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Abstract: Unmanned Aerial Vehicles (UAVs) are an exciting new remote sensing tool 

capable of acquiring high resolution spatial data. Remote sensing with UAVs has the 

potential to provide imagery at an unprecedented spatial and temporal resolution. The 

small footprint of UAV imagery, however, makes it necessary to develop automated 

techniques to geometrically rectify and mosaic the imagery such that larger areas can be 

monitored. In this paper, we present a technique for geometric correction and mosaicking of 

UAV photography using feature matching and Structure from Motion (SfM) 

photogrammetric techniques. Images are processed to create three dimensional point clouds, 

initially in an arbitrary model space. The point clouds are transformed into a real-world 

coordinate system using either a direct georeferencing technique that uses estimated 

camera positions or via a Ground Control Point (GCP) technique that uses automatically 

identified GCPs within the point cloud. The point cloud is then used to generate a Digital 

Terrain Model (DTM) required for rectification of the images. Subsequent georeferenced 

images are then joined together to form a mosaic of the study area. The absolute spatial 

accuracy of the direct technique was found to be 65–120 cm whilst the GCP technique 

achieves an accuracy of approximately 10–15 cm. 

Keywords: UAV; Structure from Motion (SfM); rectify; georeferencing; mosaicking; 

point cloud; Digital Terrain Model (DTM) 
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1. Introduction 

Historically, Unmanned Aerial Vehicles (UAVs) have primarily been used for military applications. 

More recently, the use of UAVs in the civilian domain as remote sensing tools presents new and exciting 

opportunities. Improvements in the availability of accurate and miniature Global Positioning Systems 

(GPS) and Inertial Measurement Units (IMUs), along with the availability of quality off-the-shelf 

consumer grade digital cameras and other miniature sensors have resulted in an increased use of 

civilian UAVs [1]. The highest spatial resolution data available from conventional platforms, such as 

satellites and manned aircraft, is typically in the range of 20–50 cm/pixel. UAVs are capable of flying 

much lower and hence can collect imagery at a much higher resolution [2,3], often at a sub-decimetre 

resolution, even as detailed as 1 cm/pixel. The temporal resolution of conventional systems is limited by 

the availability of aircraft platforms and orbit characteristics of satellites. For the purpose of monitoring 

highly dynamic vegetation, satellite sensors are often limited due to unfavourable re-visit times [4]. 

Many studies have successfully used UAVs to map and monitor areas of vegetation that are of an 

agricultural and/or an environmental interest, see for example [5–8]. Johnson et al. [6] used a small 

fixed wing UAV to collect imagery over a commercial vineyard in California. The imagery had a 

spatial resolution of 20 cm/pixel and was processed to segment the scenes into vegetation and soil 

areas and to subsequently calculate percentage vegetation cover. Monitoring of small plots within 

wheat crops in southwest France [7] is another example of UAVs assisting with agricultural processes. 

Lelong et al. [7] used a modified digital camera to collect imagery in four bands, red, green, blue and 

near-infrared to enable the calculation of vegetation indices such as the Normalized Difference 

Vegetation Index (NDVI). 

In an environmental monitoring context Rango et al. [8] deployed a fixed wing UAV in the 

rangelands of southern New Mexico, acquiring imagery with at a 5–6 cm/pixel resolution. Laliberte [9] 

also collected imagery of the New Mexico rangelands, but also used a six band multispectral camera to 

capture high resolution data in the near infrared. Imagery of such high spatial resolution can provide a lot 

of information, such as detailed area of vegetation and bare soil coverage, composition by functional or 

structural group, spatial distribution of plants, inter canopy gaps and in some cases, vegetation type [10]. 

In another study, Dunford et al. [5] used a paraglider type UAV to acquire imagery with a spatial 

resolution of 6–21 cm/pixel over 179 ha of riparian forest in France. An object-based classification 

approach was then found to be the most accurate classifier for the detection of dead wood within the 

forested area [5]. 

Despite significant evidence highlighting the value of UAVs in the fields of precision agriculture 

and environmental monitoring, the collection of ultra-high resolution UAV imagery presents a number 

of challenges. Due to the relatively low flying height (e.g., 50–120 m) of micro-UAVs (<5 kg), the 

images have a small footprint (e.g., 50 × 40 m when flying at 50 m above ground level with a typical 

camera and lens configuration). This necessitates the capture of a large number of images to achieve the 

spatial coverage required for many applications. For example, a single flight covering approximately  

2 ha can yield around 150–200 images. To maximise the potential of the UAV technology for 

environmental and agricultural applications, it is essential that an automated, efficient, and accurate 

technique be developed to rectify and mosaic the large volume of images generated. 
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There are fundamental differences between imagery collected by a UAV flying at low altitude 

compared to that collected by a traditional aerial platform flying at higher altitudes. UAV imagery is 

often collected in a haphazard manner (i.e., flight lines with variable overlap and cross-over points);  

it has large rotational and angular variations between images [11]; the altitude of the platform is low  

in relation to the height variation within the scene, causing large perspective distortions [11]; and the 

exterior orientation (EO) parameters are either unknown or, if measured, they are likely to be inaccurate. 

UAV imagery often has high variability in illumination, occlusions and variations in resolution [12], 

which are characteristics more typical of those usually presented in close-range photogrammetry 

applications [13]. Hence, UAV photography has characteristics of both traditional aerial photography 

and terrestrial photography, and there are opportunities to use image processing algorithms that are 

applicable to both types of imagery, as suggested by Barazzetti et al. [12]. 

Recently there have been advances in the realm of Computer Vision (CV), resulting in new 

algorithms for processing terrestrial photography. Examples are the powerful Scale Invariant Feature 

Transform (SIFT) [14] feature detector, and the Structure from Motion (SfM) algorithms that make use 

of SIFT features to create 3D models from a series of overlapping photos [15]. SIFT is a region detector, 

rather than an interest point extractor that would typically be used by traditional photogrammetric 

software [16]. As a region detector it has been demonstrated that SIFT is applicable to UAV imagery due 

to its robustness against changes in rotation, scale, and translation between images [16].  

The standard approach in modern photogrammetry is to employ a Bundle Block Adjustment (BBA) 

to solve for the exterior orientation of each photograph and, if required and provided the geometry of 

the block of photographs allows it, to solve for additional parameters such as the interior orientation 

(IO). An introduction to the BBA is provided by e.g., Wolf and Dewitt [17]. Most commonly, metric 

mapping cameras are used for aerial photography for which the IO parameters are known. UAV 

imagery is typically collected with consumer grade cameras for which IO parameters are neither 

known nor stable. Measured values for EO parameters, typically captured at relatively low accuracy in 

the case of UAV photography, can be included in the BBA, and provide approximate measurements 

for the bundle adjustment [18]. 

Increasingly, in the case of traditional aerial photogrammetry, the position and orientation of the 

camera can be derived from GPS and IMU data with sufficient accuracy to allow direct georeferencing 

without the need for Ground Control Points (GCPs). Often if ground control is available it is primarily 

used to ensure a reliable transformation from the GPS based coordinate system into the required map 

coordinate system. This is not the case for UAV photography because of the lower accuracy of the 

GPS/IMU data and because of the very large scale of the imagery and map products. 

Tie/pass points are required to complete a BBA and are typically automatically generated in the 

case of traditional aerial photography by an interest point extractor algorithm. For UAV imagery, a 

SIFT algorithm can be used and has the potential to generate a large number of features that can be 

used as tie/pass points, supplying more redundant observations for a BBA and thus improving the 

accuracy of the results [11]. 

Table 1 clearly demonstrates that with UAV imagery, the IO and EO parameters are often not  

well known, making the use of a traditional BBA problematic or, at least, more similar to terrestrial or 

close-range photogrammetry. Attempts have been made to overcome these limitations by developing 

techniques to specifically work with UAV imagery. Berni et al. [4] used onboard IMU and GPS data  
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to estimate the camera’s approximate EO parameters which were then imported into traditional 

photogrammetric software along with calibrated images to create a mosaic. The images collected had a 

high level of overlap, allowing only the central part of the images to be used to avoid the extremities 

where view angle caused perspective distortions [4]. A minimum number of GCPs were then manually 

measured and an aerotriangulation performed. Berni et al. [4] were then able to use an existing Digital 

Terrain Model (DTM) to generate an orthomosaic, however, no overall spatial accuracy for this 

method was reported. 

Table 1. Comparison of Bundle Block Adjustment variables. 

Variables Traditional Aerial Photography UAV Imagery 

IO parameters—Camera calibration 

e.g., focal length, principle point, 

lens distortion parameters 

Often known as metric, calibrated, 

cameras are used 

Not usually known and often 

unstable because consumer grade 

cameras are used 

EO parameters—Camera position 

and orientation 

Often measured by high accuracy 

onboard GPS/IMU 

Either unknown or inaccurate due to 

limited accuracy of navigation grade 

GPS and miniature MEMs IMU 

GCPs—3D ground control Manual identification of natural or 

artificial targets in the imagery and 

surveyed in situ for accurate 3D 

coordinates 

Manual identification of natural or 

artificial targets identified in the 

imagery and surveyed in situ for 

accurate 3D coordinates 

Tie/Pass points—2D image points Manually identified or automatically 

generated by interest point extractor 

algorithm 

Manually identified or automatically 

generated by region detector such as 

SIFT 

Object points—3D points The coordinates of tie and pass points 

are computed as part of the BBA. 

The coordinates of terrain points are 

computed using image matching 

techniques (usually a hybrid of area 

and feature based) to identify 

conjugate points in two or more 

images, and then by intersection based 

on co-linearity condition equations. 

The coordinates of all SIFT features 

are computed as part of the BBA 

(bundler software). A denser point 

cloud of terrain points is calculated 

using patch-based multi-view stereo 

(PMVS) techniques from three or 

more images. 

Laliberte et al. [19] developed a method that relied on an existing underlying orthorectified photo 

and DTM. They initially estimated camera EO parameters from onboard sensors and then iteratively 

matched each individual image with the existing orthophoto to improve the accuracy of the EO 

parameters and provide GCPs based on matched features between images. After many iterations of this 

process, photogrammetric software used the EO parameters and GCPs to orthorectify the images and 

generate a seamless mosaic. Laliberte et al. [19] identified that their methodology has a number of 

limitations: it requires pre-existing orthophotos that can quickly become out of date, the 10 m DEMs 

used for orthorectification were not detailed enough compared to the resolution of the UAV imagery, it 

suffered from problems finding accurate EO parameters, and achieved variable accuracy of the 

automatically generated tie points. The overall accuracy of the method was reported to have an RMS 

error of 0.48 m, (corresponding to ~10 pixels), however, it was acknowledged that the method had 
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only been tested over relatively flat terrain and algorithm performance in areas with higher vertical 

variability had not been confirmed [19]. 

Bryson el al. [31] presented a georectification and mosaicking technique that used onboard 

IMU/GPS data to initially estimate camera pose and then image features were matched across the 

image dataset. A bundle adjustment then used the initial camera pose estimates and the matched 

features to refine the camera poses; subsequently the images are then rectified and mosaicked using 

these poses. The method described by Bryson et al. [31] is similar to the method that we propose  

in that it uses similar processes (e.g., bundle adjustment, feature matching). However, there are 

significant differences in the platform used (rotary wing versus fixed wing) and the resolution of the 

imagery collected. Also, in this study we do not use onboard IMU data; we can automatically identify 

GCPs, and we integrate the use of multiview stereopsis algorithms into the solution. 

These techniques performed well but many are based on traditional photogrammetric software 

designed to process imagery collected from conventional platforms. Some of these techniques have 

some key disadvantages: they use existing underlying DTMs and base orthophotos, they rely on 

complex workflows to estimate camera EO parameters, and, in some cases, require human intervention 

to identify GCPs.  

In this study, we describe a methodology for geometric image correction that uses new CV and SfM 

algorithms that are more applicable to UAV photography. The technique is fully automated and can 

directly georeference and rectify the imagery with only low accuracy camera positions, resulting  

in UAV image mosaics in real-world coordinates. Alternatively, GCPs can be automatically identified 

to improve the spatial accuracy of the final product. The automation and simplicity of our technique  

is ideally suited to UAV operations that generate large image data sets that require rectification and 

mosaicking prior to subsequent analysis. 

2. Methodology 

2.1. UAV Platform and Photo Acquisition 

The UAV platform used in this study is a multi-rotor OktoKopter (Figure 1). This platform is 

purpose designed for aerial photography [20] and has a stabilised camera mount, to which we have 

fitted a small format digital camera (Canon 550D 15 Megapixel, 5,184 × 3,456 pixels, DSLR, with 

Canon EF-S 18–55 mm F/3.5–5.6 IS lens). Image resolution (ground pixel size) at a typical flying 

height above terrain of 50 m is approximately 1 cm/pixel. The OktoKopter has a payload limit of 

approximately one kilogram and with a full payload has a flight duration of around 5–6 min. A single 

flight conducted at 50 m above ground level (AGL) can cover an area of around 4–5 ha, producing 

approximately 200–300 images under a standard operating configuration. Larger areas are covered with 

multiple flights, or by increasing the flying height and lowering the spatial resolution. 

The Oktokopter has an onboard navigation system based on a navigation grade GPS receiver  

(U-blox LEA6S) and a small Microelectromechanical System (MEMS)-based IMU (Mikrokopter 

Flight Controller ME V2.0) enabling it to fly autonomously through a pre-defined set of waypoints. As 

part of this study, we developed flight planning software that calculates the spacing and layout  

of waypoints to optimise the image acquisition over a region of interest at a nominated image scale 
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(Figure 2). Imagery is acquired at the maximum rate allowed by the camera (approximately 1 Hz), 

providing ample image overlap in addition to redundancy to account for occasional outlier acquisitions 

(excessive tilt or poor exposure). 

Figure 1. Oktokopter fitted with Canon 550D. 

 

Figure 2. Software to plan flight over Antarctic moss bed. 
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2.2. Block adjustment and Point Cloud Generation 

The automated mosaicking technique encompasses a number of stages. The first step requires  

the manual elimination of any images outside the study region or of limited quality. This qualitative 

process is the only manual intervention required in the processing chain.  

The ideal processing strategy for the imagery would be traditional photogrammetric software that 

uses GPS/IMU data for bundle adjustment and thus provide significant redundancy in block and photo 

invariant parameters. Our micro-UAV platform used for this study, however, does not carry a GPS 

receiver and IMU sensor that can collect data with sufficient accuracy for these techniques to work.  

In addition, a consumer grade digital camera is used, which means that IO calibration parameters are 

neither known nor stable. To overcome these problems we have applied bundle adjustment software 

(Bundler, [15]) specifically designed to enable automated 3D reconstruction of a scene captured by 

cameras with unknown internal parameters [21]. Dandois and Ellis [22] demonstrated that it has 

become relatively straightforward to use newly developed CV and SfM algorithms to generate 3D 

geometry from sets of overlapping digital photographs collected from UAV platforms. 

The Bundler software [15] uses SfM algorithms to compute the camera geometry and to generate a 

sparse 3D point cloud for the area of interest. The SfM framework initially uses the SIFT algorithm [14] 

to detect and describe local features within each image. SIFT feature descriptors are invariant to scale, 

orientation, affine distortion and partial illumination changes [23] and can be matched across multiple 

images. Using the conjugate (matched) image points as input, a bundle block adjustment is applied to 

compute the exterior orientation (position and orientation) of each camera exposure station. In addition, 

the bundle adjustment computes the interior orientation parameters (focal length and two radial distortion 

parameters) of each image, although if required these parameters can be implicitly defined and fixed  

for all images. The bundle adjustment output includes 3D coordinates for a sparse point cloud of SIFT 

features in an arbitrary coordinate system which we denote (px, py, pz). The Bundler software package is 

fully automated, requiring only images and a few optional user definable parameters as input. 

2.3. 3D Point Cloud Transformation Using Direct Technique 

A seven parameter Helmert transformation (three translations, three rotations and one scale parameter) 

can be used to describe the relationship between the point cloud coordinate system (model space) and  

a real-world (object space) coordinate system (e.g., a projected Universal Transverse Mercator (UTM) 

easting and northing, and height). We initially use the computed (bundle adjustment) and measured (GPS) 

values of the exposure station coordinates to solve for the Helmert transformation parameters. This 

approach, which does not rely on GCPs in the imagery, is often referred to as direct georeferencing [24], 

and is useful when working in unsafe or inaccessible areas where GCPs cannot be physically measured 

on the ground. 

The GPS coordinates of the exposure station are determined using the OktoKopter’s on-board GPS 

receiver, with pre-flight synchronisation of the camera’s internal clock with GPS time so that during 

post-flight data analysis the GPS position at the moment of exposure can be written to the EXIF header 

information for each image. The height measurements from navigation-grade GPS receivers are 
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relatively poor, hence we use height measurements provided by the OktoKopter’s barometric altimeter, 

which is estimated to be accurate to 1 m when used over short time scales as per a typical UAV flight. 

The 3D coordinates of the exposure stations are extracted from the Bundler output and denoted px, 

py, pz. Image EXIF header information is read to extract the matching GPS location. The GPS latitude, 

longitude and altitude (relative to the WGS84 datum) are subsequently converted into the UTM projected 

coordinate system, resulting in easting, northing, and ellipsoidal height coordinates. Transformation to  

an orthometric height system is also possible through the use of a local geoid model if required. 

Corresponding exposure station coordinates from the bundle adjustment and the GPS are then matched 

(see Table 2 for an example) to provide a list of point pairs used to compute the parameters of a 

Helmert transformation. The number of point pairs available is equal to the number of images used by 

Bundler to generate the point cloud, this number will depend on how large an area is being mapped, 

but for a single flight there can be as many as 200 point pairs. 

Table 2. Sample point pairs list. 

Real World Coordinate System Bundler Coordinate System 

Easting Northing Height px py pz 

481,495.15 2,638,913.85 39.81 5.2142 −14.3954 −0.7744 

481,494.54 2,638,915.10 40.03 5.1918 −14.0937 −0.9143 

481,494.53 2,638,918.55 40.90 5.0252 −13.6941 −0.8905 

481,494.10 2,638,919.18 40.80 5.2283 −13.3615 −0.9766 

481,495.25 2,638,920.18 40.41 5.2167 −13.1875 −0.8768 ... 

... 

... 

... 

... 

... 

Errors in the measured GPS coordinates, the Bundler derived exposure station coordinates, and the 

lever arm between the camera and the GPS antenna contribute to uncertainty in the derived 

transformation parameters. The camera and GPS antenna share a common vertical axis to within a few 

centimetres and a vertical offset of approximately 25 cm. The solution for our system, however, is 

dominated by GPS errors that limit the absolute accuracy to 5–15 m when using a pseudorange only 

navigation-grade GPS receiver [25] The absolute accuracy of our derived point cloud is limited 

primarily by the navigation grade GPS, but we find that the translation parameters typically have low 

formal errors (often <±40 cm) indicating that the relative position of the GPS points, and thus the 

transformation model, has comparatively high precision. 

2.4. 3D Point Cloud Transformation Using GCP Technique 

If GCPs are established prior to photography, then the real-world coordinates of these GCPs can  

be used to derive the parameters of the Helmert transformation, rather than rely on GPS data from the 

UAV. Accurate GCP coordinates can potentially improve the solution of the Helmert transformation 

and therefore result in a higher accuracy of the final point cloud and image features. For this purpose, 

we use circular metal targets (12 cm diameter) painted with fluorescent orange paint distributed across 

the region to be mapped. The coordinates of these GCPs are measured using a survey grade dual 

frequency differential GPS, with a typical accuracy of 2 cm in the horizontal and 4 cm in the vertical 

(relative to a local coordinated benchmark). 
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The point cloud generated by the Bundler software is relatively sparse and insufficient to reliably 

identify the GCPs. A novel multi-view stereopsis algorithm [26] can be applied to the output from the 

Bundler software to densify the sparse point cloud. This algorithm is implemented in the Patch-based 

Multiview Stereo (PMVS2) software. A detailed description of the algorithm can be found in Furukawa 

and Ponce [26] and Lucieer et al. [27]. The resulting PMVS2 point cloud has extremely dense point 

spacing, typically around 1–2 cm, with each of the orange GCP targets generating multiple 3D points [27]. 

The coordinates of the points in the PMVS2 point cloud are still in the bundler coordinate system 

(px, py, pz) but can be transformed into real-world coordinates with the Helmert transformation 

parameters determined from the direct georeferencing approach (Section 2.3). Transforming the point 

cloud into the same coordinate system as the GCPs enables automatic matching of the orange discs  

in the point cloud with their corresponding real-world GPS coordinates. A simple RGB threshold is 

applied as the point cloud is transformed to filter out the orange pixels. The locations of the orange 

points are recorded both in the original coordinate system (px, py, pz) and the transformed real-world 

coordinate system: easting, northing and height. 

In most cases, multiple orange points are returned for each target, using a search radius of 60 cm we 

group these points based on their spatial distribution. The centroid of each group of points is determined 

and used as the penultimate bundler based coordinate of the GCP. These centroid coordinates are then 

matched against the in situ field survey coordinates via a simple separation criterion, i.e., identifying 

point pairs that are no more than 2 m apart thereby eliminating misidentified orange points as their 

location will typically not be close to a GPS coordinate. 

As the original Bundler coordinates (px, py, pz) were also recorded for the orange disc points we can 

now replace the calculated centroids with (px, py, pz) and derive a new list of point pairs (similar to 

Table 2). If all GCPs were successfully identified and matched to their corresponding GPS coordinate 

we will typically have up to 60 point pairs from which to calculate a new set of Helmert transformation 

parameters that have an improved accuracy and precision compared to the direct georeferencing 

technique. This improvement is due to the fact that the Helmert transformation parameters are now 

based on higher accuracy GCPs based on survey-grade GPS measurements rather than the on-board 

navigation-grade GPS coordinates. The new solution also has an improved precision which can be seen 

in the reduced formal errors of transformation parameters (e.g., errors reduced from ~40 cm to ~5 cm 

in translation parameters). 

2.5. Rectification of the Images 

The locations of the matched image features used to derive the point cloud are extracted directly 

from the bundle adjustment output. For every image we extract the image coordinates of each of these 

features (Imagex, Imagey) and their corresponding 3D bundler coordinates (px, py, pz). The previously 

derived Helmert transformation parameters are then applied to the (px, py, pz) coordinates to transform 

them into the real world coordinate system (easting, northing, height). We generate a table of 

corresponding image coordinates (2D) and real-world coordinates (planimetric only) for every feature 

in the dataset (Table 3).  
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Table 3. Example list of GCPs for an image. 

Easting Northing Imagex Imagey 

481,497.41 2,638,927.16 4,412.62 149.99 

481,497.74 2,638,926.96 4,446.58 207.21 

481,497.59 2,638,927.83 4,502.50 70.89 

481,497.68 2,638,926.44 4,391.27 273.48 

... 

... 

... 

... 

The large amount of image overlap in our datasets allows us to only transform the central part of the 

images to avoid distortions at the extremities, in a similar manner to Berni et al. [4]. The number of 

matched features and thus GCPs for each image is typically quite large (2,000–10,000) and a Delaunay 

triangulation uses these GCPs to rectify each individual image. The density of the GCPs gives us the 

equivalent of a high resolution Digital Terrain Model (DTM) of the area of the image allowing the 

triangulation to produce accurate results. 

2.6. Mosaicking 

The final stage of the process is to join the images into a single mosaic that covers the study area. 

Colour balancing can initially be used to remove differences in exposure and lighting conditions between 

the images resulting in an improvement of the visual integrity of the final mosaic. Colour balancing can 

be performed with standard image/photo processing packages, or within mosaicking software. However, 

to maintain visual integrity of the imagery, we chose not to use any colour balancing or seam blending, 

allowing the final product to be quantitatively assessed without bias.  

As all images are now rectified and georeferenced, it is a straightforward process to mosaic them 

with a georeferenced mosaicking algorithm, which is for example available in ENVI [28]. As there is a 

large amount of overlap between the images in the dataset, only about one third of the images are required 

to create a mosaic of the study area. Selection of the images at this time is a simple manual process that 

involves adding images to the mosaic until sufficient coverage is achieved. This is a processing step that 

could be easily automated and this will be the subject of further research. 

3. Results and Discussion 

3.1. Study Area and Dataset 

To illustrate the effectiveness of our georeferencing and mosaicking technique we present a case 

study of UAV remote sensing in Antarctica. The Windmill Islands region near Casey (Australia’s largest 

station) has the most extensive and well-developed vegetation in Eastern Antarctica (Figure 3 site map). 

Mosses are the most dominant plants in Antarctica. These mosses preserve a record of past climate 

along their shoots, which make them a valuable proxy for climate change at remote sites. Climate change 

is now recognised as occurring in the high latitudes rendering Antarctica one of the most significant 

baseline environments for the study of global climate change. Temperature, UV-B, and changes in water 

availability have been identified as the three key factors that will change in the Antarctic regions with 
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climate change. Despite this, there have been few long-term studies of the response of Antarctic vegetation 

to climate [29,30].  

Figure 3. (a) The continent of Antarctica with an arrow in Eastern Antarctica indicating the 

location of the Windmill Islands (b) The locations of the Robinson Ridge and Red Shed 

study sites in the Windmill Islands 

 

The spatial scale of the moss beds (tens of m
2
) makes satellite imagery (even recent very high 

resolution imagery of 0.5 m resolution) unsuitable for mapping their extent in sufficient detail. Due to 

logistical constraints aerial photography is impractical and also does not provide the required spatial 

resolution. Recent developments in the use of UAVs provide exciting new opportunities for ultra-high 

(b) (a) 
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resolution mapping and monitoring of this unique Antarctic environment. The aim of this case study is 

to create ultra-high resolution and geometrically accurate image mosaics of two field sites near Casey: 

Robinson Ridge and Red Shed. Robinson Ridge is approximately 10 km south of Casey. These mosses 

grow near small melt streams on a ~100 m high ridge on the coastline (Figure 4 photograph). Two 

hundred photographs were selected from a UAV flight on 25 February 2011 flying at approximately  

50 m AGL. The Red Shed site is a small bowl-shaped catchment fed by a snow melt lake right behind 

the main accommodation building at Casey. The mosses are concentrated around few main drainage 

channels. Sixty nine photos were selected from a UAV flight on 20 February 2011 at 50 m AGL. 

Figure 4. Moss bed area at the Robinson Ridge site with a variety of healthy moss (green), 

stressed moss (red/brown), and dead moss (black). Small orange discs (~10 cm diameter) 

and trays (~30 cm diameter) used as GCPs for geometric correction and validation are 

visible in the photograph. 

 

3.2. Helmert Transformation Parameters 

For both datasets, Helmert transformation parameters were calculated initially via the direct technique 

(see Section 2.3) and then with the use of the GCP-based technique (see Section 2.4). A summary of the 

Helmert parameters obtained can be found in Table 4, in which the formal errors of each parameter are 

listed. These errors, which are the mean residual error from the least squares solution, represent the 

precision of the Helmert transform. It can be seen that the precision of the GCP technique for both 

datasets is better than the direct technique due to the error in the onboard GPS position. The precision 

of the direct technique for the Robinson’s Ridge Helmert parameters (around 16–17 cm for the 

translations) is better than for the Red Shed site (around 36–45 cm for the translations). This difference 

in precision is most likely explained by a number of factors such as differences in flying height and the 

presence of outliers in the dataset used to calculate the Helmert transform. Another contributing factor 

is that there is more variation in the flying height for the Robinson Ridge dataset, improving the 

geometry of the solution and thus the precision of the transformation parameters. However, it is 
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important to note that the precision of the Helmert transform is not a good indication of the geometric 

accuracy of the resulting point clouds and image mosaics. It is thus necessary to measure the absolute 

spatial accuracy of the final mosaic using GCPs (see Section 3.4). 

For each dataset the images were rectified (see Section 2.5) using both the direct and the GCP 

techniques. The number and density of the points used for the triangulation for individual images is 

very high (Figure 5). The homogenous areas such as the snow have poor point coverage, this is due to 

the poor performance of the SIFT algorithm over smooth surfaces. This study was not concerned with 

the snow areas so this limitation does not affect the results. 

Figure 5. Example of 2888 of control points (shown in red—extracted from the process 

described in Section 2.5) on a single photograph. 

 

Table 4. Helmert transformation parameters with formal errors (1 sigma) from least squares solution. 

Dataset Method 

Calculated Helmert Transform Parameters 

Translation X  

(m) 

Translation Y 

(m) 

Translation Z 

(m) 

Scale 

Factor 

Rotation X  

(º) 

Rotation Y  

(º) 

Rotation Z 

(º) 

Robinson’s 

ridge 

200 camera 

locations (Direct) 

4,814,747.58  

± 0.160 

2,638,997.85 

± 0.160 
39.06 ± 0.167 

12.658 

± 0.046 

0.615  

± 0.286 

1.204 

± 0.702 

9.977 

± 0.207 

Robinson’s 

ridge 
25 GCPs 

481,472.54  

± 0.066 

2,638,997.77 

± 0.039 
40.30 ± 0.038 

12.774 

± 0.009 

0.994  

± 0.05 

3.158 

 ± 0.113 

9.810 

± 0.043 

Red shed 
69 camera  

locations (Direct) 

478,776.001  

± 0.371 

2,648,411.55 

± 0.368 
63.31 ± 0.457 

13.840 

± 0.068 

2.945  

± 0.04 

−10.277 

± 0.407 

249.122 

± 0.286 

Red shed 19 GCPs 
478,777.397  

± 0.042 

2,648,409.88 

± 0.059 
54.23 ± 0.074 

13.736 

± 0.008 

−186.2325  

± 0.04 

187.737 

± 0.057 

−290.3135 

± 0.034 
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3.3. Mosaics 

To show how well our technique works, we do not apply any colour balancing or blend the seam 

lines in the production of our mosaics. A detailed section of a typical seam within the mosaic for the 

Robinson’s Ridge site can be seen in Figure 6. Here the seam line running across the middle of the image 

is barely visible indicating a high level of accuracy in the image alignment. A qualitative analysis of the 

visual integrity of the mosaic reveals that there are no obvious distortions around the seam lines and the 

colour balancing between the neighbouring images is even, despite only relying on automated colour 

balancing on the camera at the time of exposure. 

Figure 6. Detailed section of a typical region within the image mosaic of Robinson’s Ridge 

highlighting accuracy of seam lines (yellow box highlights seam line). 

 

3.4. Spatial Accuracy 

To quantify the absolute spatial accuracy for each image mosaic we measured the distance between 

the orange GCP markers in the image and their corresponding GPS coordinates. A summary of the 

absolute accuracy of each mosaic is presented in Table 5. These accuracy values highlight that the 

GCP technique has a superior spatial accuracy to the direct georeferencing technique, which is also 

visualised in Figure 7. The systematic nature of the errors from the direct georeferencing technique are 

also shown in Figure 7, this is typical of navigation grade GPS data collected over short time periods, 

where errors based on atmospheric and orbits effects are typically highly temporally correlated. The 

absolute spatial accuracy achieved with the GCP technique of around 10–15 cm is considered to be 

very good, especially when you bear in mind it is being compared to differential GPS measurements 
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that have an error of ±2–4 cm themselves. The absolute accuracy of the direct georeferencing 

technique is similar for both field sites. 

Table 5. Summary of mosaics and their spatial accuracy. 

Dataset Method 
Area 

(ha) 

Number of 

Check 

Points 

Topographic 

Variation (m) 

Mean Absolute 

Easting Error 

(m) 

Mean Absolute 

Northing Error 

(m) 

Mean Absolute 

Total Error 

(m) 

Standard 

Deviation of 

Mean Error (m) 

Robinson’s 

Ridge 

200 camera 

locations 
0.5 43 4–24 1.076 0.571 1.247 0.184 

Robinson’s 

Ridge 
25 GCPs 0.5 44 4–24 0.087 0.103 0.129 0.061 

Red Shed 
69 camera 

locations 
1.1 61 13–19 0.449 0.447 0.665 0.459 

Red Shed 20 GCPs 1.1 63 13–19 0.086 0.042 0.103 0.064 

Figure 7. Detailed section of an image mosaic of Robinson’s Ridge showing typical spatial 

errors of direct and GCP techniques in relation to the actual GCPs (the small orange discs). 

 

When we compare the absolute accuracy of the GCP technique between the two study sites, we see 

an insignificant difference between the two (0.10 ± 0.06 m versus 0.13 ± 0.06 m). Topographic 

influences (there is a much larger variation in height in the Robinson’s Ridge dataset compared to the 

Red Shed dataset—Table 5) will drive some of the differences observed in accuracy between the datasets. 

Orange disk 

Ground Control 
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Further investigation of the absolute spatial error in the Robinson’s ridge dataset, the largest errors are at 

the GCPs at the extremities of the mosaic, e.g., in the south at the top of the hill and in the north at the 

bottom of the hill. If we do not incorporate these points in the accuracy assessment the mean total error 

is reduced to 0.112 m (with a standard deviation of ±0.042) which is comparable to the Red Shed 

dataset. Another source of error in the mosaics may be the fact that for the sake of efficiency and 

automation, we used a dense triangulation to rectify the images rather than a rigorous orthorectification 

that would typically be undertaken in a traditional aerial photogrammetric treatment of such imagery. 

An experiment was undertaken to test the robustness of the GCP technique against a reduction in 

the number of GCPs available. From the 20 GCPs that were automatically detected in the Red Shed 

dataset, 10 were randomly selected such that they were evenly distributed throughout the study area. 

New Helmert transform parameters were then calculated based on only these 10 GCPs followed by 

image rectification and mosaicking. An accuracy assessment based on 63 GCPs gave a mean spatial 

error of 0.108 m (with a standard deviation of ± 0.063) which is similar to the error when using all  

20 GCPs for the Helmert transformation. 

With the direct technique, a significant portion of this error is explained by the lack of precision in 

the measurements that it uses to generate the Helmert transform parameters. These camera location 

measurements were collected by a navigation-grade (single frequency) on-board GPS unit with no 

differential corrections and inaccurate time synchronisation between GPS and camera. The Robinson’s 

Ridge dataset Helmert transform parameters had a higher precision than the Red Shed parameters but 

this was not reflected in the absolute spatial accuracy that was achieved for the two areas. 

The absolute spatial accuracy of mosaics produced by our system is comparable to or exceeds the 

results achieved by others such as Laliberte et al. [19] and Berni et al. [4]. However, our technique is 

fully automated, requiring no user intervention and is thus very time-efficient. 

4. Conclusions  

Unmanned Aerial Vehicles (UAVs) are increasingly used for environmental remote sensing 

applications. A large number of UAV aerial photographs are required to cover even relatively small 

study areas. The characteristics of UAV-based aerial photography has necessitated the development of 

new geometric image correction and mosaicking techniques. Our approach applies modern Computer 

Vision (CV) algorithms to ultra-high resolution UAV imagery so that 3D point clouds can be generated 

and subsequently used to georeference the imagery. The combination of a micro-UAV platform with  

our novel image processing techniques provides an inexpensive, automated, and accurate system for 

producing ultra-high resolution mosaics of a study area that by far exceeds the resolutions typically 

available from conventional platforms. 

Imagery of moss beds in Antarctica was used to validate the spatial accuracy of our technique 

which can directly georeference the imagery or use Ground Control Points (GCPs) if they are 

available. Two datasets (one containing 200 images, the other 69 images) were processed with both 

techniques producing four mosaics. The directly georeferenced mosaics had a spatial accuracy of  

65–120 cm with whilst the GCP technique achieved a spatial accuracy of 10–15 cm. 

The primary source of error for the direct georeferencing technique is the fact that it relies on an 

inaccurate navigation grade GPS to record the camera position. A significant portion of this error could 
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be removed with the addition of an on-board single/dual frequency carrier phase differential GPS. This 

could potentially eliminate the need for GCPs and greatly improve the efficiency of field surveys. A 

further improvement to the spatial accuracy of the mosaics could be achieved by applying a rigorous 

orthorectification rather than a Delaunay triangulation which is currently used. Investigation into the 

potential of these two improvements will be the subject of further research. 

The technique presented in this study is applicable to other UAV surveys conducted over alternate 

surface types and terrains. The automated nature of our technique allows a large collection of ultra-high 

resolution UAV images to be quickly and efficiently transformed into a usable product for a range of 

subsequent analyses. 
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