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ABSTRACT Early risk identification of an unexpected sudden cardiac death (SCD) in a person who is

suffering malignant ventricular arrhythmias is highly significant for timely intervention and increasing

the survival rate. For this purpose, we have presented an automated strategy for prediction of SCD

with a high-level accuracy by using measurable arrhythmic markers in this paper. The set of arrhythmic

parameters includes three repolarization interval ratios, such as TpTe/QT, JTp/JTe, and TpTe/JTp and two

conduction-repolarization markers, such as TpTe/QRS and TpTe/(QT×QRS). Each of them is calculated

directly from the detected QRS complex waves and T-wave of electrocradiogram (ECG) signals. Then, all

calculated markers are used for the automatical classification of normal and SCD risk groups by employing

machine learning classifiers, such as k-nearest neighbor (KNN), decision tree (DT), Naive Bayes (NB),

support vector machine (SVM), and random forest (RF). The effectiveness and usefulness of the proposed

method is evaluated using a database of measured ECG data acquired from 28 SCD and 18 normal

patients. For the automated strategy, the set of five arrhythmic risk markers can predict SCD in less than

one second with an average accuracy of 98.91% (KNN), 98.70% (SVM), 98.99% (DT), 97.46% (NB), and

99.49% (RF) for 30 minutes before the occurrence of SCD. Moreover, a practical and straightforward SCD

index (SCDI) through a judicious integration of these markers is also proposed by using the Student’s t-test.

The obtained SCDIs are 1.2058 ± 0.0795 and 1.7619 ± 0.1902 for normal and SCD patients, respectively,

which provide a sufficient discrimination degree with a p-value of 6.5061e-35. The present results show that

both the automated classifier and the integrated SCDI can predict the SCD up to 30 minutes earlier, and that

these predictions could be more practical and efficient if applied in portable smart devices with real-time

requirements in hospital settings or at home.

INDEX TERMS Arrhythmic risk markers, electrocardiogram (ECG), machine learning, sudden cardiac

death (SCD), SCD prediction.

I. INTRODUCTION

Sudden cardiac death (SCD) is defined as death due to cardio-

vascular causes in a patient with or without known preexisting

The associate editor coordinating the review of this manuscript and
approving it for publication was Yonghong Peng.

heart disease, in whom the mode and time of death are unex-

pected [1], [2]. The generally accepted temporal definition is

bracketed by a period of up to 1 hour between the onset of an

abrupt change in clinical status and loss of consciousness [2].

It is well known that SCD is the manifestation of a fatal heart

rhythm disorder, such as ventricular tachycardia (VT) and
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ventricular fibrillation (VF) [3], [5], or a severe bradyarrhyth-

mia [6]. These arrhythmias often lead to sudden cardiac arrest

(SCA), which renders the heart unable to pump out the blood

effectively [7]. Then, unattended SCA leads to SCD. Most

malignant ventricular arrhythmias are caused by coronary

heart disease, cardiomyopathy, valvular diseases or geneti-

cally determined disorders, and if not accurately diagnosed

nor treated, immediate death occurs [1], [8], [9]. Several

studies have shown that the development of effective targeted

therapeutic interventions such as implantable cardioverter

defibrillators (ICD) reduce SCD mortality [10], [12]. How-

ever, their cost-effectiveness is limited because of a relatively

small number of patients receiving appropriated ICD shocks

during follow-up. On the other hand, most sudden deaths

occur in individuals who do not have high-risk profiles [13].

Therefore, much attention has recently been drawn to the

public access procedure with an automatic electrical defib-

rillation (AED) as a way of rescuing patients without an ICD

from impending death after cardiac arrest [14]. Nevertheless,

even in the United Stated where public AEDs are readily

available in populated area nationwide and there have been

extensive improvements in resuscitation methodology and

deployment of first responder systems, average survival from

SCA remains below 5 [15]. As such, an early risk identifi-

cation of an unexpected SCD in a person that is suffering

malignant ventricular arrhythmias is highly significant for

timely intervention and increasing the survival rate.

Studies have demonstrated that an underlying electrophys-

iological substrate, representing dispersion of refractoriness,

and increased sympathetic tone in the ventricles of the heart

are critical for the arrhythmic SCD [16], [17]. In the past

few years, research worldwide has focused on this severe

health problem with the goal of developing an efficient way

of predicting the risk of SCD using invasive and non-invasive

techniques, including electrophysiological testing [14], inva-

sive hemodynamic evaluation [18], left ventricular ejection

fraction (LVEF) [19], and non-invasive electrocradiogram

(ECG) [20], [21]. In comparison with the first three invasive

or imaging modalities mentioned above, ECG is an inexpen-

sive and readily available method commonly used by physi-

cians in clinical practice, which is a recording of the electric

potential, generated by the electric activity of the heart, on the

surface of the thorax. Recently, a systematic meta-analysis

demonstrated that certain parameters on the ECG signal and

other ECG-based investigations can provide important infor-

mation on the underlying cardiac substrate abnormality that

may predispose to ventricular arrhythmias and SCD. These

include pathophysiological control mechanisms, mediated

through autonomic nervous system functions, such as heart

rate variability or turbulence (HRV, HRT) [22]–[26], mea-

sures of electrocardiographic conduction and repolarization

interval [27]–[29], such as QRS (Q, R, and S wave in elec-

trocardiogram) duration [30] and QT (Q and T wave) interval

and dispersion [31], [32], and T-wave alternates [33], [34].

Among of them, HRV or HRT derived from the ECG signal

is defined as evaluation of beat to beat variability of the

R-R interval, which have been extensive studied for SCD

detection and prediction. Many time domain [23], frequency

domain [24] and nonlinear methods [25] have been pro-

posed to reveal the inherent features of an HRV signal for

the purpose of detection and prediction of SCD, which is

mainly served through feature selection in different process-

ing domains and subject classification by means of classifiers

that are based on the extracted features. HRV or HRT initially

demonstrated promise but was later shown not be predictive

of arrhythmicmortality [35], [37]. There is still debate regard-

ing the best timing for performance of HRV measurements.

The yield of HRV measurement in the first days or weeks

following myocardial infarction has been criticized, and poor

predictive value of such measurement is reported [35]. The

use of HRV to predict SCD risk in patients with coronary

heart disease is less well established [36], [37], which also

cannot be evaluated in other patients with atrial fibrillation

or frequent arrhythmias [37]. In addition, the insufficient

advance prediction time as reported from 2 min to 13 min

would also limit the use of HRV for risk prediction of SCD

in a clinical situation [23]–[25].

Meanwhile, in the last two decades a large number of

clinical studies have discovered that it is feasible to predict

the development of ventricular arrhythmias by analyzing and

measuring several markers related electrocardiographic con-

duction and repolarization alterations [27]–[29], [31], [32].

Some of the most explored predictors in clinical practice

are based on repolarization, including QT interval and its

correction by heart rate [31], QT dispersion [32], interval

from the peak to the end of the T-wave (TpTe) [29], and

T-wave alternants (TWA) [30], [31]. Recently, novel repo-

larization interval ratios such as TpTe/QT, JTp/JTe [29, 29,

39, 40], and TpTe/JTp and conduction-repolarization markers

such as TpTe/QRS and TpTe/(QT×QRS) [28], [41] were

proposed, and clinical findings suggested that abnormali-

ties of repolarization and conduction should all be taken

into consideration for accurate prediction of an individual’s

arrhythmic potential [20], [21]. Although these ECG based

markers have been reported promising for indicating patients

with a high risk to developmalignant ventricular arrhythmias,

most work so far has been focused on clinical investigations

and they lack of effective way to present pattern of various

ECG parameters prior to the occurrence of SCD. Two most

recent works reported attempts to automatically extract risk

features directly from ECG signal by using complex wavelet

transforms [38], [39], while the absence of electrophysiolog-

ical marker, the insufficient advance prediction time no more

than 12 min, and a higher computational requirement would

all limit its applications in prediction of SCD. Therefore,

there is a need for efficiently automated methods to ensure

a practical prediction of SCD before establishing its clinical

applicability.

In this study, our focus was on automatically indentifying

early risk markers of sudden cardiac death by using enhanced

machine learning techniques on measurable arrhythmic

parameters. The set of arrhythmic risk parameters includes
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the repolarization interval ratios such as TpTe/QT, JTp/JTe

and TpTe/JTp and conduction-repolarization markers such as

TpTe/QRS and TpTe/(QT×QRS), which all are calculated

directly from the detected QRS complexwaves and T-wave of

ECG signals. Then, these markers are used for classification

of normal and SCD risk groups by employing automatical

classifiers such as k nearest neighbor (KNN), decision tree

(DT), Naive Bayes (NB), support vector machine (SVM)

and random forest (RF). Moreover, the informative mark-

ers are selected from these calculated markers by using the

Student’s t-test, and a novel integrated sudden cardiac death

index (SCDI) is presented through a judicious combination

of informative markers. Compared to the prior strategies

that used HRV signal or that derived non-clinical features

from ECG signal, the present study provides a more prac-

tical and straightforward methodology for SCD prediction

with measurable arrhythmic risk markers to achieve greater

accuracy and longer prediction time without the need for

significant additional complex transforms of ECG wave-

forms. We expect the presented method to be used widely

in clinical practice, especially for real-time requirements and

embedding on wearable devices in hospital settings or at

home.

II. MATERIAL

A. DATASET USED

In the process of the SCD prediction, ECG data collection

and pre-processing are the first important step. In this work,

ECG signals were collected from three databases provided

by AHA database (AHADB) from people at risk of SCD,

the MIT-BIH Database [42] entitled Sudden Cardiac Death

Holter (SDDB) from people at risk of SCD and Normal

Sinus Rhythm (NSRDB) from normal people. Our SCD

group consisted of 10 recordings with no. 8001-8010 from

AHA database and 18 recordings from SDDB, for each ECG

recording, the ECG signal of the first lead in the 30 minutes

prior to VF onset was collected Noted that recordings with

no. 40, 42, 49 in the SDDBwere not used in this work because

of the absence of VF onset, and two more recordings with

no. 38 and 41 also were not included owing to unknown lead

that is of a low amplitude R wave. Moreover, a normal group

including 18 half-hour recordings was built from the database

of NSRDB. As summarized in Table 1, the age of SCD

group is of 60.65 ± 19.96 years (range, 30-89 years), and

34.33± 8.44 years (range, 20-50 years) for the normal group.

Except the unknown gender of 11 SCD patients, the gender

of the remaining 35 subjects is given, including 9 male and

8 female for the SCD group, and 5 male and 13 female

for the normal group. Importantly, detailed descriptions of

each recording including record name and number, length

before the ventricular fibrillation onset, and related heart

diseases and arrhythmia categories are given in Table 2. Most

patients in the SCD group were found to be a malignant

ventricular arrhythmias with an underlying cardiac substrate

abnormality and heart disease. Moreover, one example of the

collected ECG signal in 30 minutes and its corresponding

TABLE 1. The age and gender of the SCD and normal groups.

1minutes prior to SCD, and one example of 1minutes in sinus

rhythm are illustrated in Fig. 1(A), Fig. 1(B), and Fig. 1 (C),

respectively.

B. ECG PRE-PROCESSING

Noise reduction can greatly increase the precision and effi-

ciency of prediction algorithm. In this work, All ECG data

collected from a total of 46 recordings was pre-processed

firstly. For each recording, a continuous signal segmenta-

tion with a one-minute length was carried out and 30 one-

minute ECG fragments were built either into the SCD

dataset or the normal dataset. Furthermore, the baseline drift

and the noise of each ECG fragment were removed by using a

median filter and a band-pass filter (0.5-100Hz), respectively.

As a summary, there are 840 one-minute fragments in the

SCD group and 540 one-minute fragments in the normal

group, which are used to train and test our automated strat-

egy of SCD prediction and evaluate the proposed practical

SCD index on the basis of the following ECG analysis and

measurement.

III. METHODOLOGY

A. OVERVIEW

Taking the clinical considerations of the arrhythmic risk

markers, an attempt of the VF caused SCD prediction at

its earlier stage combing with five arrhythmic risk mark-

ers of ECG signal is presented in the present paper. The

schematic diagram of the proposed methodology on mea-

surable arrhythmias risk marker for SCD prediction is illus-

trated in Fig. 2. First, two ECG datasets were built with a

series of signal pre-processing such as data segmentation and

noise reduction as described above, which include one SCD

group collected from the SDDB and AHADB and one normal

group collected from the NSRDB. Second, an morphology

based detection algorithm of theQRS-Twaveswas developed

so as to accurately determine all key ECG parameters of

each heart beat, such as Q onset, R peak, S offset, T peak,

T offset, and various intervals. Third, five arrhythmic risk

markers suggested by many clinical studies are extracted

and calculated individually, including the TpTe/QT, the JTp/

JTe, the TpTe/ JTp, the TpTe/QRS and the TpTe/(QT×QRS).

Finally, automated prediction strategies with various machine

learning methods were assessed and then compared with each

other for a better classification between of the normal group

and the SCD group, such as the KNN, the DT, the SVM,

the RF and the NB. Furthermore, followed by ECG data pre-

processing and QRS-T wave detection, a straightforward and
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FIGURE 1. The time frame of two examples data of the built SCD group. (A). the first half hour in advance of a
VF onset, (B). 1 minute before VF onset, and (C). 1 minute from normal ECG signal.

TABLE 2. A summary of the ECG recordings of SCD patients provided by MIT-BIH database and American Heart Association (AHA) databases.

practical method with an novel SCDI also was proposed for

SCD prediction by using three informative markers selected

from such five calculated arrhythmias markers as described

above, which was generated in terms of a formulation with a

series mathematical process, as shown in Fig. 2 and discussed

in detail as following.

B. ECG SIGNAL ANALYSIS AND INTERVAL CALCULATION

ECG works on the principle of measuring the projection

of the heart polarization vector. Because of the anatomical

difference of the atria and the ventricles, their sequential

activation, depolarization, and repolarization produce clearly

differentiable deflections. Exploration of cardiac electrical

activity is based on the search for unambiguous patterns

describing beat-to-beat processes called P-wave, QRS com-

plex and T-wave. The P-wave represents atrial depolariza-

tion, the ventricular depolarization causes the QRS complex,

and repolarization is responsible for the T-wave. For the

purpose of the extraction of SCD markers with physiolog-

ical significance, a series of time-based ECG signal anal-

ysis algorithms were designed first for 5 ECG intervals in

this study, such as QRS complex detection, T-wave delin-

eation, and intervals calculations. For each heart beat, five

points of interest are located including Q onset, R peak,

S offset, T peak, and T offset, and five corresponding inter-

vals are calculated including QT interval, QRS duration,

JTe interval, JTp interval, and TpTe interval, as illustrated

in Fig. 3(A).
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FIGURE 2. Schematic diagram of the proposed methodology on measurable arrhythmias risk marker for SCD prediction.

FIGURE 3. Schematic diagram of ECG signal analysis and measurement. (A). Five intervals calculation of ECG signal, (B, C) QRS complex
wave detection, (D, E) T wave delineation.

1) QRS COMPLEX DETECTION

Rwave is themost significant waveform on the electrocardio-

gram. So prior to other analysis, R peak is detected by using

Pan-Tompking method [43], which is based on self-adapting

amplitude threshold and difference threshold that extracted

from ECG signal and differential ECG signal, respectively.

The schematic diagram of R peak detection is shown

in Fig. 3(B).

Once the position of R peak was detected, the detec-

tion range is determined. These detection windows are the

range for detection Q onset and S offset whose detec-

tion algorithm are similar except the slightly difference in

threshold. More specifically, these two detection algorithms

are both carried out by a moving window with amplitude

threshold (Q onset amplitude threshold and S offset amplitude

threshold). S offset is taken as an example to explain the

detection method. The amplitude threshold is provided by

doctor’s experience. The moving window moves in the range

until it satisfied the condition that the maximum amplitude in

the window should be higher than amplitude threshold. Then,

a minimum amplitude is found to calculate the differentiation

between it and the maximum amplitude. Thus, the least sig-

nificant differentiation in the window whose location of the

maximum amplitude is the S offset. The schematic diagram

of Q onset and S offset detection is shown in Fig. 3(C).

2) T-WAVE DELINEATION

With calculations of ECG intervals of the proposed method,

a ECG morphology based algorithm for T-wave delineation

was developed. The schematic diagram of T peak and

T offset detection are shown in Fig. 3(D) and Fig. 3(E),

respectively. In detail, T peak detection utilizes the
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FIGURE 4. Examples of ECG processing of one normal segment and one SCD segment: (A). the original ECG siganl from SCD group and Normal
group respectively, (B). the wave detection result of ECG siganl from SCD group and Normal group respectively, and (C). five intervals of one heart
beat in an ECG signal.

morphological characteristics of T-wave, whose the searching

range started from S offset, and last 0.7 times the length of

current RR interval. In this area, a moving window moves

following the rules of one point at a time from start to end

(window(1), window(2). . .window(n)), where window(n)

contains two vectors (
−→
V 1 and

−→
V 2) with a common starting

point. The point in the ECG signal corresponding to the

midpoint of the window is taken as the common starting point

of the two vectors. Thus, the point of (xm, ym) is defined as

the coordinates of the common starting point. The points in

the signal corresponding to the two ends of the window are

taken as the end points of the two vectors respectively. The

point of (x1, y1) is the coordinate of the end point of
−→
V 1, and

(x2, y2) is the coordinate of the end point of
−→
V 2. As such,

both vectors of
−→
V 1 and

−→
V 2can be obtained by the following

equations:

−→
V 1 = (x1 − xm, y1 − ym) (1)
−→
V 2 = (x2 − xm, y2 − ym) (2)

As the window moved, a sequence of angles between two

vectors obtained made up a new array(α1, α2 . . . . . . αn),

α can be obtained through the following equation:

α = arccos(

−→
V 1 ·

−→
V2

∣

∣

∣

−→
V 1

∣

∣

∣

∣

∣

∣

−→
V 2

∣

∣

∣

) (3)

in which the smallest angel αT was picked for choosing the

window we need. And αT can be obtained by the following

equation:

αT = min {α1, α2, α3, . . . , αn} (4)

For purpose of increasing the algorithm robustness, the final

location of T peak of this current RR interval was chosen as

the point which was furthest from the equipotential line of

ECG in the window in which the αT exist.

Meanwhile, T offset detection is also developed on the

basis of morphological method which grants the low space

complexity and time complexity, as shown in Fig. 3(E). Pos-

itive T-wave detection is considered first. And the n-th point

on the right of T peak is defined as the temporary T offset.

Then, a time range is used to restrict the location of temporary

T offset. An area Sn is bounded by two straight line and

T-wave of ECG signals. Sn can be calculated by the following

equation.

Sn =

n
∑

i=0

(Signal(tp1 + i) − te2) (5)

Inwhich te2 is the ordinate of the temporary T offset. tp1 is the

abscissa of the T peak. Signal(tp1 + i) means the magnitude

corresponding to the location of tp1 + i in ECG signal.

As the temporary T offset moved to the direction which time

went, the Snwas becoming bigger and bigger. Until this area

stopped getting bigger or the temporary T offset reach the

boundary of time range, it stops moving. ST is picked out as

the maximum value by the following equation.

ST = max {S1, S2, S3, . . . , Sn} (6)

The final location of T offset is the temporary T offset corre-

sponding to ST. The processing for positive T-wave is similar

to negative T-wave except the Sn was upon T-wave.

3) INTERVAL CALCULATION

Based on the QRS-T wave detection, five ECG intervals of

one heart beat can be calculated. Examples of ECG process-

ing of one normal segment and one SCD segment is shown

in Fig. 4. The original ECG signals and the wave detection

results for the SCD group and Normal group are shown in top

and bottom of Fig.4 (A) and Fig. 4(B), respectively. Fig. 4 (C)

shows five ECG intervals calculated as below.

Following the QRS complex detection and T-wave

delineation, It is necessary to remove the abnormal beat
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FIGURE 5. Rules of screening of a heartbeat used in this study (A) and two examples (B) a too long length of RR interval (top) and a too short
length of RR interval (bottom).

by screening RR intervals so as to effectively increase the

precision and efficiency of the prediction algorithm. Based

on R peak detection, a frequency histogram of RR interval of

each ECG recording could be obtained, as shown in Fig. 5(A).

In this work, RR intervals whose number is less than ten were

selected as a condition for abandoning improper heartbeat.

It means the improper heart beat (with too long or short

RR interval) was abandoned. Two examples with abandoned

heartbeat are presented in Fig. 5(B) for a too long length

of RR interval (top) and a too short length of RR interval

(bottom).

After QRS-T wave detection and every heartbeat screen-

ing, five ECG intervals calculation can be computed directly

by the following equations:

QT interval = T offset - Q onset (7)

QRS duration = S offset - Q onset (8)

JTpinterval = T peak - S offset (9)

JTeinterval = T offset - S offset (10)

TpTeinterval = T offset - T peak (11)

C. ARRHYTHMIC RISK OF ECG SIGNAL

An ECG is one of the best features to describe heart diseases,

which carries valuable information about electrophysiolog-

ical properties of the heart. Mechanisms of VT/VF have

been comprehensively studied during the last 20 years, and

data suggest that common underlying electrophysiological

substrates could be found in all arrhythmic SCD [20], [21].

As described in Introduction of this paper, traditional clinical

markers for risk prediction have largely focused on abnormal

repolarization, of which QT and corrected QT are archety-

pal examples. And, the limitations of them in predicting

arrhythmogenicity led to the recent development of novel

repolarization markers such as TpTe, TpTe/QT ratio, JTp/JTe

and TpTe/JTp ratios, and conduction-repolarization markers

such as TpTe/QRS and TpTe/(QT×QRS), which all are used

as our arrhythmic risk markers for early identification of SCD

in this study, as summarized in Table 3.

As shown in Table. 3, five risk markers are derived

from different ECG signal components, such as QRS com-

plex duration, which is used for deriving conduction-

repolarization markers such as TpTe/QRS and TpTe/

(QT×QRS) ratios. The other repolarization markers such as

TpTe/QT, JTp/JTe and TpTe/JTp ratios are easily calculated

on the basis of the accurate delineation of T-wave and relevant

interval. As suggestions from clinical findings, arrhythmias

risk markers might have different prediction result in patients

with different diseases. Therefore, these five arrhythmic risk

markers extracted from both electrophysiological conduction

and repolarization all are taken into consideration and fused

together to expect a good SCD prediction results in this work.

D. MACHINE LEARNING BASED CLASSIFICATION

For the propose of getting a precise result of classifying

ECG signals from normal group and SCD group and selecting

the best classifier with the highest accuracy. Five currently

frequently studied classifiers such as the KNN, the DT,

the SVM, the NB and the RF were trained and assessed

in this work for automatically distinguishing between the

SCD group and the normal group . The general description

of the different classifier are given below.
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TABLE 3. A summary of arrhythmias risk markers based on measurements of electrocardiographic conduction and repolarization used in this study.

1) K-NEART NEIGHBOR (KNN)

KNN is a simple and effective method for classification.

KNN classifies each unlabeled example according to most

marks between k-nearest neighbors in the training set [44].

Therefore, the performance of KNN rules depends critically

on the distance metric used to identify the nearest neighbor.

In this study, k = 15, 20 and 25 are used.

2) DECISION TREE (DT)

The decision tree classification algorithm is an instance-

based induction learning method, which can extract the tree

classification model from a given disordered training sam-

ple. The decision tree classification algorithm is relatively

simple [45].

3) SUPPORT VECTOR MACHINE (SVM)

Support vector machines are trained using the idea of clas-

sification intervals. It relies on the preprocessing of data

to express the original pattern in a higher dimensional

space [46]. In this work, to distinguish ECG between the

normal and SCD, SVMs with Radial Basis Function (RBF)

kernel function are explored.

4) NAÏVE BAYES (NB)

The naive Bayes classifier is a series of simple probability

classifiers based on Bayesian theorem based on strong and

simple independence between hypothetical features [47].

5) RANDOM FOREST (RF)

A random forest is a classifier containing multiple decision

trees. A training forest is used to generate a random forest

composed of multiple classification trees. The classification

result of the test data is determined by the score formed by

the classification tree voting [48].

E. INTEGRATED SCD INDEX (SCDI) BASED ON

ELECTROCARDIOGRAPHIC FEATURE

On the basis of the complex electrophysiological mech-

anism of ventricular arrhythmias induced SCD, a com-

mon limitation of individually using the above mentioned

arrhythmic risk markers is that they may not provide

a high enough sensitivity, specificity, or either both of

them. This concept of integrated index for SCD predic-

tion was conceived and advanced recently by Acharya’s

Lab [38] and Ghista’s Lab [49], while both of them were

with only the features extracted from the complex transforms

of ECG signal and without any considerations of the elec-

trophysiological characteristics. Thus, our further hypothesis

is that, if such markers reflect different underlying physi-

ological phenomena, they might add complementary infor-

mation to each other and, consequently, a combined and

integrated index might improve the capability for risk strati-

fication of patients. Therefore, a novel SCD index integrated

from above mentioned arrhythmias risk markers was pro-

posed without any additionally complex signal transforms

andmachine learning analysis. Although the machine leaning

based classifier can perform automatic diagnosis as discussed

above, the SCDI could provide clinicians in hospital set-

tings or at home with a convenient, intuitive and simple way

to initially determine whether a patient has a risk of sudden

cardiac death, where there usually are a low computation

resource and a high algorithm robustness requirement. Based

on arrhythmic risk markers, the proposed SCDI is formulated

in this paper by using the following mathematical methods.

Initially, three informative markers (the TpTe/QT, the JTp/JTe
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and the TpTe/QRS) are picked for generating SCDI, which

are selected from such five risk markers as discussed above

with the method of Student’s t-test. The p-value of each

risk marker is calculated and then employed to identify the

significance of the marker. Then, the SCDI is preliminarily

formulated by the equation below:

SCDI =

3
∑

n=1

markern × cn (12)

Moreover, there selected three markers were normalized

individually; and an average difference calculated for

each normalized marker is formulated by the equation

below:

ave_diffn = ave_nmarkern − ave_dmarkern (13)

where the ave_nmarkern is the average value of normalized

markern in normal group, the ave_dmarkern is the average

value of normalized markern in SCD group, the ave_diffn
is the average difference between normal groupand SCD

group of markern. According to the value of ave_diffn,

three markers were ranked from high to low as the marker1
of TpTe/QRS,, the marker2 of TpTe/QT, and the marker3
of JTp/ JTe. It means TpTe/QRS has the most signifi-

cant difference between the SCD group and the normal

group. Moreover, the ave_diffn is also used to calculate the

coefficient of cn which can be obtained by the following

equations:

cn =

(

ave_diffn

ave_diff1

)

×

(

1

max _markern

)

(14)

where the max_markern is the maximum value of markern
from these three extracted markers in this work. Finally with

our 46 ECG recordings, the obtained mathematical formula-

tion of this integrated SCDI is given by:

SCDI = TpTe/QRS × 0.6669

+TpTe/QT × 3.2787 + JTp/JTe × 1.2084 (15)

IV. PERFORMANCE AND RESULTS

A. PERFORMANCE OF INDIVIDUAL ECG MARKERS

For both the SCD group and the normal group, the perfor-

mance of detection of QRS complex and T wave is sum-

marized in Table 4. The parameter of µ means the average

value of error, and the σ means the standard deviation of

error. The result is obtained by testing the same database

(SDDB and NSRDB) in QT database and the golden standard

is the annotation of the first expert from the public database.

Moreover, Table 5 shows the averaged results of calculation

of each arrhythmic riskmarker at different time thirtyminutes

before the SCD occurs. The time lasts from the first minute

to the thirtieth minute. For the first five minutes prior to

SCD onset, the results is given as averaged values in one

minute; and for the subsequent second twenty-five minutes,

the results is shown as averaged values in five minutes. Fur-

thermore, Table 6 shows the comparison of averaged results

TABLE 4. Performance evaluation of the QRS complex detection and T
wave delineation.

of 5 arrhythmic risk markers between the normal group and

thirty minutes before SCD onset of the SCD group, where

the p-value indicate that all markers are significant enough

for classification.

B. PERFPORMANCE OF THE MACHINE LEANRING BASED

CLASSIFICAITON WITH FIVE ECG MARKERS

In this study, five-fold cross validation method is employed

to build and evaluate the performance of various classifiers.

In this study, a total of 1380 one-minute segments from

46 signals were divided into five parts equally, One part was

used to test the classifier and four parts were used to training

the classifier. This procedure was repeated five times using a

different test set and train set each time The final performance

is the average value of every test set result. As a consequence,

the ability of the proposed method for prediction of sudden

cardiac death was evaluated using sensitivity (Sen), speci-

ficity (Spe), accuracy (Acc) which are computed by following

equations below:

Sensitivity =
TP

TP + FN
(16)

Specificity =
TN

TN + FP
(17)

Accuracy =
TN+TP

TN + TP + FP + FN
(18)

where the TP means the number of SCD that are recognized

as SCD; FN means the number of SCD that are recognize

as not SCD; TN means the number of not SCD that are

recognized as not SCD and FP means the number of not SCD

that are recognized as SCD.

All five markers are used as input to KNN, SVM, DT, NB,

RF classifiers for classification in this work. The classifier

of RF shows the best performance with an accuracy 99.49%

in comparison with the other four classifiers, As shown

in Table 7 and 8. Table 7 shows the result of five-fold cross

validation with the RF. Table 8 summarize performances of

various classifiers. Noted that the SVM classifier with kernel

of RBF has been tested. Other performance of classifiers are

slightly lower than RF. Moreover, the performance of the

RF based method for SCD prediction is given in detail at

different time before the SCD occurs, as shown in Fig. 6.

Similarly, the time lasts from the first minute to the thirtieth

minute. The first five minutes shows the results in one minute

and the second twenty-five minutes show the results in five

minutes.
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TABLE 5. The mean±SD of features extracted from 1 Min to 5 Min, in 1-min intervals, and from 1 o 30 Min in 5-mins intervals, before SCD ECG signals
data.

TABLE 6. The mean±SD of features extracted from the normal and thirty minutes before SCD ECG signals data.

TABLE 7. The statistical measures and the average performance in percentage of the random forest by using the five-fold cross method on the normal
and thirty one-min intervals before SCD ECG signals data.

C. VALIDAITON OF OUR INTEGRATED SCDI EFFICACY

On the other hand, the efficacy of the proposed SCDI for

SCD prediction is validated with the same datasets as used

in the machine learning based method above. The calcu-

lated boxplot of the proposed SCDI during the thirty-minute

prior to the SCD onset for SCD group and normal group is
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FIGURE 6. Accuracy of the proposed method by using the random forest classifier during the thirty-minute prior to the SCD
onset. The first five minutes are the average of the accuracy per minute, and the last twenty-five minutes is the average of the
accuracy every five minutes.

FIGURE 7. Results of the proposed method with the integrated SCDI during the thirty-minute prior to the SCD onset from SCD group and
Normal group. SCD zone 1 and SCD zone 2 means the distribution of SCDI in SCD group and normal group means the distribution of SCDI
in normal group.

TABLE 8. Average performance of various machine learning classifiers on
the normal and thirty one-min intervals before SCD ECG signals data.

presented in detail at different time before the SCD occurs in

Fig. 7. The box chart shows the difference in the range of data

distribution between the normal group and the SCD group.

Meanwhile, Fig. 8 shows the boxplot of averaged value of

the SCDI for the thirty minutes prior to SCD onset in the

SCD group and in normal group. According to the global

FIGURE 8. Variation of ECG index with the integrated SCDI for normal and
SCD classes.

distribution of SCDI from normal and SCD group, the fig-

ure was divided into three zones (normal zone, SCD zone 1,

SCD zone 2). Table 10 shows the significant difference of
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TABLE 9. The comparison of our algorithm and other recent methods for Predicting sudden cardiac death based on ECG parameters and HRV signal.

TABLE 10. Range of SCD index for normal and SCD classes.

SCDI between normal group and SCD group. The p-value

indicate that SCDI are significant enough for classification.

Compared with previous study [38], our SCDI is directly

based on arrhythmic risk markers which are easier for doctors

to understand. Meanwhile our SCDI was generated by using

mathematical methods which based on the significance dif-

ference of 5 arrhythmic risk markers. This SCDI is developed

by the database only. It can be further improved by optimizing

the cn with more clinic ECG data and using arrhythmic

markers with more clinic significance.

D. COMPARISON TO PREVIOUS WORKS

Table 9 shows that the comparison of our RF based algo-

rithm on measurable arrhythmic markers with other recent

methods for predicting SCD on ECG parameters and HRV

signal. We have listed six research work from 2015 to 2019,

giving detailed information of work from three aspects: data

material, methodology and performance. In terms of materi-

als, we separately listed the types of signals, databases and

the length of signals used in each study. Concerning about

methods, we separately list the methods used by each work,

the number of markers, and the classifier. In regard to perfor-

mance, we give results of sensitivity, specificity, accuracy.

V. DISUSSION AND CONCLUSION

A. MAIN CONTRIBUTION OF THIS STUDY

For more than 20 years, the incidence of SCD in the United

States has been estimated to be around 350,000 events each

year [50], and the total annual incidence of SCD was esti-

mated to be the range of 544,000 in China. Meanwhile,

the population pool is continuing to grow with better ther-

apies for heart disease, the currently fast-paced modern soci-

ety, and the boom of the aging population (noted that the

risk of SCD increases with advancing age, peaking in the

75-84 years age group) [1], [2]. These alarming statistics

emphasize the importance of this societal challenge and

the need for attempts to find effective techniques for SCD

prevention. Clinical arrhythmias risk markers derived from

electrocardiography are important for this purpose. In past

decades, a number of clinical investigations demonstrated

that the ECG derived features have been shown to be useful

for prediction of a malignant arrhythmias and subsequent

SCD in certain clinical situations [27], [29] and [39], [40].

As a significant challenge to the clinical use of the com-

plex ECG parameters owing to the time-consuming proce-

dure of manually indentifying them from large amounts of
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ECG data, two automated predictor of SCD that directly ana-

lyzed ECG signal have been proposed recently by Sanchez’s

group in 2018 [39] and Acharya’s group and 2015 [38].

Besides these complex algorithms on the basis of wavelet

transform for extracting informative features from ECG,

the recent proposed machine learning techniques would be

a good opportunity for exploring an automatic SCD Predic-

tor [43], [48], which were used to differentiate between ECG

of normal subjects and those of subjects at risk of developing

SCD in an end-to-end manner.

In this study, we tried to automatically indentify a devel-

oping SCD in patients by using machine learning approaches

directly on arrhythmic risk markers, without any complex

transforms for extracting features from ECG. These electro-

cardiographic markers used in this work have been inten-

sively demonstrated in clinical practices as mentions above,

including repolarization interval ratios such as TpTe/QT,

JTp/JTe and TpTe/JTe and conduction-repolarization mark-

ers such as TpTe/QRS and TpTe/(QT×QRS). Moreover, we

introduced one more much efficient and practical approach

based on simple calculation of SCDI, which is integrated

from these informative markers and would simplify the

whole prediction strategy. With experiments in the MIT-BIH

and AHA databases [42] from 28 patients at risk of SCD

and 18 health subject, the performance both of the machine

learning based and SCDI based prediction methods pre-

sented in this work were evaluated. Compared to those

automated prediction methods by using complex signal

processing techniques andwithout any considerations of elec-

trophysiological indicators of SCD, our proposed method by

deriving arrhythmias risk markers directly from ECG has a

higher accuracy, a relative longer prediction time prior the

occurrence of an SCD, and lower computational consum-

ing. Besides that, the proposed practical and straightforward

strategies with arrhythmias risk markers offers a consider-

able benefit when the need to interpret ECG abnormalities

at the clinical and electrophysiological level. To our best

knowledge, this is the first attempt wheremeasurable arrhyth-

mias risk markers from ECG signal were employed for the

automated identification of an developing SCD at an earlier

stage by using machine learning approaches and their cor-

respondingly integrated index, thereby it provides practical

advantages in analyzing large amounts of ECG data in a short

time while assuring a relative high accuracy.

B. PERFORMANCE OF OUR ECG BASED

PREDICTOR OF SCD

Compared with some studies using HRV signal [23], [26], we

innovatively used clinically markers to analyze ECG signals

directly, rather than HRV signals. This is more simple and

fast. All work’s dataset contain: NSRDB and SDDB which

makes the results can compare with each other. Almost all

of them using nonlinear methods and time and frequency

analysis methods, only the proposed method use the clinic

markers which are more simple and reasonable. Further-

more, we tested many mainstream classifiers and adjusted

the parameters of the classifiers for the purpose of getting the

better classification results. Compared with the performance

of previous work on the ECG signals reported recently by

other researchers [38], [39], our research has twomain advan-

tages. Firstly, our method has the highest sensitivity (99.75%)

and specificity (99.04%). Secondly, our method predicts the

risk of SCD up to 30 minutes before its onset using ECG

signals.Meanwhile, based on the clinic markers, we proposed

a simple and efficient formulation of SCDI using mathemat-

ical method. SCDI can differentiate the SCD and normal

group significantly. Additionally, the algorithm shows good

real-time performance, For 30 minutes, the marker extrac-

tion and subsequent classification only costs 0.8721 second.

And the entire process including extraction and classification

costs less than one second. The proposed method runs on

matlab2018a which deployed on a computer with Inter(R)

Core(TM) i5-3470 CPU with 8G memory.

C. CHALLENGES OF EARLY SCD RISK PREDICTION

Actually, the clinical usefulness and impact of SCD risk

predictors are complex and challenging. Although there is

usually an underlying substrate that puts an individual at risk,

this factor may not be discovered in advance, especially in

general population [4], [7], [13]. In fact, 40-50% of all SCDs

cases have a cardiac arrest with no prior symptoms or warn-

ings [13], [51], [52]. In other words, the ability to effectively

predict cardiac arrest among a high percentage of potential

victims is difficult if one predictor is derived only from

risk markers both in an invasive or a non-invasive modality,

and without any considerations of underlying disease behind

these markers [53]. As reported in epidemiologic studies,

nearly two thirds of cardiac arrests occur as a first clinically

manifested event or in the clinical setting of known disease

in the absence of strong risk predictors [1]. Among them,

coronary heart disease is the most common etiologic basis

for SCD, approximately 75% - 80% of which are due to

this one underlying etiology [7], [49]. The evolution and

expression of SCD due to coronary heart disease involves

a multitiered cascade of pathophysiology, operating in dif-

ferent time domains and generating various clinical symp-

toms. Less than 25% of the victims of SCD have high-risk

markers based on only arrhythmic (5%-10%) or hemody-

namic parameters (7%-15%) [2]. Given these considerations,

the current concept of sudden cardiac death should embrace

electrical, ischemic, mechanical (pump failure), and more

recently, myocardial intracellular genetic mutation mecha-

nisms. From the perspective of individual risk, there is a

broad range of predictive power, depending upon the spe-

cific measures of risk used. Much of the progress that has

been made to date in profiling risk of SCD has been based

on clinical markers, which primarily indentify the extent of

disease, either at a myocardial level or at a vascular level [4].

One of approach appear promising for the future is predic-

tion of arrhythmias risk, which is intended to identify those

individuals who are at risk for the events that rigger fatal

arrhythmias in a shorter time frame [3]–[5]. There include
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measures of cardiac repolarization used in this study, patho-

physiological control mechanisms liking heart rate variability

studied intensively before [23], [25], [35], [36], [54]–[56], or

inflammatory markers such as familial or genetic profiling

which may provide higher resolution of SCD risk in specific

individual [50], [57], [58]. Nevertheless, much deeper discus-

sions on the causes and clinical expression, pathological and

physiological mechanism, and even relevant epidemiology of

SCD are beyond the scope of this paper.

D. LIMITATIONS OF THIS STUDY AND FUTURE WORKS

Besides general challenges of risk prediction of SCD, we are

still working on few limitations of this study in our future

study. First, the relatively small patient data from the public

ECG database was collected in the present work. Further

work would be interested to collect a great number of clinical

data to train the proposed classifier and SCDI for a higher

accuracy. Meanwhile, it should be noted that the problem of

overfitting may appear during the training process that may

reduce the accuracy of the recognition of arrhythmias risk

marker of SCD. Which means the production is too close

to the training set and it may therefore fail to fit additional

data or predict future observations reliably. In this study,

an attempt was tried to deal with this problem as the training

set is increased and the complexity of the training model

is reduced. Additionally, it should be cautious that these

arrhythmias risk markers used in this study are currently in

epidemiological studies and not routinely. Eventually, once

there have proved their clinical utility in a large population,

we expect our proposed methods to be used widely in clin-

ical practice. These predictions could be more practical and

efficient if applied in portable smart devices with real-time

requirements in hospital settings or at home.
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