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Abstract. Nailfold capillaroscopy is an established qualitative technique in the

assessment of patients displaying Raynaud’s phenomenon. We describe a fully

automated system for extracting quantitative biomarkers from capillaroscopy im-

ages, using a layered machine learning approach. On an unseen set of 455 images,

the system detects and locates individual capillaries as well as human experts,

and makes measurements of vessel morphology that reveal statistically signif-

icant differences between patients with (relatively benign) primary Raynaud’s

phenomenon, and those with potentially life-threatening systemic sclerosis.

1 Introduction

Systemic sclerosis (SSc) is a connective tissue disorder which can lead to morbidity

and mortality, often in young people – with a reported prevalence among adults of 250

per million [1]. Clinically, it results in fibrosis and microvascular abnormality, leading

to ischaemic injury (e.g. ulceration, scarring, and gangrene), particularly in the fingers

and toes. The commonest presenting feature is Raynaud’s phenomenon (episodic colour

change and pain in the fingers, usually in response to cold), but this is also a symptom

of the more common, and relatively benign, primary Raynauds phenomenon (PR).

There is thus a clinical need to distinguish between PR and SSc-related Raynauds

phenomenon. There is also a pressing need for quantitative biomarkers for monitoring

SSc response to treatment, both clinically and in clinical trials, where existing end-

points (eg digital ulceration) are unreliable, leading to a limited evidence base [2, 3].

Nailfold capillaroscopy, a non-invasive technique for imaging capillaries at the base

of the fingernails (see Figure 1), is already used clinically to assess the degree of mi-

crovascular abnormality, and has the potential to provide quantitative biomarkers for

SSc. Standardised protocols for qualitative grading of nailfold images exist [4], but do

not provide quantitative data. (Semi-)Manual measurements of capillary spacing, ves-

sel width at the tops of loops (apices) and vessel tortuosity have been shown to have

potential as quantitative biomarkers for SSc [5], but are too time-consuming and open

to subjective factors for routine use. There is thus a clear rationale for developing auto-

mated methods for analysing nailfold images.

In this paper we describe and evaluate a fully automated system for detecting and

measuring capillaries in nailfold images, adopting a machine learning approach, and

building on experience with existing semi-automated systems [5, 6]. Specifically, our
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Fig. 1. Sections from two nailfold mosaics: one from a healthy control subject (left) and one from

a patient with SSc (right) showing enlargement, distortion and irregular spacing of capillaries

contributions are: (a) a method for detecting vessels and estimating their width and

orientation; (b) a method for generating candidate capillary apices; (c) a method for

refining candidate capillary apices and measuring apical width and tortuosity; (d) a

large-scale evaluation of performance, compared to human experts and; (e) initial re-

sults for classifying patients based on image level summary statistics of the automated

capillary measurements.

In summary we show that our automated system is indistinguishable from human

experts in detecting and locating capillary apices, and that there are statistically signif-

icant differences, at the population level, between automated capillary measurements

for SSc patients and normal or PR subjects.

2 Nailfold Capillaroscopy Data

Our images were acquired by a capillaroscopy system in a tertiary referral centre for

patients with SSc. Patients gave informed consent. High magnification, 768 × 576, 8-

bit monochome pixel video frames were captured at a resolution of 1.25µm per pixel.

Images captured along the nailbed were registered and compounded into a single mosaic

(similarly to [7]) showing the whole nailfold (Figure 1).

In normal subjects, capillary loops are all similar, arranged regularly and approxi-

mately vertical. Current clinical practice confines attention to the distal row of capil-

laries, whose apices lie on a smooth, approximately horizontal line near the top of the

image. This pattern is disrupted in SSc by structural damage to the microvasculature

(Figure 1).

We have used a set of 990 mosaics, manually annotated as part of a separate clinical

study, involving three subject groups: healthy controls (HC), subjects with PR, and

patients with SSc. Each image was annotated independently by two expert observers,

one of whom (Observer 1) was the same for every image, with the other drawn from a

pool of experts. In each image, the observers attempted to mark the locations and apical

widths of all distal capillaries. This is a challenging and subjective task for which perfect

agreement is rare (see Section 6).

In a subset of 80 images, Observer 1 provided a precise demarcation of the inner and

outer edges of the distal capillaries. Regions of interest around these capillaries were
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created, resulting in a set of 450 training RoIs with matching capillary masks, which we

used for training learning algorithms (Section 3, Section 4, Section 5). The remaining

images were split into a validation set of 456 images (104 HC, 83 PR, 269 SSc) used

to locate capillaries and determine the distal row, and a test set of 455 images (104 HC,

83 PR, 268 SSc) used to evaluate performance (Section 6).

3 Vessel Detection and Characterisation

Nailfold images are challenging – capillaries are often very low contrast and of vari-

able width (10 − 300µm) and appearance, whilst significant artefacts can be present.

Although previous work on automated capillaroscopy is limited, we can draw on the

extensive literature on curvilinear structure detection in medical images (eg [8–10]. In

particular, we adopt the well-established machine learning approach to predict, at each

pixel, the probability that it belongs to a vessel (vesselness) [9], and the local orientation

and width [10]. In the following sections we explain the features we used to describe lo-

cal image structure, and the learning methods we used to obtain vesselness, orientation

and width models.

3.1 Image Features

To characterise local structure at each training pixel, we use a feature vector of re-

sponses to symmetric (even) and asymmetric (odd) filters across scale and orientation.

Specifically, we use a steerable filter bank [11] of directional second order derivatives

of a Gaussian kernel [8] and their (approximate) Hilbert transforms so that responses at

any orientation can be computed efficiently. From an initial scale σ = 1 pixel we com-

pute even and odd responses at six angles θi = iπ/6 over five scales, in each case keeping

σ fixed whilst downsampling the image by a factor of 2 in each direction (i.e. the coars-

est scale is equivalent to σ = 16 at the original image resolution). For the coarser scales,

we use bilinear interpolation to approximate the responses at the finest scale. At each

pixel the responses at that pixel, along with its 8-connected neighbours, are concate-

nated into a feature vector without further manipulation. These features are designed to

accommodate the wide range in size, shape and orientation of imaged capillaries.

3.2 Learning Vesselness, Orientation and Width Models

We treat vessel detection as a supervised classification problem, and orientation and

width prediction as regression problems, all based on the features outlined in the previ-

ous section. We have used Random Forests [12], due to their ease of training, flexibility,

relative robustness to over-fitting and strong performance in comparable learning tasks,

but we do not believe the choice of learning method is critical.

For training, we used the 80 fully annotated images described in Section 2 each of

which provides a binary vessel mask for training a vesselness classifier. To provide

ground-truth for orientation and width regression, we skeletonised the binary masks,

measured orientation and width at each centreline point, and propagated the measure-

ments back to every point on the binary vessel mask using a simple nearest pixel inter-

polation. For orientation regression, we represented orientation as a unit vector in the
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complex plane, t = cos 2θ+ i sin 2θ, doubling the angle θ to make orientation invariant

to direction [13], and avoiding wraparound problems that arise if angle is used directly.

We trained three random forests (RFs), each containing 100 trees: one classifier on

background versus labelled vessel pixels, and one regressor each for orientation and

width. Although orientation and width are only defined for the vessel points, to ensure

we generate unbiased, random predictions in the background of unseen images, we

include background points with uniformly sampled random widths and orientations in

training the regressors.

To make predictions in an unseen image we apply the separable basis filters, com-

pute the interpolated, steered responses and extract feature vectors, before feeding the

vectors through the trees in each forest and computing the mean, pooled over all leaf

nodes, as the prediction output. For orientation, the unit vectors are converted back to

radians. The result for each input image is a map of vesselness (Vv), orientation (Vθ)

and width (Vw) (Figure 2(a-b)). Note that predictions of width and orientation made in

this manner are significantly more accurate than analytic estimates, and, by reusing the

same features as extracted for Vv , requires minimal additional computation.

4 Locating Candidate Capillary Apices

The maps Vv , Vθ and Vw provide an approximate segmentation of vessels and their low-

level properties. However to extract meaningful measurements we need to detect and

localise the apices of individual capillaries. Treating this as an object detection problem,

we again adopt a learning approach in which each vessel pixel votes for the location of

a nearby apex. Specifically, we use RF regression, trained using patches sampled near

annotated capillary apices in the training data, to encode observed relationships between

appearance and location [14].

To train the RF, we thin Vv by applying non-maximal suppression along the line

normal to the estimated vessel orientation. We then extract 64 × 64 training patches,

centred at local maxima in Vv and scaled and rotated according to the estimated width

and orientation. If a patch contains a marked apex and is also centred at a vessel pixel

in the original training masks, we label the patch as positive and record the offset to the

apex; otherwise, we label the patch as negative. For each patch, a histogram of gradi-

ents (HoG) feature vector is formed by concatenating weighted histograms of gradient

direction, computed for overlapping blocks in the patch [15]. A 100 tree RF classifier

is then trained to distinguish between positive and negative patches, whilst a regression

forest is trained to predict the offset associated with each positive patch.

For an unseen image, we extract a scale- and rotation-normalised patch about each

local maximum in Vv (Figure 2(b)) and pass these through the classification forest. The

output labels at each leaf node are pooled and averaged, forming α(p), the probability

that the patch contains an apex. The regression forest then predicts the offset to the

nearest apex, and therefore the apex location in the image. A Gaussian kernel – centred

at the apex, scaled by σ = Vw(a) and weighted by α(p) – is added to a vote map

of apex locations A. Here the classifier plays a crucial role in weighting the regressor

votes, so that only patches in which an apex is visible significantly contribute to A.The

local maxima of A are the candidate locations for capillary apices (Figure 2(c)).
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Detecting nailfold capillaries (a) Estimated vessel orientation Vθ , displayed using an

hue/intensity color-map for angle/prediction confidence; (b) Vesselness Vv with oriented local

maxima marked by green dots. Red dots have α(q) > 0.5 and vote for apex locations; (c) Vote

map A of apex locations; (d) Estimated distal row (green line), from weighted kernel density of

maxima in A. Candidate capillary locations are shown as red circles (scaled by candidate ap-

pearance score) with y displacements to estimated distal line; (e) Mesh plots of the joint class

conditional distribution over candidate displacement and appearance score, viewed from score

axis (left) and displacement axis (right): false positves (red), distal capillaries (green), non-distal

capillaries (blue); (f) Capillaries selected by our method (red circle) and experts observers (blue

and green squares), solid markers show distal capillaries.

5 Refining Candidate Apices and Making Measurements

Given a set of candidate apex locations as training data, we can now train a new classi-

fier that better discriminates between true apices and false positives, and between distal

and non-distal apices. We do so in two ways: first, we reclassify each candidate, now

using patches located only at candidate apex locations; second, we exploit the fact that

capillaries should lie in a single, approximately horizontal line across the image.

To train the new classifier, we used candidate apices computed for the set of 441

validation images. Each candidate (xi, yi) was labelled as positive only if it fell within

a circle centred at a marked apex with diameter equal to the marked apical width. Of

the 13,492 positive and 24,369 negative samples, the positive samples were further split

into 9,735 distal and 3,757 non-distal capillaries. A 100 tree RF classifier was trained

as before, using HoG features from scale- and rotation-normalised patches extracted

about each sampled candidate from the original image (rather than Vv). The outputs of

the trees were pooled to give a single appearance score, ci ∈ [0, 1], for each candidate,

allowing us to define each candidate as the tuple of its location and score, (xi, yi, ci).
In addition to the final appearance score, the location of a candidate relative to the

other candidates in any image can indicate its likelihood of being a distal row apex.

Specifically, we assume the ideal distal row to be a smooth line running across the

mosaic and passing through every true distal capillary apex. If we can estimate this line

in an unseen image, we can use the vertical displacement of each candidate to the line

to classify it as distal or nondistal.
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To achieve this, we compute a density map of candidate locations by summing a

Gaussian kernel centred at each discrete candidate location. Each kernel is weighted by

the candidate’s appearance score, ci, so that strong candidates contribute more to the

density. The density for each location in the mosaic can thus be computed as

D(u, v) = Z

N
∑

i=1

ci exp

[

−
(u− xi)

2

2σx
2

]

exp

[

−
(v − yi)

2

2σy
2

]

(1)

where there are N candidates in the image, Z is a normalisation constant so that D sums

to unity, and σx, σy are functions of the variances of xi, yi. Each apex’s displacement

from the distal row is then given by

di = yi − argmax
v

D(xi, v) (2)

Using the observers’ annotations, each candidate Ci = (xi, yi, ci, di) in the valida-

tion images is assigned a label Li ∈ [1, 2, 3] for false positives, distal capillaries and

non-distal capillaries respectively. Figure 2(e) shows a kernel estimate of the class-

conditional probability density P (ci, di|Li). The class priors for each label type P (Li)
can be estimated empirically from the data, allowing Bayes’ rule to be used to compute

the class probability, P (Li|ci, di), of each candidate, given its appearance score and

displacement.

Each candidate is rejected, or labelled as either a distal or non-distal capillary. For

each kept candidateCi we record its width Vw(xi, yi), and use Vθ and Vv to compute the

entropy of an orientation histogram of pixels connected to Ci as a measure of tortuosity.

Finally, we compute capillary density as the mean distance between the distal apexes.

6 Results

We applied our detection method (O3) to the set of 455 test images, and compared

the selected capillaries to the annotations of the two human observers (O1 and O2).

In total, 15,391 capillaries were selected by at least one of the three observers. The

results illustrate the difficulty of the task. For example, of the 7047 distal capillaries

(DCs) marked by O1, only 56% were also marked by O2, whilst 74% were marked by

the automated system (O3). Defining true positives via consensus between the experts,

of the 3913 DCs marked by both O1 and O2, 84% were marked by O3, which is a

probably a workable performance level. Given the level of disagreement between the

experts, false positives are even harder to assess. Of the 7913 DCs marked by O3, 27%

were marked by neither O1 nor O2. On the other hand, of the 7047 DCs marked by O1,

17% were marked by neither O2 nor O3, and 44% were not marked by O2.

Overall, the results suggest similar performance between O1, O2 and O3. To test

this formally, we considered the capillaries (both distal and non-distal) selected by each

observer as truth and assessed how well each of the two observers detected these cap-

illaries. Table 1 shows the precision, recall and F -measure for each pair of observers.

To test the labelling of capillaries as distal or non-distal, we considered all capillaries

jointly selected by each pair of observers, and computed accuracy and Cohen’s kappa
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Table 1. Pairwise agreement between observers. For each row Oi v Oj denotes the performance

of observer i using j as ground truth. O1, O2 denotes consensus of the two human observers. Pre-

cision, recall and F -measures are given for vessel detection, classification accuracy and Cohen’s

Kappa statistic for labelling capillaries as distal or not.

Observers Capillary detection Distal v Non-distal

Precision Recall F -measure Accuracy Cohen’s κ

O2 v O1 70.7 ± 1.3 46.2 ± 1.8 55.8 ± 1.4 89.5 ± 0.8 0.613 ± 0.025

O3 v O1 66.8 ± 1.1 59.6 ± 0.9 63.0 ± 0.8 90.8 ± 0.9 0.574 ± 0.028

O3 v O2 51.7 ± 1.9 70.5 ± 1.0 59.6 ± 1.3 87.2 ± 1.2 0.557 ± 0.028

O3 v O1, O2 64.1 ± 1.8 80.9 ± 0.7 71.5 ± 1.1 93.6 ± 1.0 0.690 ± 0.034
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Fig. 3. Distributions of capillary measurements by subject group: (a) Capillary density; (b) Me-

dian apical width; (c) Median capillary tortuosity

statistic to quantify agreement. Accuracy and kappa statistics were not computed for

capillary detection because there is no defined true negative class for the task (this is ef-

fectively the space of all images not containing a capillary). In addition to the pairwise

tests, we computed equivalent values for the software versus the consensus of the two

humans.

Standard errors for each value were computed from 1,000 bootstrap samples of the

test images. For the F -measures and Cohen’s kappa statistics we computed the differ-

ence between the agreement of O1 and O2 and the average of their individual agreement

with O3. 95% confidence intervals of (−7.01,−3.90) and (−0.019, 0.12) respectively,

suggest there was no significant reduction between the software’s performance and ei-

ther human on the two tasks (if anything the software showed greater agreement to the

humans individually than the humans did to each other on the detection task).

Finally, we present initial results for disease status characterisation, based on the

measurements extracted for the detected capillaries. Distributions of capillary measure-

ments (capillary density, median width and median tortuosity) for the three groups HC

(104 images), RP (83 images), and SSc (268 images) are shown in Figure 3. To test for

differences between the distributions we used the non-parametric Wilcoxon rank sum

test. Tests for all measurements between all groups showed significant differences at

the 0.01 confidence level (at least), except for the comparison between RP and HC for

vessel density – an expected result given that we would not expect the RP group to show

any signs of capillary loss.
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7 Conclusions

We have presented a fully automated system for measuring vessel morphology from

nailfold capillaroscopy images. Evaluation on a large data set suggests that our sys-

tem performs as well as experts in detecting vessels, and initial results for automated

measurement suggest that we can detect significant differences between disease groups.

Further work will involve refining apex detection, adding more sophisticated measure-

ments, and combining measurements to make useful predictions for individuals.
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