
An automated testbed for profiling the packet send-time
accuracy of embedded devices

Ricky K. P. Mok, Weichao Li, Rocky K. C. Chang,
Kwok-Wun Yung, Ching-Ho Chan, and Yat-Sing Poon

Email: {cskpmok|csweicli|csrchang}@comp.polyu.edu.hk,
{cskwyung|cschchan}@comp.polyu.edu.hk,13040015d@connect.polyu.hk

ABSTRACT

Embedded devices, such as home routers and single-board
computers, are becoming more powerful and affordable. Many
of the existing Linux-based network measurement tools can
also be run on these devices through cross-compilation. These
features provide more incentive for network administrators
and researchers to employ them as network measurement
probes. Large-scale measurement projects, such as BISMark
and RIPE, have already deployed more than hundreds of
these devices to measure the Internet from the edge.

Our previous work shows that these embedded devices
have much lower packet send-time accuracy compared to
commodity PC. The lower accuracy limits their ability to
acquire sound measurement results in high-speed networks.
In this poster, we present an automated testbed to system-
atically benchmark the performance of four popular embed-
ded devices (Raspberry Pi I & II, ECS LIVA, and TP-LINK
Travel Router) and determine the network types that they
can accurately measure. We employ OMware, a kernel-space
module, to measure their performance in the testbed. The
results can be visualized through a web interface, thus en-
abling users to compare various devices easily.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems—Measurement techniques

Keywords

Embedded devices, network measurement, packet send-time
accuracy

1. INTRODUCTION
Embedded devices are ubiquitous nowadays, as they are

affordable, low-energy consumption, and reasonably power-
ful. A well-known example, Raspberry Pi, only costs about
$30 US. These devices are usually Linux-based and are able
to provide many kinds of network services. Through cross-
compilation, many of the existing Linux-based network mea-
surement tools can also run on these devices.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

TRIDENTCOM’15, June 24–25, 2015, Vancouver, Canada.

ACM .

Large-scale measurement platforms (e.g., [11, 10]) often
require multiple probing machines to measure and monitor a
network’s performance from different vantage points in order
to diagnose network faults [7]. However, the scalability of
these platforms is often limited by the cost of the machines.
The low-cost embedded devices, therefore, provide an inex-
pensive option for network administrators and researchers
to employ them as lightweight measurement probes. For
example, Project BISMark [14], RIPE [1], and CAIDA’s
Archipelago (Ark) [2], have already deployed more than hun-
dreds of them as vantage points to measure the Internet from
the edge.

However, these embedded devices have limited resources.
We find that they have much lower packet send-time accu-
racy compared to commodity PC [12]. The lower accuracy
limits their ability to acquire sound measurement results. In
particular, some network metrics, such as capacity and avail-
able bandwidth, are very sensitive to timing accuracy, as
they rely on accurate packet sending pattern. For example,
the minimum packet-pair dispersion can limit the maximum
measurable capacity. However, it is not straightforward to
effectively compare the accuracy of different devices.

In this poster, we present an automated testbed to sys-
tematically benchmark the performance of four popular em-
bedded devices, including ECS LIVA, Raspberry Pi I & II,
and TP-LINK Travel Router. We implement a testing tool
using OMware [12], which is a Linux loadable kernel module
for improving packet send-time accuracy. The tool can send
prescribed packet patterns used by network measurement
tools and record the packets’ sending times. Based on the
results which can be visualized through a web interface, the
testbed can report the network types that each device can
accurately measure.

2. THE TESTBED
Figure 1 shows the setup and test flow of the testbed.

The devices under test and the controller PC are connected
through a Gigabit switch. The controller provides a web in-
terface, which displays the available devices and allows users
to choose one of them for evaluation in a browser. When the
experiment starts, the controller remotely executes the tests
on the device. The results are collected and visualized by
the controller. The testbed will also summarize the results
to help users understand the accuracy of the device.

The functional blocks of the testbed are depicted in Figure
2. We have implemented a web interface based on Apache
and PHP to handle the interaction between users and the
testbed. The controller consists of three major components:

TRIDENTCOM 2015, June 24-25, Vancouver, Canada
Copyright © 2015 ICST
DOI 10.4108/icst.tridentcom.2015.259826

Figure 1: The testbed setup and test flow.

device manager, experiment manager, and data manager.
These components are implemented with Perl. The device
manager maintains the information of each connected de-
vice (e.g., the model, IP address, and authentication infor-
mation), while the experiment manager accepts a user’s in-
structions and deploys evaluation tasks to the corresponding
device through SSH. When receiving the request from the
controller, the device under test then launches the executer
and performs a set of tests (as described in §3). The exper-
iment results are collected by a data collector and sent back
to the controller. After being processed by the data man-
ager, the data are visualized in terms of a set of metrics.
At the same time, the best network types that the device
can accurately measure can also be determined based on the
metrics. For the purpose of further analysis, both the raw
data and the metrics are stored in a database.

Figure 2: The implementation details of the testbed.

3. EVALUATING THE DEVICES
We evaluate the devices by sending two packet patterns—

packet pair and packet train. These two patterns are often
used in measuring network capacity [6, 8, 4, 3] and available
bandwidth [13, 9]. In our evaluation, we emulate these tools
by programming the devices to send these packet patterns.
At the same time, the packets are captured and timestamped

by the devices. We then compute the following three metrics
to benchmark the performance of each device.

1) Minimum inter-packet gap, denoted by g, is obtained
by using packet-pair test. We subtract the timestamp of the
first packet from that of the second in each packet pair. This
metric can be used to infer the maximum network capacity
the device can measure. A smaller value implies a higher
measurable capacity.

2) Average packet sending rate, denoted by r, is obtained
by sending packet trains with pre-defined sending rates. This
metrics is to evaluate how close the actual sending rate to
the expected. We can compute the actual average packet
sending rate by Eqn. (1).

r =
s× 8

1

n−1

∑
n−1

i=1
ti − ti−1

, (1)

where s is the packet size, n is the total number of packets
in the packet train, and ti refers to the timestamp of ith

packet in the packet train.
3) Average inter-departure time variability, denoted by j,

is computed by difference in the timestamps of packets in
a packet train as shown in Eqn. (2). This metrics is par-
ticularly useful in estimating the stability of inter-departure
time in a packet train when the device is under loading.

j =

∑
n−1

i=1
|ti − ti−1|

n− 1
. (2)

We have implemented a testing tool to conduct two tests
named packet-pair and packet-train tests. Our tool is built
based on OMware [12] to measure the best possible perfor-
mance of the devices. As a packet timestamping device, such
as endace DAG, may not be readily available in a measure-
ment tool, we use the packet sending timestamps reported
by OMware. Our previous results [12] show that these times-
tamps are the same as using tcpdump.

Packet-pair test: This tool sends 25 pairs of back-to-back
packet pairs with a specified packet size using the packet-pair
sending function in OMware to achieve a smallest inter-packet
gap. We insert a 1-ms delay between two adjacent pairs to
avoid interference from the previous pair.

Packet-train test: This tool sends a packet train consist-
ing of 50 packets with different packet sending rates. We ad-
just both the packet inter-departure time and packet sizes
to achieve different sending rates. In order to obtain the
best performance of the device, all the packets are first pre-
dispatched into OMware to mitigate the overhead from the
user space. Table 1 lists the parameters used in our tests.
Besides, to induce loading to the device, the device is set
up to also generate different numbers of cross-traffic flows
using D-ITG [5]. The cross-traffic flows are UDP flows with
the packet inter-departure time following the Pareto distri-
bution.

Table 1: Parameters tested in the packet-train test.

Parameters Values

IP Packet size (Bytes) 200, 576, 1514
Packet sending rate (Mbps) 1, 5, 10, 50, 100, 1000
No. of cross-traffic flows 0, 5, 15, 25

4. EXPERIMENT RESULTS

100 101 102

r/
M

b
p
s 102

200 Bytes
576 Bytes
1514 Bytes

(a) TP-LINK.

100 101 102

r/
M

b
p
s

100

200 Bytes
576 Bytes
1514 Bytes

(b) Raspberry Pi I.

100 101 102

r/
M

b
p
s 102

200 Bytes
576 Bytes
1514 Bytes

(c) Raspberry Pi II.

100 101 102 103

r/
M

b
p
s

100

102

200 Bytes
576 Bytes
1514 Bytes

(d) ECS LIVA.

Figure 3: The log-log plot of measured packet sending rate r against the expected without cross-traffic.

100 101 102

r/
M

b
p
s 102

200 Bytes
576 Bytes
1514 Bytes

(a) TP-LINK.

100 101 102

r/
M

b
p
s

100

200 Bytes
576 Bytes
1514 Bytes

(b) Raspberry Pi I.

100 101 102

r/
M

b
p
s 102

200 Bytes
576 Bytes
1514 Bytes

(c) Raspberry Pi II.

100 101 102 103

r/
M

b
p
s 102

200 Bytes
576 Bytes
1514 Bytes

(d) ECS LIVA.

Figure 4: The log-log plot of measured packet sending rate r against the expected with cross-traffic (25 flows).

To show the performance difference among devices, we
evaluate four devices with the price ranged from $20 to $130
US. All of them are very compact in size. ECS LIVA is a
x86-based mini-PC, while the other three use ARM-based
CPU. The TP-LINK travel router and Raspberry Pi II are
employed by RIPE and Ark, respectively, as measurement
probes. Their detail configurations are listed in Table 2.
Due to the page limit, we can only show part of the results
in this poster. Figure 3 plots the average packet sending
rate of the four devices without cross traffic. The x-axis
is the expected packet sending rate, while the y-axis is the
measured one. We do not test 1 Gbps in the TP-LINK
router and Raspberry Pi I & II, because only ECS LIVA
supports 1-Gbps Ethernet.

Table 2: The configurations of the four devices.

TP-LINK
ML-3020

Raspberry
Pi I (B)

Raspberry
Pi II (B)

ECS
LIVA

CPU
Freq.

400 MHz 700 MHz 900 MHz 2 GHz

RAM 32 MB 512 MB 1 GB 2 GB
LAN † FE FE FE GE
OS∗ W W W U
Price
(USD)

∼$20 ∼$35 ∼$35 ∼$130

Note: † FE: 10/100Mbps; GE: 1 Gbps
∗ W: OpenWrt 12.09; U: Ubuntu 14.04.

The P-LINK router and ECS LIVA are quite accurate in
all packet sending rates less than 100 Mbps when the packet
size is reasonably large (i.e., >=576 Bytes). However, when
the packet size is small (e.g., 200 Bytes), the actual send-
ing rate cannot reach the expected rate (i.e., 100 Mbps).
This suggests that the devices reach their performance bot-
tlenecks when processing a large number of packets. Sur-
prisingly, Raspberry Pi I performs poorly in all the tests. It
sends full-sized packets at around 17 Mbps for all sending
rates (see Figure 3(b)). Raspberry Pi II, the latest model
of this product, has a similar design (using USB to pro-
vide the Ethernet interface), but it can send packets with

accurate send time in most of the sending rates less than
50 Mbps. We believe that the poor time accuracy in Pi I
could be due to the Ethernet chip (Microchip LAN9512 in
Pi I vs. LAN9514 in Pi II). Therefore, we recommend that
Raspberry Pi I should not be used for network performance
measurement.

To analyze the impact of cross traffic, we plot the sending
rates with 25 additional UDP flows in Figure 4. The average
packet sending rate of LIVA is dropped from 760 Mbps to
430 Mbps when sending a 1-Gbps packet train with full-sized
packets. On the other hand, we cannot observe significant
performance degradation for both TP-LINK and Raspberry
Pi II. Based on our experiment results, the best network
speed that TP-LINK, Raspberry Pi II, and LIVA can mea-
sure are less than 50 Mbps, 10 Mbps, and 50 Mbps, respec-
tively, for all packet sizes. The measurable network speed
for Raspberry Pi II and LIVA can be increased to 50 Mbps
and 100 Mbps, respectively, when large packets are used.

5. CONCLUSIONS
In this poster, we introduced an automatic testbed to

evaluate the performance of embedded devices for network
performance measurement. With the testbed, we can eas-
ily identify that Raspberry Pi is not suitable for perform-
ing network performance measurement. More generally, the
testbed results can be used to determine which types of net-
works each device can measure accurately.

In the future work, we will compare the results with an
external packet capturing device (e.g., DAG card) to vali-
date the accuracy of the timestamps reported by tcpdump.
Besides, we will introduce more embedded devices and tests
to the testbed.

6. ACKNOWLEDGEMENTS
We thank three anonymous reviewers for their valuable

comments. This work is partially supported by an ITSP
Tier-2 project grant (ref. no. GHP/027/11) from the Inno-
vation Technology Fund in Hong Kong.

7. REFERENCES
[1] RIPE Atlas. https://atlas.ripe.net/.
[2] CAIDA. Archipelago (ark) measurement

infrastructure.
http://www.caida.org/projects/ark/.

[3] L.-J. Chen, T. Sun, B.-C. Wang, M. Sanadidi, and
M. Gerla. PBProbe: A capacity estimation tool for
high speed networks. Computer Communications,
31(17):3883–3893, 2008.

[4] D. Croce, T. En-Najjary, G. Urvoy-Keller, and
E. Biersack. Capacity estimation of ADSL links. In
Proc. ACM CoNEXT, 2008.

[5] A. Dainotti, A. Botta, and A. Pescapè. A tool for the
generation of realistic network workload for emerging
networking scenarios. Computer Networks,
56(15):3531–3547, 2012.

[6] C. Dovrolis, P. Ramanathan, and D. Moore.
Packet-dispersion techniques and a
capacity-estimation methodology. IEEE/ACM Trans.
Netw., 12(6):963–977, 2004.

[7] W. Fok, X. Luo, R. Mok, W. Li, R. Chang, Y. Liu,
and E. Chan. MonoScope: Automating network faults
diagnosis based on active measurements. In Proc.
IFIP/IEEE IM, 2013.

[8] R. Kapoor, L. Chen, L. Lao, M. Gerla, and
M. Sanadidi. CapProbe: A simple and accurate
capacity estimation technique. In Proc. ACM
SIGCOMM, 2004.

[9] J. C. Kim and Y. Lee. An end-to-end measurement
and monitoring technique for the bottleneck link
capacity and its available bandwidth. Computer
Networks, 58:158–179, 2014.

[10] A. Kvalbein, D. Baltrūnas, K. Evensen, J. Xiang,
A. Elmokashfi, and S. Ferlin-Oliveira. The Nornet
Edge platform for mobile broadband measurements.
Computer Networks, 2014.

[11] W. Li, W. Fok, E. Chan, X. Luo, and R. Chang.
Planetopus: A system for facilitating collaborative
network monitoring. In Proc. IFIP/IEEE IM, 2011.

[12] R. Mok, W. Li, and R. Chang. Improving the packet
send-time accuracy in embedded devices. In Proc.
PAM, 2015.

[13] J. Strauss, D. Katabi, and F. Kaashoek. A
measurement study of available bandwidth estimation
tools. In Proc. ACM IMC, 2003.

[14] S. Sundaresan, W. de Donato, N. Feamster,
R. Teixeira, S. Crawford, and A. Pescapè. Broadband
Internet performance: A view from the gateway. In
Proc. ACM SIGCOMM, 2011.

