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Abstract
Many people listen to music while working nowadays. However, conventional rec-
ommendation systems that are designed for playing songs matching user preferences
cannot be applied for such a situation. This is because previous research showed that
listeners’ concentration can be negatively affected not only by music that listeners
strongly dislike but also by music that the listeners strongly like. Therefore, when
we consider a recommendation system to be used while working, it is desirable to
avoid both songs the user likes very much and songs the user dislikes very much.
Given this background, we propose FocusMusicRecommender, a system designed
specifically for recommending music to listen to while working. It summarizes songs
automatically and plays them successively in order to enable users to give not only
“dislike (very much)” feedback via a “skip” button but also “like (very much)” feed-
back via a “keep listening” button. The feedback is then combined with the users’
concentration level that is estimated from their behavioral history during the playback
of the corresponding song, which allows the system to obtain preference information
that distinguishes between “like” and “like very much” without burdening the user
who is working. Based on the preference information, the system estimates the pref-
erence levels of unplayed songs and prioritizes the songs for subsequent playback
by also considering the user’s current concentration level. Our experiments showed
the validity and effectiveness of the proposed method, including the accuracy of the
concentration level estimation. Moreover, our user study verified the suitability of the
recommendation results from both the observed behavior and obtained comments of
the participants.
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1 Introduction

Recommendation is a fundamental technique to deliver a personalized media expe-
rience (Park et al. 2012; Lu et al. 2015; Zhang et al. 2019; Deldjoo et al. 2020). To
entertain a user who consumes media content as their main task (sole activity), many
methods have been proposed to find content matching the user’s interests or prefer-
ences adaptively. Simultaneously, media content is often used as a means to achieve
purposes other than the consumption of the content itself. For such a second task sit-
uation, conventional recommendation systems for pursuing user satisfaction with the
content itself are not always suitable.

Specifically, we consider a situation where people are listening to music as their
second task to concentrate on their main task, such as working or studying. In fact, this
is a common practice nowadays; Lonsdale and North (2011) surveyed 189 university
students and reported that 75.7% of them confirmed that they had used background
music while working or studying. Additionally, most of those respondents mentioned
the effectiveness of music in helping them concentrate, making comments, such as
“background music stops my mind from wandering when I need to focus on work.”
We argue that conventional recommendation systems (Song et al. 2012; Knees and
Schedl 2013) are not suitable for use during work.

This is because a song strongly preferred by a user may interfere with the user’s con-
centration, as reported by Huang and Shih (2011). They investigated the relationship
between concentration level while listening to songs in different genres and preference
level for the songs, which was rated on a five-point Likert scale of “like very much,”
“like,” “neither like nor dislike,” “dislike,” and “dislike very much.” They found that
the concentration level measured by attention testing dropped significantly not only
when people were listening to songs they disliked very much but also when people
were listening to songs they liked very much. In contrast, the concentration levels of
people who listened to songs they liked, neither liked nor disliked, or disliked did not
significantly differ from those of people in a silent environment.

This implies that there is a gap between the current music recommendation systems
and a user’s motivation to use them. The user wants the systems to select suitable
songs automatically because selecting songs while working is troublesome. However,
the systems are designed to find and play songs the user likes very much although
avoiding songs that evoke strong emotions is important for concentrating on work.
We therefore propose FocusMusicRecommender, a system specifically designed to
recommend suitable background music for listening while working. It thus not only
prioritizes songs a user may neither like nor dislike based on the user’s preference
information but also collects the preference information without interfering with the
user, as depicted in Fig. 1.

More specifically, FocusMusicRecommender introduced various interaction tech-
niques so that it works without asking the user in work to rate each song in a way
similar to that required by the conventional systems. Firstly, it plays songs in an
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(A) (B)

Fig. 1 (A) According to the study by Huang and Shih (2011), conventional recommendation systems trying
to play a song that a user likes very much may distract the user. (B) FocusMusicRecommender helps a user
concentrate on work by automatically selecting a song that the user would neither like nor dislike

abridged manner unless the user presses a “keep listening” button, which makes it
possible to infer the user’s positive preference, such as “it is my favorite song and I
want to listen to it more,” when they use the button. Analogously, it can infer the user’s
negative preference, such as “I dislike this song and want to skip it,” when the user
presses a “skip” button. This implicit feedback enables FocusMusicRecommender to
determine the user’s preference level of “like (very much),” “neither like nor dislike,”
or “dislike (very much).”

Still, it is not precise enough considering the report from Huang and Shih (2011),
that is, a song the user likes very much and that the user likes have different impacts
on their concentration. Hence, FocusMusicRecommender incorporates a mechanism
to estimate the user’s concentration level from the working behavior and uses it to
distinguish the case when the user presses the “keep listening” button because the
user likes a song very much from the case when the user moderately likes the song.
This refinement process is based on the hypothesis that the feedback given when
concentrating reflects the preference level for songs more faithfully than the feedback
given when not concentrating. Furthermore, by applying machine learning for the
collected preference information of each user, FocusMusicRecommender can select
songs the user may neither like nor dislike without further feedback once the user
listened to a certain number of songs.

To evaluate the effectiveness of FocusMusicRecommender, we first conducted three
experiments regarding the accuracy of the concentration level estimation, the validity
of the preference level determination from the implicit feedback, and the generality of
the playback interaction. We also conducted a user study with four comparison imple-
mentations to confirm the suitability of the recommendation results and their effect
on the users. Our results from the experiments and user study supported the effective-
ness of FocusMusicRecommender, which illuminates a new way of supporting media
consumption using recommendation systems.

This article is an extended version of our previous conference paper (Yakura et al.
2018). In addition to having a more detailed presentation of the design (Sect. 3) and
the implementation (Sect. 4) of the proposed method, this article complements the
previously published findings with new evaluation results. For instance, we expanded
the analysis of the result of the concentration level estimation in Sect. 5.2 to understand
the reasons behind its relatively better accuracy than previous methods. This analysis
revealed that employing n-gram-based features and exploiting Web communication
history, both of which were not examined in previous methods, were effective to
improve the accuracy without using external sensors. As described in Sect. 5.4, we also
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conducted an additional experiment to evaluate the usage of the proposed interaction
technique, which confirmed its generality in determining the preference level without
burdening users. Furthermore, we added a new comparison implementation in the user
study (Sect. 6.1), which makes it possible to examine the effects of the played songs
on the users, as presented in Sect. 6.3. Based on the above results, we newly discussed
limitations of FocusMusicRecommender and its further directions in Sect. 7 to present
possibilities of new music-driven interactions that consider the user’s concentration
level.

2 Related work

In this section, we first explain previous findings regarding the effect of background
music on listeners’ concentration level, which motivated us to introduce FocusMusi-
cRecommender. We then introduce related studies on music recommendation and
concentration level estimation. For music recommendation, we focus on systems
designed for specific purposes or based on limited feedback considering the usage
of the proposed system.

2.1 Effect of backgroundmusic on listeners’ concentration

As mentioned in Sect. 1, music has the power of not only entertaining people who
listen to it as their main task but also affecting people who listen to it as their second
task. For example, music is used with videos to make them more immersive or used
in restaurants to bring out the flavors of food (Milliman 1986; Biswas et al. 2018).
Its power to help listeners concentrate has also been investigated by many researchers
(Mendes et al. 2021) from a pedagogical (Hallam et al. 2002) and management (Fox
1971) perspective.

In this context, Huang and Shih (2011) measured that the concentration level of
participants scored by an attention test while listening to songs in different genres,
such as classical and popular music. They analyzed the relationship of the scores to
the participants’ self-reported preference levels of the played songs. Compared with
a silent environment, their result showed that the scores significantly dropped not
only when people were listening to songs they disliked very much (p < 0.05) but also
when listening to songs they liked very much (p < 0.01). Furthermore, there was no
significant effect of the genres of the songs, such as whether the song is classical
or popular music, on the concentration levels. As a result, they concluded that the
listener’s concentration level depends more on the listener’s preference level than on
the song’s musical genre.

This point introduces a new perspective for the existing studies focusing on the
relationship between background music and listeners’ concentration level (Mendes
et al. 2021). For instance, classical compositions of Mozart have been conventionally
considered to help listeners concentrate, which is sometimes referred to as the “Mozart
effect” (Ho et al. 2007), but it can be explained from the fact that most people have
a moderate preference for the compositions and their emotions would not be deeply
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aroused. This gives room for leveraging recommendation systems to help listeners
concentrate. That is, rather than playing Mozart’s compositions for all users, playing
songs that each user may not like or dislike very much based on their preference
information would be helpful.

Here, without such recommendation systems, it is possible that users naturally
choose songs that would not evoke strong emotions under the context that they listen
to the songs while working. This seems reasonable considering that, in Huang and
Shih (2011), participants rated their preference levels to the played songs without
the context, i.e., how much they like each song in general. Meanwhile, Johansson
et al. (2011) implied the difficulty of choosing optimal songs to be listened to while
working themselves. Specifically, Johansson et al. (2011) investigated participants’
levels of emotional arousal while listening to songs they picked as those they want or
do not want to listen to while working on their choice. Consequently, they found that
the levels measured via the participants’ pupil size were significantly elevated more
than that of a silent environment regarding both the songs they wanted and did not
want to listen to. Therefore, considering the conclusion of Huang and Shih (2011), we
cannot rule out the possibility that songs chosen by users to listen to while working
still interfere with them.

Generally, even if we assume that users know the impact of listening to songs
they like very much while working, demanding them to judge whether each song is
suitable to be listened to while working would not be desirable according to the dual
process theory (Kahneman 2011). That is, this judgment requires a reasoning process
based on the prior knowledge, involving “System 2” of their brain, and thus consumes
their attention while working. This point led us to design FocusMusicRecommender
to work with users’ “System 1”-based interactions (i.e., implicit feedback based on
their intuitive preference) in order not to interfere with them. We note that, since
the term “attention” has ambiguity as it sometimes refers to the relative assignment
of one’s cognitive resource between multiple tasks (Proverbio et al. 2015) based on
Kahneman’s capacity model (Kahneman 1973) or one’s ability to maintain a focus on
a single main task, we hereinafter follow the terminology of Huang and Shih (2011)
in using “concentration” in this article.

2.2 Music recommendation for specific purposes

There are some studies of music recommendation systems designed for specific pur-
poses (Oliver and Flores-Mangas 2006; Liu et al. 2010; Baltrunas et al. 2011). For
example, Oliver and Flores-Mangas (2006) proposed MPTrain, which is intended to
facilitate physical exercise by playing music. These systems play faster songs when
the heart rate is lower than the desired workout, and vice versa. Baltrunas et al. (2011)
proposed InCarMusic, which is designed to assist car drivers by changing music gen-
res to be played according to whether the user is sleepy or not, whether the user is
traveling on ordinary road or in expressway, and so on.

However, to the best of our knowledge, there is no study on music recommendation
systems specially designed for use while working, even though many new recommen-
dation methods using recent machine learning algorithms have been proposed (van den
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Oord et al. 2013; Liang et al. 2015; Wang 2020). We acknowledge that Volokhin and
Agichtein (2018) proposed a method for automatically generating activity-specific
playlists, including ones for working, but there is no special consideration or evalua-
tion regarding helping users concentrate.

We note that these recommendation systems designed for specific purposes, includ-
ing FocusMusicRecommender, can be aligned with context-aware recommendation
systems (Adomavicius and Tuzhilin 2015), as they leverage additional contextual
information to recommend optimal songs reflecting their purposes. In this sense, we
can apply existing methods for context-aware recommendation systems to recommend
songs that a user may “feel right” to listen to while working by collecting informa-
tion about the user’s working context, in a manner similar to Kaminskas and Ricci
(2017) did to recommend songs that a user may “feel right” to listen to when they
visit a specific place by evaluating candidate songs with location-compatible emotion
labels. However, as discussed in Sect. 2.1, we must carefully consider how to collect
such contextual information from users in working since demanding them to judge
each song whether they “feel right” to listen to it while working would interfere with
them. This point motivated us to design a recommendation system dedicated to find-
ing songs to be listened to while working, rather than applying existing techniques for
context-aware recommendation systems.

2.3 Music recommendation with limited feedback

As we mentioned in Sect. 1, considering the use while working, asking users to give
explicit feedback for each song is unrealistic because it would interfere with their
main tasks. In this respect, Pampalk et al. (2005b) proposed a music recommendation
system that assumes limited implicit feedback. It uses a metric calculated based on
skip operation, i.e., whether the user skipped or not while a song was playing, as
follows:

1. For each candidate song, let ss be the musical similarity to the nearest song skipped
so far, and let sa be the similarity to the nearest song that was not skipped.

2. If there are candidate songs satisfying sa > ss , select from them the one having
the largest sa .

3. Otherwise, select from all the candidate songs the one with the largest sa
ss

.

Here, the musical similarity is calculated from audio signals based on spectral features
and fluctuation patterns (Pampalk et al. 2005a).

Pampalk et al. (2005b) described that this metric was designed to reflect two levels
of preference information, which is informed by regarding skipped songs as disliked
and songs that were not skipped as liked. Thus, it cannot be used for recommending
songs to listen to while working because it requires giving priority to songs that the
user may neither like nor dislike.

123



An automated system recommending background music... 361

2.4 Automatic estimation of concentration level

Helping users to concentrate while they are using computers is one of the topics
actively discussed in human–computer interaction. Specifically, while users are often
interrupted by emails or prompts from applications (Czerwinski et al. 2004), such
interruptions evoke their stress and frustration (Mark et al. 2008). In this regard,
several studies (Tateyama et al. 2004; Fogarty et al. 2005; Züger and Fritz 2015;
Tanaka and Fujita 2011) have tried estimating the “concentration” or “interruptibility”
level of users working on a personal computer, which can be leveraged to help users
concentrate, as FocusMusicRecommender does.

For example, Tateyama et al. (2004) proposed a method for estimating based on eye
movements tracked by a stereo camera. Fogarty et al. (2005) employed the numbers of
mouse and keyboard operations as well as the number of door openings that are counted
using a magnetic sensor. Züger and Fritz (2015) exploited physiological responses,
such as the user’s skin potential or heart rate, and concluded that these metrics are
useful for estimating the interruptibility of workers. Tanaka and Fujita (2011) presented
a method that incorporates not only the number of mouse and keyboard operations but
also the number of switching of the active application.

However, considering costs and psychological barriers, the use of external sensors is
unrealistic for music recommendation. Additionally, though Tanaka and Fujita (2011)
proposed a method that does not use external sensors, it employs the number of specific
operations within a fixed length of time and therefore is hard to use when the playback
duration is variable, as a song can be skipped after only a few seconds.

3 FocusMusicRecommender

In this section, we present an overview of FocusMusicRecommender (Fig. 2) and
describe the details of its three core components that reflect our design strategy for the
system to be used while working: how to determine the preference levels of played
songs (Sect. 3.2), how to select the next song to be played (Sect. 3.3), and how to
automatically estimate the concentration level (Sect. 3.4).

3.1 Overview

FocusMusicRecommender aims to help users concentrate when listening to music
while working on a personal computer. In this case, an automatic playback function is
often used to save time and effort in selecting songs during work. However, as men-
tioned in Sect. 1, the random playback and conventional recommendation methods
would play songs the users like very much, which would interfere with their concen-
tration. Instead, this system automatically selects songs the user may neither like nor
dislike very much and plays them consecutively.

To deliver such songs without asking the user in work to give explicit feedback, the
proposed system introduces a summarized playback using chorus section information.
In this system, the song is terminated after its first chorus section unless the user
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Fig. 2 Overview of FocusMusicRecommender. It determines the user’s preference levels of songs and
selects the song played next according to the user’s feedback and behavioral history

presses a “keep listening” button. It allows the system to determine the user’s positive
preference for the played song, in the same framework as proposed by Pampalk et al.
(2005b) of acquiring the negative preference by a “skip” button. In other words, without
this summarized playback, it is difficult for the proposed system to avoid playing songs
the user may like very much because it cannot know which song is preferred by them.

Then, the proposed system looks for songs that would be neither liked nor disliked
from unplayed songs based on the collected preference information for the played
songs. However, the preference information in three levels obtained from pressing
either of the two buttons or neither of them would not be precise enough to our
aim of avoiding songs the user likes very much or dislikes very much. The system
therefore estimates the current level of the user’s concentration and uses it to refine
the preference information by considering the user’s situation behind the implicit
feedback. The estimated concentration level is also exploited to adjust the selection
criterion of the next song from candidate songs judged as to be neither liked nor
disliked for the purpose of helping the user to concentrate more.

3.2 Determine the preference levels of played songs

To begin with, we explain in detail how the proposed system determines the user’s
preference level for played songs. As shown in Fig. 3(B), we first present the “keep
listening” button with the summarized playback to determine in the three levels of
“like (very much),” “neither like nor dislike,” and “dislike (very much).” We then
extend the determination to five levels by leveraging the user’s concentration level, as
depicted in Fig. 3(C).
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Fig. 3 Relationships between user feedback and determined preference levels. (A) From the “skip” feed-
back, only “dislike (very much)” or not can be distinguished. (B) The addition of “keep listening” feedback
gives three preference levels, including “like (very much).” (C) Combining the concentration level gives
five levels distinguishing between “like very much” and “like” as well as between “dislike very much” and
“dislike”

3.2.1 Obtain feedback using a “keep listening” button

As described in Sect. 2.3, the approach of Pampalk et al. (2005b) can determine the
user’s preference level from the implicit feedback. However, the level is binary: “dislike
(very much)” or not, as it is informed by skipped or not. The proposed system therefore
extends this approach by introducing the “keep listening” button with a summarized
playback, which enables the system to distinguish songs that the user likes or likes
very much from the other songs (i.e., songs the user neither likes nor dislikes and songs
the user dislikes or dislikes very much). For the automated summarization, it uses the
chorus section information of the played song, inspired by previous literature (Logan
and Chu 2000; Cooper and Foote 2002; Dannenberg and Goto 2008) and its use in
portable music players1. Then, in accordance with the user feedback, we determine
the preference levels as follows:

– Press the “skip” button
When the user presses the “skip” button, the system presumes that the user dislikes
the song, potentially very much, and immediately switches to the next song.

– Press the “keep listening” button
When the user presses the “keep listening” button, the system presumes that the
user likes the song, potentially very much, and plays it to the end.

1 ZAPPIN Playback: https://docs.sony.com/release/NWZW273S_W274S_guide_EN.pdf.

123

https://docs.sony.com/release/NWZW273S_W274S_guide_EN.pdf


364 H. Yakura et al.

– Do nothing
When the user does not press any buttons until the end of the first chorus section,
the system presumes that the user neither likes nor dislikes the song and plays the
next song. We note that, since it is difficult for the user to decide whether to skip
or keep listening to the song right after it starts playing, we designed the system
to play each song for at least 30 seconds.

3.2.2 Refine the preference level with estimated concentration level

The preference levels obtained in “like (very much),” “neither like nor dislike,” and
“dislike (very much)” are subsequently refined into five levels distinguishing “like
very much” from “like” and “dislike very much” from “dislike” based on the user’s
estimated concentration level under the following hypothesis.

HypothesisUser feedback obtained under a high level of concentration expresses
the preference level better than feedback obtained under a low level of concen-
tration.

In other words, a concentrating user would not press the “keep listening” or “skip”
button unless the user likes or dislikes the song strongly. Thus, as presented in Fig. 3
(C), the preference level is refined in accordance with each combination of the user
feedback and concentration level.

The motivation for this refinement process is that distinguishing songs liked and
those liked very much is important for our purpose. This is because avoiding songs
the user may like very much is particularly crucial since they can interfere with the
user’s concentration. In other words, according to the results of Huang and Shih (2011),
misclassifying songs liked as songs neither liked nor disliked may not have a significant
impact on the user’s concentration since both preference levels would not distract the
user. Analogously, misclassifying songs disliked as songs neither liked nor disliked
may also not have a significant impact. However, if the system misclassified songs
liked very much as songs neither liked nor disliked or songs disliked very much as
songs neither liked nor disliked, it can lead to the user’s distraction by playing songs
liked very much or disliked very much instead of songs liked or disliked, respectively.

This refinement process is further beneficial when we employ hierarchical clas-
sification algorithms (Silla Jr. and Freitas 2011) instead of regular classification or
regression models. More specifically, it allows us to explicitly incorporate such pri-
oritization among the five-level preference, as shown in Fig. 4. Here, the algorithms
put a greater penalty on misclassifying songs liked very much as songs liked than on
misclassifying songs neither liked nor disliked as songs liked. This would reduce the
risk of misclassifying songs that the user likes or dislikes very much as songs suitable
to be listened to while working.

3.3 Select the next song considering the concentration level

Through the above processes, the proposed system determines preference levels of
played songs and accumulates them. Relative to the collected information, the system
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Fig. 4 Difference between regular and hierarchical classifiers in FocusMusicRecommender. By extending
the feedback into five levels, we can introduce the hierarchical classifiers to regard liked songs, neither liked
nor disliked songs, and disliked songs as songs suitable to be listened to while working

estimates the preference levels of songs that have not been played yet based on a musi-
cal similarity among the songs. Specifically, it applies a machine learning algorithm
to a set of pairs of the musical features, which were extracted from each played song,
and its corresponding preference level. It then can estimate the preference level of
each unplayed song from its musical features and play songs estimated to be ones that
the user may neither like nor dislike very much. If there are two or more such songs,
the system has to choose one of them.

We designed the system so that in such a situation it would adjust the selection
criterion according to the current level of concentration in a way that would help the
user concentrate more. When the concentration level is high, the system prioritizes
songs similar to the song played immediately before to avoid making sudden changes
that can distract the user. Conversely, when it is low, the system tries giving the user
a chance to change their mood by playing various songs. This is based on the survey
by Wells (1990): While 73.3% of 225 respondents confirmed that music helps them
change their mood, the genres of music they listen to for the mood change varied
widely.

3.4 Estimate the concentration level

To achieve the preference level refinement (Sect. 3.2.2) and song selection
(Sect. 3.3), the system must determine whether the user is concentrating. Therefore, the
system estimates the concentration level automatically by applying a machine learning
algorithm to the user’s behavioral history during the last song (see Sect. 4.2) in the
same manner as previous methods described in Sect. 2.4. As we will describe later in
Sect. 4.2, we used AROW (Crammer et al. 2013) for the machine learning algorithm,
though other algorithms can also be used as long as our purpose is achieved.

The system collects three types of behavioral history: keyboard input, mouse input,
and Web communication (Table 1). Since, as mentioned in Sect. 2.4, using external
sensors for music recommendation is unrealistic, the system uses software-based fea-
tures, as shown in Table 2. Here, we introduce Web communication history, which
has not been used in previous methods (Fogarty et al. 2005; Züger and Fritz 2015;
Tanaka and Fujita 2011) because Web communication reflects the work content, such
as whether the user is searching on the Web or using social networking services. This
feature would be useful for the concentration level estimation. For example, the user
accessing social network services often might be distracted.
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Table 1 User behaviors used by FocusMusicRecommender for the concentration level estimation

Types of Behavior Format Examples

Keyboard input “key Target application name
Key”
(The use of modifier keys is
merged into a single event.)

“key Microsoft Excel a”
(Press “a” in Microsoft
Excel)
“key Mozilla Firefox <[Ctrl: v]>”

(Press “Ctrl+v” in Mozilla Firefox)

Mouse input “mouse Target application name
Event number”

“mouse Google Chrome 1”

(The event number distinguishes
between three types of clicks and
scrolling in four directions.)

(Click a left button in Google Chrome)
“mouse Eclipse 4”

(Scroll up in Eclipse)

Web communication
(HTTP/HTTPS)

“web Request method Hostname” “web GET www.google.com”
(Only GET and POST requests are

collected.)
(Send a GET request to www.google.com)
“web POST twitter.com”

(Send a POST request to twitter.com)

Table 2 Comparison of features used for the concentration level estimation

Collection method Feature Tateyama
et al. (2004)

Fogarty
et al.
(2005)

Züger
and Fritz
(2015)

Tanaka
and Fujita
(2011)

Proposed

Software Keyboard input � � �
Mouse input � � �
Web communication �
Application switching �

External device Use of a telephone �
Opening of a door �
Eye movements �
Psycho-physiologic

data
�

Moreover, instead of using counting-based methods (Fogarty et al. 2005; Tanaka and
Fujita 2011), the proposed system records detailed information, such as the application
name and hostname along with the type of each operation, as shown in Table 1.
This approach not only solves the issue explained in Sect. 2.4 but also can use more
information than if only the number of operations was used. For example, clickings in
Firefox and Eclipse are regarded as different operations in this method, whereas the
counting-based methods treat clickings in Firefox and Eclipse equally. Simultaneously,
the importance of each operation is automatically calculated by a machine learning
algorithm.
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Fig. 5 Implemented modules of FocusMusicRecommender. The user interface is handled by the playback
module, and the other three modules operate in the background

Then, the system applies a machine learning algorithm to the n-grams of the hash
value of each operation. This was inspired by malware detection methods in which a
series of system calls is provided to a learning algorithm in the form of n-grams of
their hash values (Rieck et al. 2011; Canali et al. 2012). In particular, it is known that
an n-gram performs well in the feature extraction from such sequential data despite
its ease of calculation.

4 Implementation

Based on the design described in Sect. 3, we implemented FocusMusicRecommender.
In this section, we explain the detail of the implementation, which consists of four
modules: behavioral history collection, concentration level estimation, music selec-
tion, and playback, as shown in Fig. 5.

4.1 Behavioral history collection

This module records three types of behavioral history as described in Sect. 3.4. The
keyboard and mouse input is collected using an API of the operating system, and the
Web communication is observed using a local proxy server. The collected data are
gathered for each song and sent to the concentration level estimation module.

4.2 Concentration level estimation

This module estimates the concentration level from the user’s behavioral history using
an online learning algorithm. Here, we use AROW (Crammer et al. 2013) for the
following reasons:
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– First, it converges quickly because it employs passive-aggressive updating algo-
rithm (Crammer et al. 2006), which makes it suitable for cases where collecting
large amounts of labeled data is difficult.

– Second, it tolerates sparse features because it employs confidence weighting
(Dredze et al. 2008) that considers the frequency of the features.

– Additionally, it is robust to noise in the labeled data, such as fluctuation of the
concentration level given by users, because it assumes a mistake bound that allows
some misclassified data considering the presence of the noise.

Every time the song is switched, this module estimates the concentration level from
the behavioral history collected during the playback of the last song and sends it to
the music selection module. More specifically, it first calculates the n-grams of the
behavioral history (here, we set n = 2 based on preliminary observations), as described
in Sect. 3.4. It then counts the occurrence of each 2-gram and provides the occurrence
information to AROW as an input feature vector. Finally, the AROW estimates the
concentration level based on the similarity of the occurrence information to those in
annotated training data that suggest the relationships between the previously observed
behavioral histories and their corresponding concentration levels.

4.3 Music selection

This module then estimates the preference levels of unplayed songs based on those
of played songs and their musical features, as mentioned in Sect. 3.3. It applies Hier-
Cost (Charuvaka and Rangwala 2015) for the user’s preference information, which
is obtained by the method described in Sect. 3.2. HierCost is used here because its
implementation has been published and it is designed to work well with unbalanced
data. Even when the number of songs played is low, the ability of HierCost to handle
unbalanced data can reduce the possibility of playing songs the user likes or dislikes
very much, which interferes with the user’s concentration.

For the calculation of the musical features, the proposed system does not rely on
a specific approach, but here we used the same approach as Songrium (Hamasaki
and Goto 2013). First, MARSYAS (Tzanetakis and Cook 2000) was used to obtain
a 35-dimensional feature vector for each song. The vector consists of the mean and
variance of average values of mel-frequency cepstral coefficients calculated across
the entire song (26 dimensions), the mean and variance of local spectral features
(centroid, rolloff, flux, and zero-crossings) across the entire song (8 dimensions),
and the tempo in the chorus section (1 dimension). Then, the first through the third
principal components were retained by applying principal component analysis to the
feature vector for dimensionality reduction. Lastly, the retained three-dimensional
vectors were provided to the HierCost model as input data.

Additionally, as described in Sect. 3.3, the system changes the criterion when
selecting the next song among multiple candidates by considering the estimated con-
centration level. In detail, whereas some recommendation methods (Cardoso et al.
2016; Ikeda et al. 2016) consider the recently played songs, the proposed system also
considers the current concentration level (Fig. 6) as follows:
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Fig. 6 Conceptual diagram representing the criterion of the song selection in the music similarity space.
When the concentration level is high, a song that is the most similar to the last played song is selected.
Conversely, when it is low, a song that is the least similar to the previous two songs is selected

Step 1 At first, it randomly selects the first and second songs to start making a listening
history.
Step 2 It then estimates the preference levels of unplayed songs and lists all songs
labeled as “neither like nor dislike” as candidates. If there is no song labeled as “neither
like nor dislike,” it uses songs in the order of “like,” “dislike,” “like very much,” and
“dislike very much” considering the effect on the concentration level described in
Huang and Shih (2011).
Step 3 From the candidates, it selects the third and the following songs based on
musical similarities like Pampalk et al. (2005b) as follows:

(a) If the user’s concentration level is high, it selects the song with the maxi-
mum similarity to the song played immediately before to avoid making sudden
changes that can distract the user.

(b) If the user’s concentration level is low, it selects the song whose sum of similar-
ities to the last played song and the second-to-last played song is the smallest
to give the user an opportunity to change their mood (Wells 1990). It should
be noted that this selection is not only based on the song played immediately
before, but on the two previous songs. If it selected the song having the least
similarity to the last played song, two different genres could be selected alter-
nately, and this would reduce the diversity of the songs played.

Step 4 It goes back to 2.

Here, the music similarity between two songs is measured by the Euclidean distance
between their three-dimensional feature vectors.

4.4 Playback

This module plays the song selected by the music selection module using Songle Wid-
get (Goto et al. 2015), which is a framework offering an embeddable music player.
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Fig. 7 User interface of
FocusMusicRecommender. The
chorus section information is
shown in the upper half and the
controls are shown in the bottom
half

The advantage of Songle Widget is that it makes the playback control based on the
chorus section easy by exploiting the music structure information estimated automat-
ically on Songle (Goto et al. 2011). Songle is a Web service that provides not only
the visualized results of automatic analysis of songs uploaded on the Internet but also
a Web-based interface that enables users to correct errors in the automatic analysis.
Thus, we can also expect Songle Widget to deliver accurate user-corrected chorus
information to the module.

The module also handles the user interface (Fig. 7). In the upper half, the chorus
section information of the playing song is shown. In the bottom half, a slider to adjust
volume and three buttons to pause, skip, and keep listening are shown.

5 Preliminary experiments

To confirm the validity and effectiveness of our design strategy, we first conducted
three preliminary experiments, which focus on specific components of the proposed
system. We started by verifying the accuracy of the concentration level estimation
described in Sect. 4 by collecting annotated data. We then evaluated the validity of the
preference level determination described in Sect. 3.2. We also confirmed the generality
of the playback function used in the preference level determination through a Web-
based experiment involving crowd workers. Here, we show the detailed procedures
and results of those experiments.

5.1 Data preparation

5.1.1 Songs

For the experiments, we first constructed a set of songs to be presented to participants.
We used the top 50 most frequently played songs with the tag “VOCALOID,” which
are songs created using a singing synthesis software, in the popular Japanese video-
sharing service niconico (http://nicovideo.jp/). We used those songs because we had
confirmed that accurate user-corrected chorus section information for all of them was
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Fig. 8 Dialog box presented to the participants for entering their concentration and preference levels. This
dialog box was presented whenever a song was switched

available via Songle Widget. Furthermore, those songs tend to cover diverse genres2 as
they are created in a user-generated content community on a voluntary basis (Hamasaki
et al. 2008; Hamasaki and Goto 2013). In fact, 15 different tags indicating the genres
are used for the 50 songs, such as “VOCAROCK (used for rock music),” “Vocaloid
Japanese-style music,” and “Mikuno-Pop (used for electro-pop music).”

5.1.2 Annotated behavioral data

For the experiments, we also collected system users’ behavioral information during
the playback of the songs along with their subjective concentration and preference
levels. In detail, eight students (17 to 24 years old) who were fluent in Japanese and
in the habit of listening to music while working on a personal computer participated
voluntarily. Using headphones and in a quiet room, they listened to all songs in the
constructed set in random order while being presented with “keep listening” and “skip”
buttons.

During this procedure, four participants wrote new documents using word process-
ing applications and the other four worked on programming on a personal computer.
They were instructed to work in the same way as usual without being given specific
tasks to complete, and they were not interrupted before they had finished listening to
the 50 songs. Their input and Web communication histories were collected automati-
cally, and they were informed beforehand that the collected data are stored in the form
of hashes to preserve their privacy so that they can work as they usually do.

Simultaneously, we collected their concentration and preference levels using a
dialog box (Fig. 8), which is presented each time a song was played. Our dialog box had
five-point scales ranging from “like very much” to “dislike very much” for preference
level and from “high concentration” to “low concentration” for concentration level.
We acknowledge that asking the participants to enter their concentration levels with
a dialog box can influence their concentration levels; however, we followed previous
studies of concentration level estimation (Fogarty et al. 2005; Tanaka and Fujita 2011)
to make the results comparable. We note that this is only for preliminary experiments,
and FocusMusicRecommender does not require such explicit feedback.

2 As of October 1, 2017, 141 tags indicating the user-defined music genre of VOCALOID songs are listed
in “nicopedia,” a Wiki system for topics related to niconico (http://dic.nicovideo.jp/id/252926 in Japanese).

123

http://dic.nicovideo.jp/id/252926


372 H. Yakura et al.

Table 3 Confusion matrix of the
concentration level estimation
(five-class)

Estimated label User-entered label
2 1 0 −1 −2

High 2 28 18 18 9 5

1 14 39 12 11 9

0 11 10 22 12 12

−1 5 11 15 30 28

Low −2 5 12 11 22 31

Total 63 90 78 84 85

The diagonal components of the confusion matrix (i.e., the number
of times that the user-entered label was correctly estimated) are high-
lighted in bold

Table 4 Confusion matrix of the
concentration level estimation
(two-class)

Estimated label User-entered label

High (2, 1) Low (0 ∼ −2)

High concentration 99 64

Low concentration 54 183

Total 153 247

The diagonal components of the confusion matrix (i.e., the number
of times that the user-entered label was correctly estimated) are high-
lighted in bold

5.2 Accuracy of concentration level estimation

We verified the correspondence of the estimated concentration level and the validation
data that the participants entered by five-fold cross-validation where instances of the
participants were distributed randomly across the folds in the same manner as Züger
and Fritz (2015) did. The confusion matrices in the five- and two-class estimation are
presented in Tables 3 and 4. We found that the accuracy was 37.5% in the five-class
estimation and 70.5% in the two-class estimation, while the F1 score was 37.7% in
the five-class estimation and 62.7% in the two-class estimation.

Though the results came from different studies, the accuracy of the two-class esti-
mation was comparable to that of the previous methods we mentioned in Sect. 2.4.
More specifically, the F1 score of the proposed method (62.7%) was lower than that of
the previous methods that use external sensors; Fogarty et al. (2005) achieved 70.5%
using a physical sensor, and Züger and Fritz (2015) achieved 69.7% using biometric
sensors. However, it was higher than that of Tanaka and Fujita (2011), which achieved
38.8% using features that can be collected without external sensors.3 We note that, in
calculating the F1 scores of the previous methods (Fogarty et al. 2005; Tanaka and
Fujita 2011) and the proposed method, we converted the multiclass estimation results
into two-class estimation results by following the procedure of Züger and Fritz (2015).
That is, a concentration level labeled “neither high nor low” (= 0) is categorized as

3 The confusion matrix of the method using eye movements is not presented in Tateyama et al. (2004).
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Table 5 F1 scores of concentration level estimated with and without the use of Web communication history

Without Web communication With Web communication

Features Keyboard input � �
Mouse input � �
Web communication �

F1 score 5-classa 32.5% 37.3%

2-class 52.8% 62.7%

a We calculated the macro average across five classes
In each row for F1 score, the higher accuracy is highlighted in bold

“low.” The results confirm the effectiveness of the proposed method for estimating the
concentration level.

We also compared the F1 scores of the concentration levels estimated from behav-
ioral history with and without consideration of Web communication history. The
results are listed in Table 5, which indicates that using the Web communication history
improves the accuracy of the estimation.

Furthermore, the effectiveness of the Web communication history is also confirmed
from the top 10 most important features for the estimation (Table 6). They are ranked
based on the mean vector µ of AROW (Crammer et al. 2013), which has a role
similar to that of the weight vector in linear classification and shows the importance
of the corresponding feature in the estimation. Table 6 shows that accesses to social
networking services, such as Twitter and Facebook, are significant clues (Rank #1,
#3, #4, and #8 in Table 6) for estimating the concentration level. Additionally, an
interesting point in the result is that repeated pressing of the backspace key plays an
important role in the estimation (Rank #2, #5, and #10 in Table 6). Such repetition can
occur frequently when a user is editing a considerable length of text in the applications
listed in the rows, and thus, it would be associated with the high level of the user’s
concentration.

5.3 Validity of preference level determination

To confirm whether the proposed method can determine a user’s preference level from
their implicit feedback and estimated concentration level (Sect. 3.2.1), we evaluated
the coherency between the preference level determined using the proposed method and
that entered by the participants. We first checked whether the preference level of songs
the participants wanted to keep listening to was high and that of songs they wanted to
skip was low. The result is shown in Table 7. Here, Spearman’s correlation coefficient
of the preference level the participants entered to the user feedback is 0.62 (p < 0.01).
Note that the p-value here indicates the probability that the data would have arisen
even if there were no actual correlation.

We then evaluated whether the preference level determined in combination with the
estimated concentration level appropriately reflects that entered by the participants.
The result is shown in Table 8, and Spearman’s correlation coefficient between the
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Table 6 Top 10 most important features for the concentration level estimation (two-class). Each row rep-
resents two consecutive operations (e.g., the row of rank #1 means that the user accessed twitter.com
immediately after clicking in Google Chrome), and the sign next to the rank number represents whether the
operations were associated with high (+) or low concentration (−). They suggest that the Web communi-
cation history is an important clue for estimating the concentration level

Rank 2-gram features of two consecutive operations

1 (−) “mouse Google Chrome 1”a → “net GET twitter.com”

2 (+) “key Terminal <[Backspace]>” → “key Terminal <[Backspace]>”

3 (−) “net GET scontent.xx.fbcdn.net”b → “net GET scontent.xx.fbcdn.net”

4 (−) “mouse Google Chrome 1” → “net GET pbs.twimg.com”c

5 (+) “key Microsoft Word <[Backspace]>” → “key Microsoft Word <[Backspace]>”

6 (+) “net GET mail.google.com” → “net GET 0.docs.google.com”

7 (−) “mouse Google Chrome 5”d → “mouse Google Chrome 5”

8 (−) “net GET www.facebook.com” → “net GET scontent.xx.fbcdn.net”

9 (+) “mouse Google Chrome 7”e → “mouse Google Chrome 7”

10 (+) “key Xcode <[Backspace]>” → “key Xcode <[Backspace]>”

a It means clicking a left button in Google Chrome
b It means connecting a server that serves static contents of Facebook
c It means connecting a server that serves images on Twitter
d It means scrolling down in Google Chrome
e It means scrolling right (i.e., a gesture to go back) in Google Chrome

Table 7 Correspondence of the “keep listening” and “skip” feedback to the user-entered preference level
(ρ = 0.62, p < 0.01)

User feedback Preference level Total
Like (2, 1) Neither like nor dislike (0) Dislike (−1,−2)

Keep listening 84 15 10 109

Do nothing 58 107 33 198

Skip 8 4 81 93

Total 150 126 124 400

The diagonal components of the confusion matrix (i.e., the number of times that the user’s preference level
and their feedback matched our hypothesis) are highlighted in bold

preference level determined by the proposed method and the one that the participants
entered is 0.66 (p < 0.01). Therefore, the hypothesis mentioned in Sect. 3.2.2 was
supported, and the employment of the proposed determination method to acquire the
preference information without burdening the user can be justified.

5.4 Generality of summarized playback

As mentioned in Sect. 3.1, the proposed system introduced the playback function that
automatically summarizes songs based on the chorus section information to enable
implicit feedback using the “keep listening” button. While its effectiveness in deter-
mining the user’s preference level was confirmed in Sect. 5.3, it is known that the
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Table 8 Correspondence of the combination of the user feedback and estimated concentration level to the
user-entered preference level (ρ = 0.66, p < 0.01)

User feedback (Concentration level) Preference level Total
Like Dislike
2 1 0 −1 −2

Keep listening (High concentration) 22 8 3 2 0 35

Keep listening (Low concentration) 21 33 12 6 2 74

Do nothing 13 45 107 27 6 198

Skip (Low concentration) 1 5 3 35 19 63

Skip (High concentration) 0 2 1 6 21 30

Total 57 93 126 76 48 400

The diagonal components of the confusion matrix (i.e., the number of times that the user’s preference level
and the combination of their feedback and the estimated concentration level matched our hypothesis) are
highlighted in bold

adaptation of such playback function can be subjected to the music culture or the
usual listening habit of the user (Bull 2006). Thus, although summarized playback
has been implemented in consumer products (see Sect. 3.2.1), it is desirable to test the
function with participants from various backgrounds to ensure the generality of the
proposed method.

In that respect, evaluation involving crowd workers is one of the popular methods
for comparing the usage of interfaces among diverse participants (Liu et al. 2012).
Fortunately, whereas providing the complete implementation of the proposed system
to crowd workers is difficult due to its dependency on the operating system API, as
described in Sect. 4.1, the playback interface without the recommendation function can
be replicated on the Web. That is, crowd workers can try the summarized playback
with the “keep listening” button and evaluate its usage, even though the songs are
presented through a random shuffle.

For this purpose, we conducted an experiment by recruiting 25 participants from
Asia, North America, and South America on Amazon Mechanical Turk. The partic-
ipants used the interface while being presented with the “keep listening” and “skip”
buttons and listened to the songs in a random order. Here, because most songs in the
ones we prepared in Sect. 5.1.1 were Japanese lyrics, presenting the songs to crowd
workers would confuse them and yield a less grounded result. Instead, we collected
20 English-lyrics most-played VOCALOID songs to preserve the composition of the
songs to be presented. After at least 15 minutes of use while working, they were
directed to a survey asking their opinions on the summarized playback compared with
the continuous playback in regular players using a five-point scale of “much better,”
“better,” “not so different,” “worse,” and “much worse” along with their remark on
the “keep listening” button. To ensure the validity of the results, we implemented the
interface so that the participants could not proceed to the survey without spending at
least 15 minutes with the interface, and we manually inspected their playback history,
such as confirming not skipping all songs immediately.

All the participants responded positively about the summarized playback: 15 partic-
ipants (60.0%) selected “much better,” 10 participants (40.0%) selected “better,” and
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Table 9 Distribution of the feedback given to the proposed interface by the participants described in
Sect. 5.1.2 and the participating crowd workers. The p-value of the chi-square test for homogeneity suggests
that there is no significant difference in the usage of the interface between them regarding both the “keep
listening” and “skip” buttons

User Feedback Total
Keep listening Do nothing Skip

Table 7 109 198 93 400

Crowd workers 63 160 53 276

p-value 0.301 – 0.245 –

none selected “not so different,” “worse,” or “much worse.” Most of them commented
affirmatively about the “keep listening” button, such as “sometimes I want to listen
to the full song so its useful to me,” whereas some participants commented “I didn’t
use that button because I prefer the mixed playback.” One suggested an improvement
of the interface design: “I think it would be better if it gave me some visual feedback
that it was pressed.”

Moreover, as shown in Table 9, their playback history on the usage of the “keep
listening” and “skip” buttons showed a similar distribution to that shown by the partic-
ipants described in Sect. 5.1.2. From Pearson’s chi-square test of homogeneity across
the participants and participating crowd workers, we obtained a p-value of 0.301 for
pressing the “keep listening” button and 0.245 for the “skip” button. In other words,
we could not find a significant difference in the usage of the summarized playback
with the “keep listening” button regarding the backgrounds of the participants.

In sum, these results from diverse participants suggested the generality of the usage
of our playback function that automatically summarizes songs while providing the
“keep listening” button. Thus, along with the results in Sect. 5.3, it is implied that the
proposed method is a novel approach for determining the user’s preference level for
played songs without burdening the user.

6 User study

To confirm the performance and effectiveness of the entire function of the proposed
method as a recommendation system, we then conducted a user study with several
comparison implementations. We first evaluated its recommendation performance by
comparing the results obtained using implementations with different recommenda-
tion strategies and then evaluated its effectiveness by comparing the results obtained
using implementations of the proposed version with different prioritization. We also
examined the comments obtained from the participants.

6.1 Procedure

This user study involved the same eight participants in the experiments described in
Sect. 5.1.2. Each participant experienced four recommendation systems consisting of
FocusMusicRecommender and the comparison implementations described below.
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Baseline (BL)
As a baseline, we implemented a recommendation system based on the method
proposed by Pampalk et al. (2005b), which uses the skip operation as feedback.
We modified the selection procedure explained in Sect. 2.3 so as to play songs
dissimilar to songs that the user pressed either the “skip” or “keep listening”
button, instead of avoiding songs similar to songs the user skipped. In other words,
the binary feedback of Pampalk et al. (2005b) shown in Fig. 3 (A) cannot avoid
playing songs the user may like very much and would not yield a result comparable
to that of other implementations. Thus, it was extended to the three levels shown in
Fig. 3(B) for avoiding songs the user may like or dislike very much. Consequently,
this system is expected to play songs that the user might neither like nor dislike
by avoiding songs that the user might press either the “skip” or “keep listening”
button in an online learning manner.

FocusMusicRecommender Not Considering Concentration Level (FMR-1)
We implemented a simplified version of FocusMusicRecommender, which does
not consider the user’s concentration level. This system uses the feedback shown
in Fig. 3(B), and thus, the preference levels of unplayed songs are estimated in
the three levels. In this case, the estimation process is expected to behave like
regular classifiers that do not use the hierarchical information. Additionally, since
the selection process described in Sect. 4.3 depends on the concentration level,
the system instead selects the next song randomly from unplayed songs that are
estimated to be neither liked nor disliked.

FocusMusicRecommender Considering Concentration Level (FMR-2)
We of course implemented FocusMusicRecommender in the proposed version.
This system is based on the five-level preference refined using the estimated con-
centration level, as shown in Fig. 3(C), and changes the criterion for selecting the
next song according to the concentration level, as explained in Sect. 4.3.

FocusMusicRecommender Playing Songs the User May Like Very Much (FMR-3)
We additionally implemented a modified version of FocusMusicRecommender,
which plays songs the user may like very much in the same way as conventional
recommendation systems. The system uses the same preference determination and
song selection method as FMR-2 but changes the priority for listing candidates
from that described in Sect. 4.3 to the order of “like very much,” “like,” “neither
like nor dislike,” “dislike,” “dislike very much.” This is intended to confirm the
influence of playing songs the user may like very much on interfering with the
user’s concentration by comparing its usage with that of FMR-2.

The participants used each implementation until 30 of the 50 songs mentioned in
Sect. 5.1.1 have been played (i.e., they listened to 120 songs in total). The conditions
of work contents and environments were inherited from Sect. 5.1.2. Specifically, four
participants worked on document writing using word processing applications, and the
other four worked on programming tasks. When they completed the use of FMR-2, we
conducted short interviews with them asking them to comment on their impressions
of the songs played (i.e., asking “how do you feel about the played songs?”) and the
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ease of use (i.e., asking “how do you feel about the usage of the provided system?”),
which lasted approximately 10–15 minutes.

We note that the data collection described in Sect. 5.1.2 was performed at least one
month before the user study commenced to avoid anomalous results due to short-term
preference changes caused by repeated listening. Additionally, though the collected
behavioral history was used to train the concentration level estimation module of the
FMR-2 and FMR-3, the collected preference information was not used in any of the
implementations. Furthermore, each implementation was used on separate days to
avoid the effect caused by fatigue, as the experience could take up to an hour.

6.2 Comparison of recommendation performances

Table 10 shows the distribution of the preference level the participants entered
beforehand during the data collection in Sect. 5.1.2 and the number of operations the
participants performed for songs played by BL, FMR-1, and FMR-2. Compared with
the distribution of the population shown in the bottom row of Table 8, the hypergeo-
metric p-value of avoiding songs liked very much or disliked very much is 0.1×10−1

in BL, 2.4 × 10−7 in FMR-1, and 1.6 × 10−13 in FMR-2. Here, the hypergeometric
p-value indicates how the distribution of the preference levels of the songs chosen by
each system was different from that in the case that the songs were drawn by random
sampling. Thus, the results suggest that the use of any of the three implementations
can significantly reduce the playback of songs liked or disliked very much (i.e., songs
that may interfere with the user’s concentration), compared to playing songs by a
random shuffle. Additionally, it is demonstrated that FMR-2, which implements the
proposed method, played fewer songs that would decrease the concentration level than
BL and FMR-1; thus, it is suitable for use during work. This is supported by the fact
that FMR-2 caused fewer interruptions due to pressing the “skip” or “keep listening”
button than the BL and FMR-1.

The difference between the BL and FMR-1 results can be explained by the use of
the machine learning algorithm. That is, FMR-1 decides which song to play based on
the preference levels of unplayed songs estimated by the learning algorithm, whereas

Table 10 Distribution of the preference levels of the songs played by BL, FMR-1, and FMR-2 along with
the number of operations recorded. While all of them played fewer songs that the participants liked very
much or disliked very much (i.e., songs that can decrease their concentration level) compared to a random
shuffle, the proposed method (FMR-2) played fewest

Preference level Participants pressed Total number of operations

Like Dislike Keep listening Skip

2 1 0 −1 −2

BL 43 62 79 38 18 58 44 102

FMR-1 30 45 111 34 20 49 42 91

FMR-2 22 48 121 38 11 38 32 70

The smallest value of the total number of operations, which can be associated with the number of caused
interruptions, is highlighted in bold
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Fig. 9 Transition of the rate of songs played by FMR-2 for which participants pressed the “skip” or “keep
listening” button. Error bars represent the standard error of the mean. The decrease in this rate suggests that
the proposed method can adapt to a new user as a certain number of songs are played

BL bases the decision on the neighbors of each song. On the other hand, the difference
between FMR-1 and FMR-2 is due to the precise determination of the preference
level as described in Sect. 3.2.2. It enables FMR-2 not only to estimate the preference
levels of unplayed songs precisely but also to prioritize the levels in accordance with
the effect on the concentration level by combining with the hierarchical classification
algorithm. In fact, FMR-2 played fewer liked very much and disliked very much songs
than FMR-1 even though it played more liked and disliked songs, resulting in fewer
interruptions, as shown in Table 10.

Additionally, Fig. 9 shows that the rate of songs for which the participants pressed
the “skip” or “keep listening” button dropped as the number of played songs increased
and stabilized after about 10 songs. This implies that, though further investigations
are needed, the user can benefit from the proposed system with the playback of few
songs before getting disappointed due to the less accurate results when the user uses
the system for the first time. Here, we would like to note that this adaptation ability is
attributable to HierCost, the classification algorithm used in FMR-2, as it works well
with small and unbalanced data.

6.3 Comparison of effects on the user

Table 11 shows the distribution of the preference level and number of operations
for songs played by FMR-2, and FMR-3. The difference in the distribution of the
preference level reflects the difference in their recommendation priority: FMR-2 plays
songs the user may neither like nor dislike, while FMR-3 plays songs the user may
like very much. Playing songs the user may neither like nor dislike results in a 32.7%
reduction in the number of operations the participants performed for played songs even
though FMR-2 and FMR-3 use the same preference determination and song selection
method. This implies that listening to songs one may neither like nor dislike helps one
concentrate on one’s work (Huang and Shih 2011), as stated in Sect. 1.

The effectiveness of the proposed method is also supported by Fig. 10. It shows
how the rate of liked or disliked songs for which the participants pressed the “skip” or
“keep listening” button changed over time. One infers from the hypothesis presented in
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Table 11 Distribution of the preference levels of the songs played by FMR-2 and FMR-3 along with the
number of operations recorded. Playing songs the user may neither like nor dislike significantly reduces
the number of interruptions

Preference level Participants pressed Total number of operations

Like Dislike Keep listening Skip

2 1 0 −1 −2

FMR-2 22 48 121 38 11 38 32 70

FMR-3 49 69 84 25 13 67 37 104

The smallest value of the total number of operations is highlighted in bold

Fig. 10 Transition of the rate of liked or disliked songs played by FMR-2 and FMR-3 for which participants
pressed the “skip” or “keep listening” button. The decrease in this rate of FMR-2 in comparison with that
of FMR-3 implies that the proposed method helped the users to concentrate

Sect. 3.2.2 and the results shown in Sect. 5.3 that the user is unlikely to press the “skip”
or “keep listening” button for liked or disliked songs when the user’s concentration
level is high. In that respect, compared to FMR-3, Fig. 10 indicates that the participants
got concentrated as they made use of FMR-2.

Besides the effectiveness of FMR-2 in helping the user concentrate, these results
also suggested the effectiveness of FMR-3 as a regular recommendation system that
is intended to meet the user’s preference. Specifically, Table 11 shows that FMR-3
played much more songs liked very much, which resulted in increasing the number
of the use of the “keep listening” button. Since our preference determination method,
which is also used in FMR-3, does not require users to input preference information
explicitly, providing FMR-3 to users who are not working would also be beneficial.

6.4 User comments

After using FMR-2, the participants provided positive comments about the songs
played, e.g., “I think they were good for concentrating,” “they were good choices,”
“they were moderately suitable for working,” “I was able to work comfortably while
listening,” “although they matched my preference, they never got in the way of work-
ing,” “I was bothered neither by music nor by my surroundings,” “I paid less attention
to music than usual,” and “I think they became more suitable for working as I made
use of the system.” Comments such as “I didn’t feel it burdened me,” “I didn’t particu-
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Fig. 11 Overview of the standard player mode. FocusMusicRecommender can be used with the same
interface as standard music players once the preference information is collected

larly mind it,” and “I didn’t feel uncomfortable” were made about the “keep listening”
button.

One participant mentioned that using the “keep listening” button seemed to interrupt
work more than using the “skip” button. This is probably due to his unfamiliarity caused
by the fact that a “skip” button is widely used by many music players, while a “keep
listening” button is not. He also said that “using a ‘keep listening’ button is much
easier than using a precise scale and entering a preference level for each song,” and
therefore the efficiency of the feedback method is supported. Additionally, we remark
that the number of button operations is expected to decrease if the user continues to use
a “keep listening” button, and as shown in Fig. 9, this will result in fewer interruptions.

Furthermore, once the preference information of 10 or 20 songs is accumulated,
it is possible for the user to disable the automatic summarization function and use
the system with the same interface as standard music players (Fig. 11). In this case,
the user feedback is used only for playback control and not used for recommendation.
When the user’s preference changes (e.g., songs not estimated to be disliked very much
are skipped many times), the preference information collection could be reactivated.

7 Limitations

While our experiments (Sect. 5) and user study (Sect. 6) suggested the effectiveness
of FocusMusicRecommender, there are some limitations. First, to certify the effec-
tiveness of the proposed method, it is desirable to measure the concentration level of
participants who are using FocusMusicRecommender and evaluate how songs played
affect their concentration level, rather than discussing the effect based on observable
data (e.g., the number of operations), as we did in Sect. 6. However, measuring the
concentration level without involving expensive equipment, such as fMRI, requires
further consideration. One feasible option is the use of psycho-physiological sensors,
as Züger and Fritz (2015) did; but such psycho-physiological data do not fully reflect
participants’ internal status, as Züger and Fritz (2015) gave an accuracy of 69.7%
in estimating participants’ self-reported interruptibility. Another option is measuring
the score of an attention test, as Huang and Shih (2011) did; however, it makes par-
ticipants’ situations artificial, which would be apart from the actual situation where
FocusMusicRecommender is used.

Second, the number of participants was relatively small to ensure the generalizabil-
ity of the results. This is partially due to the implementation of FocusMusicRecom-
mender, which depends on the API of the operating system to collect a user’s behavioral
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history and make it difficult to conduct the experiments on a large scale. Instead, we
conducted the experiment to evaluate a part of FocusMusicRecommender that is inde-
pendent of the API, i.e., the usage of its summarized playback interface, involving
crowd workers in Sect. 5.4. Still, there is room for expansion in terms of the number
of participants to ensure its generality to users from various cultural backgrounds.

In this context, our selection of the songs used in the experiments and user study
could bring bias with respect to the participants’ perceptions and usages. As explained
in Sect. 5.1.1, we selected “VOCALOID” songs because they can balance the require-
ment for accurate chorus section information and the coverage of diverse genres.
Therefore, additional investigations involving different sets of songs and a greater
number of participants are desirable to ensure the generalizability of our results.

Furthermore, the accuracy of the concentration level estimation can be affected
by conditions of the experiments, since it would highly depend on the work content.
As presented in Sect. 3.4, the proposed system exploits the user’s detailed behavioral
history, which reflects the work content, for the estimation. Thus, when we train the
concentration level estimation module using the data obtained in experiments like
those described in Sect. 5.1.2, the accuracy during completely different tasks (e.g.,
graphic design) will get worse.

Meanwhile, this problem can be easily addressed by acquiring a small amount of
additional training data from the user in the same manner as presenting the dialog box
(Fig. 8) to the user in the experiments. This is because, as mentioned in Sect. 4.2, the
proposed system uses an online learning algorithm, AROW (Crammer et al. 2013), and
can adapt to the new data with a small computational cost. Moreover, by introducing
the framework of active learning, it is possible to reduce the number of inquiries to the
user, which results in the suppression of the burden on the user. In detail, by asking the
user to enter the current concentration level only when the confidence of the estimation
is low, the proposed system can adapt to new data efficiently (Lu et al. 2016).

Regarding the concentration level estimation, there is concern about the privacy of
the user because the estimation relies on detailed behavioral history. This can also be
addressed by taking advantage of the learning algorithm used in the proposed system.
That is, the computational cost of the estimation is independent of the amount of the
training data. In other words, it is a lightweight algorithm in which the estimation can
be performed in the user’s computer without sending the user’s behavioral history to
the outside world.

Moreover, it is pointed out that user preferences naturally evolve over time (Gama
et al. 2014). Although in the proposed method, there is no consideration for the change
of preference, it can be easily dealt with by introducing a sliding window, one of the
popular approaches to adapting to the transition (Gama et al. 2014). In detail, by
considering only a fixed amount of the latest playback history in the preference level
estimation for unplayed songs (Sect. 4.3), the recommendation by the system can be
based on recent data reflecting the change of the preference.
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8 Conclusion and future work

We have presented FocusMusicRecommender, a music recommendation system
designed to help people concentrate while working on personal computers. Based
on previous studies on the effect of background music on the concentration, the sys-
tem gives priority to songs that a user may neither like nor dislike rather than pursuing
songs that a user may like very much as conventional systems do. To be used while
working, it automatically selects such songs according to the user’s situation without
asking the user to input preference information explicitly.

To realize the proposed system, we first introduced a feedback method that obtains
three levels of preference “like very much,” “neither like nor dislike,” and “dislike very
much” while suppressing the burden on the user using a “keep listening” and “skip”
button. We then introduced a process refining the preference level by determining the
degree of “like” or “dislike” according to the user’s concentration level that is automat-
ically estimated. Furthermore, we proposed a method for estimating preference levels
of unplayed songs and selecting the most suitable song by considering the relationship
between the concentration level and preference levels.

The results of our experiments and user study confirmed the validity and effec-
tiveness of the proposed method as well as the suitability of the recommended songs.
The experiments also confirmed the effectiveness of the proposed method for estimat-
ing the concentration level from the user’s behavioral history collected without using
external sensors. They showed that its estimation accuracy was better than those of
the previous methods described in Sect. 2.4.

8.1 FutureWork

For future work, we would like to experiment with alternative approaches and more
participants. For example, we are exploring a different music selection method that
considers the novelty and diversity of the recommended songs because they are some-
times considered in the quality assessment of recommendation systems. As familiarity
with songs is known to affect the preference level (Brattico and Pearce 2013), using a
recommendation algorithm that controls the familiarity would be another interesting
approach for designing a recommendation system to be used while working.

Additionally, FocusMusicRecommender can be implemented to incorporate other
learning algorithms. For instance, reinforcement learning is often employed in recom-
mendation systems to explore various candidates in order to find one meeting a user’s
preference (Moling et al. 2012; Wang 2020). Such an algorithm can perform better
than our implementation of music selection (Sect. 4.3) in terms of providing the user
a chance to change their mood by playing various songs. More generally, leveraging
the state-of-the-art methods (Zhang et al. 2019; Deldjoo et al. 2020) for designing
recommendation systems to be used while working would be a fruitful direction.

Furthermore, exploring the use of other musical features remains future work. Since
the proposed system depends on the musical similarity rather than its calculation pro-
cedure, as mentioned in Sect. 4.3, other methods like a hybrid approach that combines
acoustic features and related information from Web pages (Knees et al. 2007; Taka-
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hashi et al. 2008) can also be used. Specifically, given that the system plays songs in
an abridged manner, we want to compare the result with that obtained using a feature
extraction method that considers the structure and variation in the song. For example,
Deldjoo et al. (2019) enabled extracting features from movie trailers coherent with the
corresponding full-length movies by incorporating musical features that are similar
to ours and i-vector features (Eghbal-zadeh et al. 2015), which can be applied to the
proposed system.

We would also like to explore new interactions that leverage the estimated con-
centration level. For instance, FocusMusicRecommender can prompt a user to take a
break when the estimated concentration level stays low. Additionally, when the user
accepts the recommendation of taking a break, the system can help the user change
their mood seamlessly through the song selection. That is, the system changes the
priority of the selection described in Sect. 4.3 and gradually increases the number of
songs the user may like very much during the playback.
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