cox

distribution was chosen for two reasons: first, a parametric

distribution was required in order to be able to compute the

denominator of the importance ratios. Second, contrarily to

a multivariate normal distribution, the Box-Cox distribu-

tion allows both symmetric and asymmetric distributions

through the use of parameter-specific shape parameters.

This was expected to better approximate the true uncer-

tainty, notably for variance parameters. Using an iterative

procedure also greatly simplified SIR diagnostics, as the

resamples distribution was expected to gradually converge

to the true uncertainty distribution. SIR results could thus

be considered final when no changes are observed between

the estimated uncertainty of two consecutive iterations.

The proposal distribution of the first iteration was set to

the ‘‘sandwich’’ covariance matrix obtained in NONMEM

if available, otherwise to a limited bootstrap (e.g. 200

bootstrap samples). The number of SIR samples and

resamples was set as follows: the first three iterations used

Fig. 1 SIR diagnostic plot showing SIR convergence for one of the
investigated examples. Lines represent the value of the dOFV for each
percentile of the proposal distributions (dotted colored lines) and the
resamples distributions (solid colored lines) at each iteration. The
shaded area represents the resampling noise around the last resamples
dOFV distribution. The dOFV resamples distributions of the last two

iterations need to be within sampling noise for SIR results to be
considered final. The reference Chi square distribution with degrees
of freedom equal to the number of estimated parameters is the grey

solid line and the estimated degrees of freedom for each distribution
are displayed in the bottom right corner
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M = 1000 samples and increasing m = 200, 400, 500

resamples, while all further iterations used M = 2000

samples and m = 1000 resamples. This was chosen to

maximize efficiency, with highM/m ratios and low m at the

start of the procedure enabling fast improvement over the

proposal while keeping runtimes short. From the fourth

iteration on, proposals were expected to be relatively close

to the true uncertainty, and thus a lower M/m ratio with

m = 1000 thought to enable precise estimation of the

uncertainty while minimizing runtime. Note that changes

in the number of samples and resamples settings impact

SIR efficiency, but they are not expected to impact final

SIR results. As such, they can be modified on a case by

case basis by the user.

SIR results were considered final when no changes were

observed between the estimated uncertainty of two con-

secutive iterations. dOFV distributions were used as a

surrogate for the estimated uncertainty. SIR convergence

was thus assessed based on the dOFV plot, and SIR results

were considered final when the dOFV distributions of the

resamples of two consecutive iterations were overlaid up to

sampling noise. A schematic of the SIR workflow is pre-

sented in Fig. 2.

Note that a particular case arises when the dOFV dis-

tribution of the first proposal distribution is already below

the reference Chi square distribution. Based on the work in

[10], this indicates a risk that the initial parameter uncer-

tainty is underestimated. Because it is more difficult for

SIR to increase than to decrease uncertainty distributions,

SIR should then be restarted using an inflated proposal

distribution. In such cases, the proposal was inflated by

multiplying all variances and covariances by a single fac-

tor, until its dOFV distribution lay above the reference Chi

square.

Testing of the new SIR workflow

The new workflow was tested on 10 pharmacokinetic and

15 pharmacodynamic models, i.e. a total of 25 NLMEM

[5, 13–36]. A summary of the models is provided in

Table 1, and a more detailed description of each model is

available in Table S1 in the Supplementary Material.

Around 80% of the modelled endpoints were continuous.

The number of estimated model parameters ranged from 1

to 39, with random effects accounting for 0 to 77% of the

total number of parameters. Datasets covered sparse to rich

data, with an average of 115 individuals, 4076 observa-

tions, and 28 observations per individual.

The evaluation of the iterative SIR procedure was based

on the number of iterations needed until stabilization and

on the degree of freedom of the dOFV distribution obtained

at stabilization, which is a marker of the adequacy of the

uncertainty estimates and should be equal to or lower than

the number of estimated parameters [10]. Typical and

atypical behaviors were reported and analyzed.

SIR sensitivity to initial proposal distribution

The influence of the initial proposal distribution was

investigated by performing the iterative procedure as

described above but using a generic covariance matrix as

initial proposal distribution. This generic SIR was com-

pared to the informed SIR (starting from the covariance

matrix or a limited bootstrap) in order to assess whether

SIR was robust to the initial proposal distribution and the

extent of the loss in runtime when starting from less

informed proposal distributions. The generic covariance

matrix was set to a multivariate normal distribution with

30% relative standard errors (RSE) on fixed effects, 50%

RSE on inter-individual and inter-occasion variabilities,

10% RSE on residual variabilities, and no correlations

between any of the parameter uncertainties. Except for the

initial proposal distribution, the workflow remained as

presented in Fig. 2. The number of iterations until stabi-

lization, the runtime, the final parameter RSE and the final

degree of freedom were contrasted between the generic and

the informed SIR.

Fig. 2 Proposed SIR workflow. To obtain SIR parameter uncertainty
for a given model and data, SIR is started using, in order of
preference: the covariance matrix, a limited bootstrap (e.g. 200
samples or less). or a generic covariance matrix (e.g. 50% RSE on all
parameters) as first proposal distribution. Then, SIR iterations are
automatically performed using the resamples of one iteration as
proposal distribution of the next, until the dOFV distributions of the
resamples of the last 2 iterations are overlaid in the dOFV plot, in
which case SIR results are considered final
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Comparison of SIR with other methods

for parameter uncertainty

Finally, the uncertainty obtained with SIR was compared to

the uncertainty obtained with three other methods: the

covariance matrix, case bootstrap, and SSE. The covari-

ance matrix was obtained from the sandwich estimator in

NONMEM if possible. The bootstrapped datasets were

constructed by resampling individual data vectors with

replacement. Bootstrap uncertainty estimates were

obtained based on all available bootstrapped parameter

estimates, regardless of the termination status of the esti-

mation. For the SSE, also known as parametric bootstrap,

datasets were simulated based on the final model (using

final parameters estimates and the design of the original

dataset), and parameters were re-estimated on the simu-

lated datasets using the same model. As for case bootstrap,

SSE uncertainty estimates were obtained based on all

available parameter estimates regardless of the termination

status. Parameter uncertainty was based on 1000 samples

for all methods. Following metrics were compared: run-

times, RSE, relative widths and relative asymmetry of the

parameters’ 95% confidence intervals (95% CI). The rel-

ative widths of the confidence intervals were calculated as

the distance between the confidence interval’s upper and

lower bounds, divided by the final parameter estimate of

the original dataset. Asymmetry was quantified by the ratio

of the distance between the confidence interval’s upper

bound and the median, divided by the distance between the

confidence interval’s lower bound and the median. Run-

time comparisons were performed between SIR and boot-

strap based on the ratio between the time 7000 likelihood

evaluations were expected to take (as performed during the

SIR procedure, i.e. using MAXEVAL = 0 in $EST in

NONMEM) and the time 1000 likelihood estimations were

expected to take (as performed during the bootstrap, i.e.

using MAXEVAL = 9999 in $EST in NONMEM). As it

was not known in advance how many iterations SIR would

require, the benchmark used for SIR consisted of the

runtime needed for 5 iterations, which was considered

reasonable for the majority of models. The absolute run-

time of each procedure could not be used due to its

dependency on cluster load, user settings and paralleliza-

tion processes. Runtime comparisons with the covariance

matrix or the SSE were not performed as the computation

of the covariance matrix was expected to be markedly

faster than likelihood evaluations or estimations in the vast

majority of cases, and the SSE was expected to have run-

times similar to bootstrap.

Software

The iterative SIR procedure was implemented as an auto-

mated function in the modeling support tool PsN [37].

NONMEM 7.3 [38] and PsN 4.5.0 and above were used to

perform all SIR, bootstraps and SSE. RStudio 0.98 using R

3.1.2 [39] was used for graphical output.

Results

Performance of the new proposed SIR procedure

The asymptotic covariance matrix was available to be used

as proposal distribution for SIR for 20 models. For 5

models, the covariance matrix could not be obtained, so

SIR was performed using a limited bootstrap as initial

proposal distribution. Inflation of the covariance matrix

was needed for 9 out of 20 models, as the dOFV distri-

bution of the covariance matrix appeared partly or fully

below the reference Chi square distribution. An inflation of

all variances by 1.5 was sufficient to correct the underes-

timation for six models, but inflation of 2 and 3 were used

for the three remaining models.

Convergence at the end of the iterative SIR procedure

was assessed visually based on the dOFV distribution plot.

Other diagnostic plots were also inspected. An example of

dOFV plot where SIR has converged is provided in Fig. 1.

Table 1 Summary of the 25
investigated NLMEM models

Model characteristic Categories/mean value (range)

Type of model 10 PK, 15 PD (total 25)

Type of data 21 continuous, 4 categorical

Number of estimated parameters 15 (1–39)

Proportion of random effects (%) 27 (0–77)

Number of individuals 115 (6–551)

Number of observations 4076 (58–47,784)

Number of observations/individual 28 (1–102)

Estimation method 3 FO, 5 FOCE, 10 FOCEI, 7 LAPLACE

PK pharmacokinetic, PD pharmacodynamic, FO first-order, FOCE first-order conditional estimation,
FOCEI first-order conditional estimation with interaction
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An example of dOFV plot where SIR requires inflation is

provided in Figure S1 in the Supplementary Material. SIR

convergence was achieved after 3 iterations on average,

with only three models needing more than 5 iterations to

converge. Two of these models converged after 7 (PD8)

and 11 (PD15) iterations respectively. The last model

(PD1) kept oscillating around a degree of freedom above

the total number of parameters (around 29, with 23 esti-

mated parameters). The degree of freedom (df) also sta-

bilized slightly above the total number of parameters for

PD11 (df = 7, with 6 estimated parameters). SIR conver-

gence for the different models is illustrated in Fig. 3, which

displays the estimated degree of freedom of the SIR

resamples distribution at each iteration, normalized by the

total number of estimated parameters of the model. The

degree of freedom estimated at the 0th iteration corre-

sponds to the degree of freedom of the initial proposal

distribution, i.e. the covariance matrix or the limited

bootstrap. The estimated degrees of freedom of the final

SIR distributions were on average 20% lower than the total

number of estimated parameters [range (-40%; ?30%)].

The initial proposal distributions (model’s covariance

matrix or limited bootstrap) appeared different from the

true uncertainty, with degrees of freedom higher than the

number of estimated parameters: median degrees of free-

dom were 1.4-fold higher than the number of parameters

for the covariance matrices, and 4-fold higher for the

limited bootstraps.

SIR sensitivity to initial proposal distribution

Results obtained with the SIR procedure starting from a

generic multivariate normal distribution were available for

17 out of the 25 models. Regarding runtime, as expected it

took more iterations for SIR to converge when starting

from the generic proposal distribution: 8 iterations were

needed on average for the generic SIR to converge, versus

3 iterations for the informed SIR. In theory, final SIR

results should not be sensitive to the initial proposal dis-

tribution, as long as the procedure is pursued with sufficient

number of iterations and/or sufficient number of samples

M. RSE obtained after SIR convergence with the two

methods changed by less than 5% on average and were

generally comprised within 20% of the value obtained with

the informed SIR (results not shown). This illustrated the

robustness of SIR towards its proposal distribution. The

closeness of the estimated degrees of freedom at stabi-

lization between the generic and the informed SIR, which

differed by less than 5% on average [range (-19%;

?40%), Fig. 4] further supported this finding for most

models. The PK1 model showed an 8-point difference in

degrees of freedom between the two SIR. The lower ade-

quacy of the generic initial proposal distribution was also

reflected in the estimated degrees of freedom at start of the

SIR procedure. The degrees of freedom were around

25-fold higher than the number of estimated parameters for

the generic SIR, versus 1.4 to 4-fold with the informed SIR.

Fig. 3 Convergence of the
informed SIR over the 25
investigated models as
represented by the estimated
degree of freedom of the SIR
resamples distribution at each
iteration, normalized by the
total number of estimated
parameters of each model. The
normalized degree of freedom at
the 0th iteration is the degree of
freedom of the informed
proposal distribution
(covariance matrix or limited
bootstrap). Boxplots represent
the median, first and third
quartiles of the degree of
freedom during the proposed
iterative procedure until the 5th
iteration, when most of the
models had converged
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Comparison of SIR with other methods

for parameter uncertainty

Estimates of parameter uncertainty using the covariance

matrix, the bootstrap and the SSE were available for 20, 19

and 16 models respectively. In terms of runtime, SIR was

on average 10 times faster than bootstrap. SIR was faster

than the bootstrap for all models except for two models run

with the FO method. The greatest runtime gain was

observed for an epilepsy model estimated with the

LAPLACE method, for which one estimation of the like-

lihood took 2000 times longer than one evaluation of the

likelihood. Note that SIR runtime gains calculated as

detailed in the Methods section are expected to be over-

estimated, as the processing time between the different

iterations was not taken into account.

Differences between parameter uncertainties obtained

with the four methods were highly model- and parameter-

dependent. To be able to investigate general ten-den-cies,

the median value of each uncertainty metric (RSE and

width and asymmetry of the 95% CI) was computed for

each model, over all of its estimated parameters. Methods

were only compared to one another, as the true parameter

uncertainty of the real datasets was unknown. Median RSE

over all model parameters were similar between all meth-

ods but the bootstrap, which showed higher RSE (Fig. 5,

left panel). This was also reflected in the relative width of

the 95% CI (normalized by the parameter value): the

covariance matrix and SSE led to similar CI widths,

whereas SIR led to slightly narrower CI and the bootstrap

to much wider CI (Fig. 5, middle panel). 95% CI with SIR

was 15% narrower than with SSE and 40% narrower than

with the bootstrap. In terms of asymmetry, SIR was close

to SSE, with median asymmetry values around 1.2 (Fig. 5,

right panel). This meant that the upper bounds of the CI

were 1.2-fold further away from the median than the lower

bounds. The bootstrap displayed the highest asymmetry

(median at 1.3), and the covariance matrix the smallest

(median below 1.1).

Differences in the estimated parameter uncertainty

between the four methods were also reflected in the esti-

mated degrees of freedom. Median normalized degrees of

freedom were closest to 1 for the SSE (df = 1.1), followed

by SIR (df = 0.8), the covariance matrix (df = 1.4) and

finally bootstrap (df = 1.6).

Discussion

To summarize, the iterative SIR procedure starting from

the covariance matrix or a limited bootstrap was satisfac-

tory for 22 out of the 25 models investigated. As indicated

from the dOFV plot, the proposal required inflation in

about half the cases to increase SIR efficiency in the

presence of misspecified narrow RSE. As SIR seemed

relatively robust to the choice of initial proposal distribu-

tion, it is recommended to use an informed proposal dis-

tribution if available, as this will considerably decrease

runtimes. SIR led to median RSE and CI widths compa-

rable to the covariance matrix and SSE, and smaller than

the bootstrap. The asymmetry of the CI with SIR was

similar to the asymmetry with the SSE and was lower than

the asymmetry with the bootstrap. SIR seemed to perform

better than the other methods based on the estimated

degrees of freedom, as higher values indicate that param-

eter vectors of the uncertainty distribution are unlikely

based on the model and data. Details of these different

aspects are discussed below.

Performance of the new proposed SIR procedure

Starting the iterative SIR procedure from the covariance

matrix required inflation by factors of 1.5 and above for

half of the models, but no inflation was necessary when

starting from a limited bootstrap. This underestimation was

to relate to the use of a symmetric multivariate normal

distribution when computing the proposal distribution

based on the covariance matrix. Symmetric distributions

are known to be unlikely to hold true for random effects,

which are expected to follow asymmetric right-skewed

Fig. 4 Normalized degree of freedom of the SIR resamples distri-
bution at stabilization for the generic SIR (y-axis) and for the
informed SIR (x-axis) for the 17 models for which results from both
SIR were available. The full black line is the identity line and the
dashed lines represent deviations of 20% from the identity line
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distributions bounded by 0 in their lower tail, such as

inverse Wishart distributions. However, in order to com-

pute the probability density function of the full uncertainty

distribution (i.e. including all fixed and random effects and

taking potential correlations into account), it was not pos-

sible to use different distributions for fixed and random

effects. It was expected that random effects would as a

consequence see their distribution shifted downwards

compared to a corresponding inverse Wishart distribution

with identical variance. This was only the case for the first

covariance matrix-based iteration, as a more flexible dis-

tribution, the Box-Cox distribution, was used for all sub-

sequent SIR iterations and when starting from a limited

bootstrap. The implemented multivariate Box-Cox distri-

bution included parameter-specific shape parameters gov-

erning the skewness of each parameter’s distribution.

Estimating a shape parameter for each model parameter

enabled proposal distributions to be symmetric for fixed

effects but right-skewed for random effects, as is often

observed. An inverse Wishart distribution would have been

less flexible than the Box-Cox distribution, as the variance

and the skewness of the inverse Wishart distribution are

defined by a single parameter, which forces the distribution

to be asymmetric when its variance is high. The shape

parameters of the Box-Cox distribution were estimated on

the set of parameter vectors obtained by bootstrap or by

SIR resampling. Using a Box-Cox distribution was not

possible when starting directly from the covariance matrix,

as no parameter vectors were available to estimate the

shape parameters. Further improving the automated SIR

procedure by starting from a multivariate Box-Cox distri-

bution with fixed shape parameters, for example 1 (sym-

metric distributions) for fixed effects and 0 (right skewed

distributions, equivalent to log-normal) for random effects,

could be considered. This could potentially decrease the

need for inflation of the proposal distribution. Also, an

automated check could be implemented after the first

iteration to detect whether the proposal dOFV distribution

is partly or fully below the Chi square distribution. If this is

the case, the proposal could be automatically inflated until

it is fully above the Chi square distribution prior to starting

the iterative SIR procedure.

Limitations of the Box-Cox distribution as a parametric

approximation of a set of parameter vectors were some-

times apparent, for example when comparing the degree of

freedom at the first iteration when starting from the limited

bootstrap to the degree of freedom obtained with the full

bootstrap. If the Box-Cox distribution were a good

approximation of the (nonparametric) bootstrap parameter

vectors, both degrees of freedom should be similar. The

degrees of freedom using the Box-Cox distribution was

however on average 3 times higher than the degrees of

freedom using the full bootstrap, confirming the limitation

of the Box-Cox distribution to fully capture the uncertainty

reflected in sets of parameter vectors. However, the limi-

tations of the Box-Cox distribution did not limit SIR per-

formance as long as the M/m ratios were high enough. The

use of even more flexible multivariate distributions than the

Box-Cox could be envisaged to further increase SIR effi-

ciency. An alternative may also be to perform the sampling

in a less random manner, in order to guarantee a better

representation of the proposal [40].

Another characteristic of multivariate distributions is the

correlation structure they imply. For the multivariate nor-

mal distribution, correlations were assumed to be linear; in

the implementation of the multivariate Box-Cox distribu-

tion, they were assumed to be linear on the Box-Cox

transformed scale, resulting in fixed shape-dependent cor-

relations on the untransformed scale. Similar to the prob-

lem with too narrow proposal distributions, the SIR

procedure will have difficulties to correct misspecified

correlations shapes when correlations are high, as these

restrict the parameter space investigated by SIR. Half of

the models showed one or more correlations greater than

0.8 in their proposal distributions. These correlations

decreased below 0.8 in approximately half of the cases,

showing that SIR was to some extent able to decrease too

high correlations. On the other hand, SIR was also able to

Fig. 5 Distribution of the
median (over all parameters)
RSE, 95% CI width
(WIDTH95) and asymmetry
(ASYM95) for all models by
uncertainty method: SIR,
covariance matrix (cov),
bootstrap (boot) and SSE

516 J Pharmacokinet Pharmacodyn (2017) 44:509–520

123



pick up correlations, most notably when starting from the

generic proposal distribution, for which correlations were

set to 0. The occurrence of problematic cases due to mis-

specified correlations seemed low in the investigated

models, however experience with other models outside the

scope of this work has confirmed constrained correlations

structures to be a potential issue for SIR if misspecified. A

default cap on correlations during the iterative procedure

could be beneficial to avoid any undue restriction of the

parameter space explored by SIR.

An automated, numerical stop of the SIR procedure

based on the stabilization of the degree of freedom instead

of the visual inspection of dOFV distributions was not

considered, notably because the required tolerance towards

between-iteration variations of the degree of freedom could

not easily be determined.

The degree of freedom of the final SIR resamples dis-

tribution was on average around 80% of the total number of

estimated parameters (minimum at 60% for one model, and

between 60 and 80% for 10 models). This seemed rea-

sonable, as for NLMEM the degree of freedom is unknown

but expected to be at or below the number of estimated

parameters due to restrictions in the parameter space (such

as the positive domain for variances, or given by physio-

logical boundaries). Potential explanations for lower

degrees of freedom are a high proportion of random effects

[41], as variances might contribute to less than a full degree

of freedom, as well as small dataset sizes, for which the

properties of the likelihood ratio test are not always

respected [42]. Efforts to link the final degree of freedom to

model characteristics were not successful: no correlation

between the proportion of random effects, sample size

(number of individuals, observations or observations per

individual) and degree of freedom could be established.

SIR sensitivity to initial proposal distribution

SIR results obtained when starting from a generic proposal

distribution with RSE of 30% on fixed effects, 50% on

random effects and 10% on residual errors were in general

very similar to those obtained using the informed proposal.

Given the similarity of the results between the generic and

informed SIR for all models but one and the approximated

2-fold loss in runtime with the generic SIR, it is recom-

mended to use an informed proposal as initial distribution.

Special cases

Three models showed atypical behavior when performing

the SIR procedure. The first model, PD1 (Likert pain score

model based on Poisson distributions with Markovian

elements), showed unstable degrees of freedom and RSE

up until 15 SIR iterations. For this model the covariance

matrix could not be obtained, and bootstrap and SSE results

highlighted major estimations issues (only 1% of the

minimizations were successful, and only 5% of the datasets

led to parameter estimates different from the initial esti-

mates). This highlights a limitation of SIR when the like-

lihood cannot be reliably evaluated. However, such a

limitation is often shared between uncertainty estimation

methods.

The second model, PD11 (time to event model for

conversion to sinus rhythm in acute atrial fibrillation),

stabilized at a degree of freedom greater than the total

number of parameters. This model also displayed estima-

tion issues during the bootstrap. One of the parameters, a

threshold value for a change in hazard, was shown to be the

source of these problems: fixing it to its estimated value

lead to more sensible SIR results with a degree of freedom

of 4.5 for 5 estimated parameters.

The last atypical model was PK1, a 31-parameter model

of parent and metabolite PK data displaying a degree of

freedom 8 points higher with the generic SIR than the

informed SIR at stabilization. This translated into higher

RSE for some variance parameters, notably the inter-indi-

vidual variability on the central volume which RSE

increased from 34% (informed SIR) to 56% (generic SIR).

An inflation of the proposal of the informed SIR corrected

the problem, and led to identical degrees of freedom at

stabilization for both SIR. The fact that the underestimation

of the uncertainty of some variance parameters was not

visible in the diagnostic plots of the informed SIR remains

to be fully understood. It could be linked to the high

number of estimated parameters, which could diminish the

power of parameter-specific diagnostics to detect trends

based on single parameters.

Two models highlighted interesting SIR features. The

first model, PD15 (diabetes model linking insulin, glucose

and weight), was found to be at a local minimum during the

SIR procedure: multiple sets of parameter vectors sampled

from the covariance matrix were found to have lower OFV

than the final estimates. The estimation was thus restarted

using the vector with the lowest OFV as initial estimates,

and SIR was performed on this model. The possibility of

finding local minima is thus another advantage of SIR, as it

evaluates a high number of parameter vectors spanning a

wide parameter space. A warning is outputted if negative

dOFV are found during the SIR procedure, so that the local

minimum can be addressed. Lastly, PK8 (physiologically

based PK model) confirmed the validity of SIR for models

with frequentist priors. The uncertainty of parameters

associated with priors is known to be underestimated with

methods like bootstrap or SSE, which was observed here:

both these methods estimated RSE below 10%, whereas

SIR RSE were as high as 50% for these parameters.
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Performance of the different methods for parameter

uncertainty

The estimated parameter uncertainty differed between SIR,

the covariance matrix, bootstrap and SSE. The SSE is

sometimes considered the true uncertainty. However, this

is only true under no model misspecification, no estimation

issues and no design limitation (e.g. dose adaptation based

on the modelled outcome, if it is not taken into account in

dataset simulation), which is why it was not considered as a

reference here. Nevertheless, SIR provided median RSE

and CI widths relatively similar to the covariance matrix

and SSE, which supported the validity of the developed

procedure for uncertainty estimation. The fact that SIR

provided asymmetry estimates close to SSE showed its

improvement over the covariance matrix, which performed

well in terms of uncertainty magnitude (RSE ad CI width)

but not symmetry. Bootstrap also performed well describ-

ing the shape of the uncertainty, but led to uncertainty

magnitudes markedly higher than the other methods,

potentially overestimating variability due to suboptimal

stratification. A more detailed analysis of the performance

of each estimation method will now be provided.

Using the covariance matrix to compute parameter

uncertainty led to RSE and CI widths slightly higher than

SIR (Fig. 5). This might at first seem counterintuitive, as

the covariance matrix often had to be inflated to be used as

a wide enough proposal for SIR. The need for inflation was

however mainly due to the lack of asymmetry, which

impacts the CI bounds but not necessarily the RSE, and

thus it is not surprising that uncertainty magnitude did not

differ much between the two methods. The quasi-absence

of asymmetry was expected from using a multivariate

normal distribution, which per definition leads to sym-

metric confidence intervals. Some asymmetry could nev-

ertheless be present due to the parameter boundaries

implemented in the models, which led to a truncation of the

values outside the specified boundaries. Regarding overall

adequacy, the normalized degrees of freedom of the

covariance matrix was mostly between 1 and 4 (Fig. 6).

Degrees of freedom furthest away from the total number of

model parameters were observed for models with poor

properties of the covariance matrix (condition number

[105 for PD15, Hessian but not sandwich estimator

available for PK9), with low number of individuals (PD10),

or estimated using the FO method (PK2 and PK7).

Of all uncertainty methods, bootstrap led to the largest

RSE and CI widths (Fig. 5). Bootstrap provided high

asymmetry in uncertainty distributions, as shown by med-

ian asymmetry estimates higher than with the other meth-

ods (Fig. 5). The adequacy of the bootstrap as quantified by

the degree of freedom seemed suboptimal, with degrees of

freedom mostly similar to the covariance matrix (mostly

between 1 and 3-fold the total number of parameters,

Fig. 6) but less variable. Models that had displayed degrees

of freedom furthest away from the number of parameters

with the covariance matrix also did so with the bootstrap.

This was not unexpected as the covariance matrix is known

to be a less good approximation of uncertainty under lim-

itations that can also be problematic for bootstrap, such as

high nonlinearity and low sample sizes. Models with

bootstrap degrees of freedom furthest away from the

number of parameters (PK1, PK5, PD8, PD9 and PD14)

displayed estimation problems, with only half of the sam-

ples terminating successfully, final 0-gradients and/or

estimates near boundaries in at least 20% of the bootstrap

samples. These models featured a high number of param-

eters, highly nonlinear processes and/or correlated param-

eters. One might argue that the selected setting of retaining

all bootstrap estimates regardless of termination status was

unfavorable for bootstrap performance. However, in many

cases this has not been shown to greatly impact uncertainty

estimation [43]. As this work was primarily aimed at

evaluating SIR over a complex range on NLMEM and not

at providing an exhaustive comparison between SIR and

bootstrap, bootstrap settings were chosen for the sake of

simplicity and homogeneity of the investigations. Further

discussion on handling stratification and estimation prob-

lems with the bootstrap will not be touched upon here.

RSE and CI widths based on SSE (i.e. parametric

bootstrap) were similar to the covariance matrix and SIR,

but lower than bootstrap (Fig. 5). The median asymmetry

was close to the asymmetry of SIR, but SSE led to more

extreme values. SSE adequacy based on the degrees of

Fig. 6 Normalized degree of freedom by uncertainty method: SIR,
covariance matrix (cov), bootstrap (boot) and SSE. The dashed

horizontal line corresponds to a degree of freedom equal to the total
number of estimated parameters
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freedom was better than the bootstrap and the covariance

matrix, with the SSE degree of freedom within 20% of the

number of parameters for half of the models. In previous

work with much simpler models [9], the degree of freedom

using SSE had been found to equal the number of param-

eters. This was not the case here (Fig. 6). Estimation issues

were thought to be responsible for degrees of freedom not

being at or below the number of parameters, as many

models utilized here were highly complex. Models dis-

playing issues with bootstrap were expected to show issues

with SSE, as both methods are based on estimation of

datasets assumed to be representative of the population.

They should thus lead to results similar up to model mis-

specification, which is potentially present in the bootstrap

but not in the SSE. The adequacy of the SSE uncertainty

was indeed better than the bootstrap in 75% of cases. Four

models displayed however higher degrees of freedom with

the SSE than with the bootstrap (PK9, PD3, PD1, PD11).

Other particularly inadequate SSEs were linked to impor-

tant estimation problems (PK2 with FO, PD5).

Conclusion

In conclusion, the automated SIR procedure was success-

fully applied over a large variety of cases, and its user-

friendly implementation in the PsN program enables an

efficient estimation of parameter uncertainty in NLMEM.
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