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Abstract

Characterizing cytoarchitecture is crucial for understanding brain functions and neural diseases. In neuroanatomy, it is an
important task to accurately extract cell populations’ centroids and contours. Recent advances have permitted imaging at
single cell resolution for an entire mouse brain using the Nissl staining method. However, it is difficult to precisely segment
numerous cells, especially those cells touching each other. As presented herein, we have developed an automated three-
dimensional detection and segmentation method applied to the Nissl staining data, with the following two key steps: 1)
concave points clustering to determine the seed points of touching cells; and 2) random walker segmentation to obtain cell
contours. Also, we have evaluated the performance of our proposed method with several mouse brain datasets, which were
captured with the micro-optical sectioning tomography imaging system, and the datasets include closely touching cells.
Comparing with traditional detection and segmentation methods, our approach shows promising detection accuracy and
high robustness.
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Introduction

Quantitative characterizations of the cytoarchitecture, such as

cell size, location, density and spatial distribution, are fundamen-

tally important for understanding brain functions and neural

diseases. Rapid advances in optical imaging techniques have

enabled scientists to visualize individual cells in massive image data

of an entire mouse brain [1]. However, it is just impractical to

manually count and locate all cells in the three-dimensional (3D)

dataset of the entire mouse brain. An automated and accurate

method is urgently needed to detect the centroid of each cell and

obtain its contour [2].

Some automatic cell detection and segmentation methods in

two-dimensional (2D) space have been proposed. However, the

increasingly informative but complex 3D datasets have challenged

the existing 2D approaches [3]. First, the brightness between

adjacent 2D imaging sections is heterogeneous, which makes

precisely extracting the foreground voxels very difficult. Second,

cell morphology is varied and irregularly shaped, and some cells

may closely touch.

There are already various image segmentation methods, and

among them, threshold segmentation is the most common type.

For example, the fuzzy threshold method [4] which relies on fuzzy

sets is often used for image segmentation and can yield a stable

threshold. However, the brightness between touching cells is very

similar and obtaining their respective contours by this threshold is

difficult. Thus, this method is not suitable for segmenting touching

cells. Recently, super-pixel methods [5] have been proposed for

image segmentation: a series of pixels with adjacent positions,

similar color, brightness and other characteristics are used to

compose a small area, and then this small area is further utilized

for segmentation. Because touching cells have similar brightness

and adjacent positions, using these small areas to segment them is

difficult.

To solve the problem of cell touching in 3D images, a number

of algorithms have been investigated. The early work in this field

focused on watershed approaches. Although the traditional

watershed algorithm can segment touching cells, it may lead to

over-segmentation. The marker controlled and tensor voting

watershed algorithms [6–8] have been proposed to overcome such

limitations. Among these algorithms, the ‘‘markers’’ or ‘‘seed

points’’ determined by a detection algorithm are a set of points in

the image, usually one point per cell and close to the cell’s center.

These points are used by subsequent segmentation algorithms to
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delineate the spatial contour of each cell [3]. Indeed, the accuracy

of the cell segmentation results depends on the reliability of the

initial seed points. Several specialized seed point detection

approaches have been proposed, including the famous iterative

voting approach which relies highly on edge extraction, a gradient

threshold and careful manual setting of parameters [3,9–11]. The

gradient threshold may be affected by heterogeneous brightness,

resulting in over-segmentation. Moreover, the edge of a 3D image

is very complex, and the direction of the radial gradient is

irregular. Besides watershed and seed point detection techniques,

level set (one of the deformed models) is also a traditional cell

segmentation algorithm, and a modified coupled level set method

has been proposed to segment touching cells [11–13]. However,

coupled level set needs a suitable initialization contour to locate

each touching object, and is difficult to extend to 3D images for a

manually initialization surface is needed to locate each touching

object. Gradient flow tracking, another extension of the deformed

model method, has been proposed to segment touching cells.

However, it is sensitive to heterogeneous brightness [3,14–16],

which may lead to inaccurate flow values and error direction,

especially inside the cell where the gradient may not flow toward

the cell center. More recently, researchers have introduced multi-

scale LoG filtering which achieved good results for DAPI-stained

slices [3]. As a modified version of multi-scale LoG, multi-scale

cubic filtering has been employed to find sparse cells in fluorescent

images [17], based on multi-scale filtering and extracting local

maxima of the filtered image as a candidate cell centroid. Multi-

scale filtering has achieved good detection results in fluorescent

data, but the applicability of this method depends greatly on the

signal to noise ratio [17]. All the aforementioned methods are

based on gray scale or gradient information. To utilize the

geometric characteristics of touching cells, a family of concavity

detection algorithms can be applied to touching cells. Concave

point detection is robust for detaching touching cells in a plane

using one line to link two concave points [18–22]. However, it is

difficult to directly extend to a 3D space because the splitting plane

cannot be obtained based only on the detected points, as concave

points often are not in the same plane.

To address the heterogeneous brightness distribution and

closely touching cells in micro-optical sectioning tomography

(MOST) datasets [23], this study presents a cell detection and

segmentation method based on 3D seed points and a random

walker algorithm. Our method first performs image preprocessing,

which consists of image enhancement, binarization, noise elimi-

nation, morphological filtering and image filling. Then, the seed

points are detected on a binary image. For touching cells, we

detect the concave points and cluster these points, and a concave

point clustering centroid (CPCC) based method is proposed to

produce the seed points for touching cells. For isolated cells, a

differential method is used to detect the seed points. Finally, a

random walker algorithm, based on the seed points previously

determined, is implemented to segment the cells, including the

cells that touch. Our method has shown good performance both

for clustered and isolated cells in the MOST datasets.

Materials and Methods

Nissl staining images of mouse brain
Three datasets of mouse brain images have been employed in

this study, one from a Kunming mouse and two from C57BL/6

mice. The image datasets of entire mouse brain, Nissl stained [24],

were captured by the MOST system. In this work, all animal

experiments were approved by the Institutional Animal Ethics

Committee of Huazhong University of Science and Technology.

The original voxel size was 0.3560.461 mm, and the raw data

of one entire mouse brain was greater than 2 terabytes. The raw

data was processed by noise removal and brightness correction

between adjoining slices to improve image quality [25]. Then, the

voxel sizes of the Kunming and C57BL/6 datasets were resized to

0.560.560.5 mm and 0.3560.3560.35 mm, respectively, with

cubic interpolation.

Image Preprocessing
Because of the heterogeneous illumination and staining, some

preprocessing approaches were adopted to enhance the image

contrast and make the following binarization step perform better.

The image contrast was enhanced in a linear manner: supposing

rmin and rmax denoted the minimum and maximum intensity level

in the original image, a transformation function stretched the

levels linearly from original range (rmin, rmax) to the full range (0,

L-1) [26] and L is 256 for an 8-bit image, and the transformation

function is imadjust in MATLAB [27]. To automatically separate

the foreground targets (cells) from the background voxels, we used an

adaptive threshold method called Otsu binarization (using the im2bw
function in MATLAB) [28] which required no additional parameters.

As a result of the heterogeneous image contrast, some

background noise may be regarded as cell targets in the binary

image. Thus, connected-component was extracted (using the

bwlabeln and regionprops functions in MATLAB) by labeling the

adjacent voxels and these voxels formed a connected-component

[26]. Those connected-components for which the volume is too

small was considered as noise and eliminated. Due to the

heterogeneous brightness distribution, some cells in the binary

image would contain holes. Therefore, morphological opening

operation and hole filling were implemented [26], using the

imclose and imfill functions in MATLAB.

After preprocessing, the following seed point detection and image

segmentation steps were performed on the preprocessed binary image.

Seed Point Detection
The seed points were detected based on the binary image, and

the outlined workflow is in Figure 1. It primarily includes touching

cell and isolated cell detection. We have proposed a CPCC

method to obtain touching cells’ seed points, and we extracted the

local maximum points of the Gaussian-convolved image as isolated

cells’ seed points. The CPCC method includes four primary steps:

1) detection of concave points, 2) clustering of concave points, 3)

generation of candidate seed points, and 4) identification of the

seed points of touching cells. To clearly describe the seed-point

detection method for touching cells, a 3D synthesized binary

image stack was used to show the processing results of each step

above in Figure 1. All the image stacks in this study were volume-

rendered with the AMIRA software [29].

Concave points detection. Han defines ‘‘concave points’’ as

the discontinuous points on the boundaries of two overlapping

objects [30]. Then, Bai et al used this definition to express the

points on the junction boundaries of two touching cells [31]. In

this study, the concave point detection algorithm was modified

from a previous method [18]. The main principle of determining

concave points is to calculate concaveness values of all the contour

points, and then threshold those concaveness values. Each point of

the contour has a concaveness value calculated as:

fconcaveness(p(i,j,m))~
X

izW=2

x~i{W=2

X

jzW=2

y~j{W=2

X

mzW=2

z~m{W=2

BI\M(x,y,z): ð1Þ
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Where BI is the binary image, p (i, j, m) is a point runs over the
contour and M is a W6W6W (W=5) mask centered on p (i, j, m)
[18]. The concaveness value of a point, fconcaveness(p (i, j, m)), is the
number of voxels of M that intersects the background of BI. In
Figure 2B, the red dashed box is the mask centered on red point p
(i, j, m) and fconcaveness(p (i, j, m)) is the yellow portion of the mask.

We calculated the concaveness values of all the contour points (all

the blue and red points in Figure 2C), then thresholded the

concaveness values (fconcaveness,T=0.3, a little bigger threshold

also works) of all the points [18] to produce the candidate concave

points, i.e., the red points shown in Figure 2C. If N adjacent

candidate points satisfy the threshold condition, the final concave

point, C (individual red point shown in Figure 2D), is the point

possessing the minimum concaveness value in its adjacent

candidate points:

C~argmin
p

ffconcaveness(p1), fconcaveness(p2):::,

fconcaveness(pi):::, fconcaveness(pN )g:

ð2Þ

By subtracting fconcaveness(p) and adding the volume (W3) of M,

then equation (2) can be converted to a maximization equation:

C~argmax
p

fW 3
{fconcaveness(p1), W

3
{fconcaveness(p2):::,

W 3
{fconcaveness(pi):::, W

3
{fconcaveness(pN )g:

ð3Þ

In this way, the non-maxima suppression method can be used to

obtain the local maxima point as the concave point.

We used 3D synthesized binary images to show these concave

point detection results. If two cells were touching each other, we

called them a touching-cell-pair. In Figure 1A, there are three

touching cells (two touching-cell-pairs, i.e., the top touching-cell-

pair and bottom touching-cell-pair) and the blue colored points are

the detected concave points. For each touching-cell-pair, there

were more than two concave points, but we could not directly

connect any two of these concave points to segment the touching

cells.

Concave points clustering. The objective of the concave

point clustering proposed here is to cluster the concave points into

corresponding classes. Concave points that connect the same

touching-cell-pair are clustered in the same class; in Figure 1A, the

concave points on the junction of the top touching-cell-pair should

be clustered into one class, and the concave points on the junction

of the bottom touching-cell-pair should be clustered into another

Figure 1. Workflow of seed point detection and segmentation in a 3D synthesized binary image stack. A–E are volume rendered with
the color-map’s alpha values of 0.2. (A) The concave point detection (blue points) results of the binary image. (B) The concave point clustering results.
All the concave points are categorized into two classes: the points on the junction of the top two touching cells are categorized into the L1 class and
the other points on the junction of the bottom two touching cells are categorized into another class, L2. The light green color points are the
clustering center of each class of concave points, Ĉ1 and Ĉ2. (C) The 26 cubic neighbor points (reddish purple points) of each class of CPCC points. (D)
The seed points of touching cells (red points), chosen from (C) with some restricted conditions. (E) The seed points of isolated cells (the light yellow
points) are the local maxima points of the Gaussian-convoluted image. (F) Results of the CC-random walker segmentation, with different cells labeled
as unique random colors.
doi:10.1371/journal.pone.0104437.g001
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class. Ideally, the concave points are located around the junction

of the touching cells. Because of heterogeneous brightness, ‘‘false’’

concave points may appear on the surface of isolated cells. Thus,

the clustering method should be able to cluster the concave points

around the junction of the touching cells while avoiding ‘‘false’’

concave points. This study employed the DBSCAN algorithm

[32–33] that has been widely applied in the data mining field. Due

to the irregular shape and heterogeneous brightness of touching

cells, the initial method would have led to incorrect results. For

example, the concave points between two different touching cells

might be clustered into the same class. This study has modified the

DBSCAN algorithm in two aspects.

Constraint rule. The concave points clustered into the same

class should be in the same connected-component of the binary

image. In the previous step, suppose the number of detected

concave points is D, i.e., C1, C2…, Ci…, Cj…, CD-1, CD, and we

consider CData as the set of the D concave points. Suppose that

there are N connected components in the binary image, T1, T2…,
Tk…, TN-1, TN. If two concave points, Ci and Cj, are clustered into

the same class, they must be located in the same connected

component, i.e., to satisfy the constraint rule of CiMTk & CjMTk.

Kernel function. To overcome the irregular shape and

heterogeneous brightness, a kernel function, K: Rn
R[0, +‘), was

introduced to DBSCAN algorithm and termed it Ckernel-

DBSCAN. The kernel function is satisfied with three conditions:

symmetry, locality and convergence. A Gaussian kernel function is

selected in this study as:

K(u)~exp({u2=(2d2)): ð4Þ

Where d is the width parameter of the function and controls the

radial scope (d=3), and u is the input variable. Some definitions of

the DBSCAN algorithm are given [32]: (1) Eps, a distance

threshold; (2) SEps-neighbor of a point Ci, denoted by SEps(Ci), is
defined by SEps(Ci) = {CjMCData|dist(Ci, Cj),Eps}; (3) Minpts, a
number threshold, is the minimum number (Minpts) of points that
should be in SEps(Ci).
After considering the constraint rule of CiMTk & CjMTk and

introducing the kernel function and the definitions of the

DBSCAN algorithm, the density of a concave point Ci is defined

as:

density(Ci)~
X

Cj[SEps(Ci )

Ci[Tk ,Cj[Tk

K(dist(Ci,Cj)), ð5Þ

where Ci and Cj are concave points. The constraint rule CiMTk &

CjMTk indicates that Ci and Cj are in the same connected

component.

From the modified definition of density, it is evident that those

points, which are nearer to the point Ci, have a greater impact on

density(Ci), whereas other points, which are far away from point

Ci, have almost no impact on density(Ci). Additionally, only the

points that locate in the same connected component with point Ci

have an impact on density(Ci), which avoids the impact of false

concave points on isolated cells.

Now, we redefine the term density-reachable. A point Ci is

density-reachable from a point Cj if CiMSEps(Cj) & density(Cj)$
Minpts. The definitions of noise points, core point and border point
in DBSCAN algorithm are given [32]: noise points are the points

not belonging to any of these clusters; core points are the points

inside of the cluster; and border points are points on the border of

the cluster. There are two parameters in this algorithm, Eps and
Minpts, that influence the clustering results; thus, we chose suitable
values like the DBSCAN algorithm did (here: Eps=3, and

Minpts=5). The Ckernel-DBSCAN algorithm is as follows:

Ckernel-DBSCAN Algorithm

(1) {CData} is the set of all the concave points;

(2) Make n=0;

(3) while {CData}?0 do

(4) Choose one concave point CiM{CData} and compute

density(Ci);

(5) if Ci is not a core point

(6) Label Ci as a noise point and delete Ci from the set

{CData}: {CData}= {CData}2Ci;

(7) else if Ci is core point

(8) n: =n+1;

(9) Find the concave point Cj: (CiMTk) & (CjMTk) and Cj is

density-reachable from Ci; Cluster Ci and Cj into class Ln.

Early border points that may be labeled as noise points are
also clustered into class Ln. Delete Ci from the

set:{CData}= {CData}2Ci;

(10) end {if}

(11) end {while}

All the concave points are clustered using the Ckernel-

DBSCAN algorithm and assume that the number of clustering

classes is n (1, 2…, m…, n). For the class Lm, we calculate the

centroid point, Ĉm (referred to as the concave point cluster

centroid, i.e., the CPCC), and there are V concave points

belonging to class Lm. Then, Ĉm is calculated as:

Figure 2. Schematic diagram of concave point detection in a
2D plane. (A) Binary image. (B) Contour image. The red point is on the
contour, and the red dashed box is a mask centered at the red point.
The yellow portion is where the mask intersects the background voxels
of the binary image. (C) The candidate concave points (red points) meet
the threshold condition. (D) The concave points (red points) meet the
minimum concaveness value of its adjacent points.
doi:10.1371/journal.pone.0104437.g002
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ĈCm~

X

V

i~1

Ci (Ci[Lm): ð6Þ

The concave points clustering results of the 3D synthesized

binary image are shown in Figure 1B. The points on the junction

of the top touching-cell-pair were categorized into class L1, and

those of the bottom touching-cell-pair were categorized into class

L2. The two light green colored points are the clustering centroids

of the two classes, i.e., Ĉ1 and Ĉ2.

Candidate seed points of touching cells. Next, we

employed a strategy to obtain candidate seed points of touching

cells. There is a method of determining them [34], but we used the

CPCC point, Ĉm, to construct a cube whose side-length is 26Rc
(Rc corresponds to the cell radius, Rc=7 mm) and the cube is

centered on Ĉm. Then, total 26 key points of the cube were

obtained, i.e., the eight vertexes, the centers of the six faces and the

midpoints of the twelve sides. The 26 points are similar to the 26-

connected neighbors of Ĉm. We called them the 26 cubic neighbor

points of Ĉm and defined SD as the set of the 26 points: SiMSD (0#
i#25). Suppose the coordinates of Ĉm are (x, y, z), the coordinates
of Si are (xi=x6Rc, yi=y6Rc, zi=z6Rc) and Si is the candidate
seed point. In the 3D synthesized binary image stack, as shown in

Figure 1C, the reddish purple points are the cubic neighbor points

of two light green colored CPCC points, Ĉ1 and Ĉ2, and each

CPCC point has 26 neighbor points. We show Ĉ1 and its 26

neighbor points alone in Figure 3A, and the three touching cells

are named TC1, TC2 and TC3. The reddish purple points are the

26 cubic neighbor points (candidate seed points) of the first CPCC

point, Ĉ1. In Figure 3C, the reddish purple points are the 26 cubic

neighbor points (candidate seed points) of the second CPCC point,

Ĉ2.

Seed points of touching cells. The final seed points were

chosen from the 26 cubic neighbor points (SD) of Ĉm. Ideally, one

CPCC point only corresponds to two seed points, i.e., 24 neighbor

points (candidate seed points) of Ĉm are redundant. For example,

only two of the 26 neighbor points of Ĉ1 are needed in Figure 3A,

with one corresponding to cell TC1 and the other one

corresponding to cell TC2. For Ĉm, the seed points were selected

from SD using some restricted conditions. A candidate seed point,

SiMSD, with coordinates (xi, yi, zi), was a seed point only when it

satisfied the following conditions: (1) BI(xi, yi, zi).0, where BI is
the binary image and the final seed point must be situated in the

foreground; and (2) A(xi, yi, zi).s=Rc, where A is the Euclidean

distance map of BI and we chose the candidate seed points nearest

to the cell center. After the two conditions above, the last seed

points, S*, of the CPCC point Ĉm are as follows:

S �~fSi[SDDBI(xi, yi, zi)w0,A(xi, yi, zi)wsg, 0ƒiƒ25: ð7Þ

The final condition, (3), is that the distance between any two seed

points must be greater than the radius of a cell, Rc. Otherwise the

two seed points will be merged into a single point.

In Figure 3B, two seed points (the red points) were achieved by

choosing from the candidate seed points (reddish purple points) in

Figure 3A under the restricted conditions (1–2). In Figure 3D,

there were also two seed points achieved by choosing from the

candidate seed points (reddish purple points) in Figure 3C. Both

Ĉ1 and Ĉ2 produced one seed point for cell TC2 in Figure 3E,

however, the distance of the two seed points was less than Rc, and
the two points were merged into one seed point (the red point

inside the cell TC2) in Figure 3F.

In this study, we used a differential method to detect isolated

cells, which has no concave points in the connected component of

the binary image; thus, seed point detection was performed on the

binary images that have eliminated the connected components

Figure 3. Seed points chosen from candidate points in a 3D synthesized binary image stack. The stack is volume-rendered with the color-
map’s alpha values of 0.2. The three touching cells are named TC1, TC2 and TC3, and the light green points, Ĉ1 and Ĉ2, are the clustering centers of
each class of concave points. (A) The reddish purple points are the 26 cubic neighbor points of the first CPCC point, Ĉ1. (B) The red points are the seed
points chosen from the reddish purple points from (A) under some restricted conditions. (C) The reddish purple points are the 26 cubic neighbor
points of the second CPCC point, Ĉ2. (D) The red points are seed points chosen from the reddish purple points of (C) under some restricted
conditions. (E) The total seed points of (B) and (D). (F) The merge of all the seed points in (E) under some restricted conditions.
doi:10.1371/journal.pone.0104437.g003
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with concave points. First, we convolved the binary image with a

Gaussian template (17617617, a larger size also works) and then

extracted the local maxima of the convolved image, and these local

maxima points were considered as seed points. The seed points of

isolated cells of the 3D synthesized binary image stack were

detected using the local maxima of the Gaussian-convolved image

and are displayed in Figure 1E (the light yellow point).

Connected Component-Based Random Walker
Segmentation
Cell contour segmentation was based on the seed points

obtained in the previous step and was implemented on the binary

image. Grady has proposed a random walker segmentation

method [35] which has been applied to medical image for

interactive segmentation. Initial seed points must be set by the

user, and then, the voxels are assigned to a given seed point

according to a maximum probability. The memory usage of the

random walker algorithm is very high and this algorithm requires

to set seed point manually. The source code can be downloaded

from www.cns.bu.edu/,lgrady/random_walker_matlab_code.

zip. We have modified the original algorithm to make it more

feasible and convenient in our situation, termed the modified

algorithm of a connected component-based random walker (CC-

random walker) segmentation method. Each time, only one

connected component in the image, rather than the entire image,

was processed. Thus, only the seed points in the current connected

component would be considered. There are primary four steps in

our CC-random walker cell segmentation method:

(1) Construct the edge weights network diagram. Grady

applied the Gaussian function as the weight function. For the

binary image in our dataset, the weight function can be simplified

to:

vi j~

1

e
,f (i)=f (j)

1,f (i)~f (j)

8

<

:

, ð8Þ

where i is the binary image voxel, f(i) is the value of the voxel and
e is the natural constant.

(2) Obtain a set of label points. Suppose N-1 seed points

are generated in the seed point detection step, and we randomly

catch one point in the background of the binary image. The N-1

seed points and the background point together compose the set of

N label points, and all the remaining voxels in the binary image

are un-labeled points.

(3) Solve the Laplacian matrix and the combinatorial

Dirichlet problem. The combinatorial Laplacian matrix is

defined in [35]:

Lij~

di, if i~j

{wi j , if vi and vj are adjacent

0, otherwise

8

>

<

>

:

, ð9Þ

and the Dirichlet problem is:

D½x�~
1

2
xTLx~

1

2

X

eij[E

wij(xi{xj)
2: ð10Þ

The detailed solution process for D[x] is described in [35] and

its solution assigns each un-labeled point to a given label point

according to a maximum probability value. This labeling means

the un-labeled point and the corresponding label point belong to

the same cell. As long as all the remaining un-labeled points are

assigned, the cells are segmented.
(4) Process the connected component as a unit. Each

time, we ran the random walker segmentation on only one

connected component and iterated the previous steps (1–3) until all

the remaining connected components were processed.

A sparse linear equation must be solved in step (3). This solving

procedure requires a significant amount of memory. Although

some methods have been proposed to optimize solving such sparse

linear equations in the literature [36,37], it is still very difficult to

apply such methods to 3D image processing. At a time, the CC-

random walker method only processes one connected component,

instead of all the connected components. Consequently, the

computational complexity may be increased.

The segmentation results of the 3D synthesized image data are

shown in Figure 1F, where each cell is labeled with a unique

random color. In particular, the colors of touching cells are

different from each other.

Results

To demonstrate the performance of our algorithm, we verified it

with three datasets, one from Kunming and two from C57BL/6

mice brains. Six image stacks from the Kunming mouse (indexed

from K1 to K6), and twenty image stacks from the two C57BL/6

mice (indexed from C1 to C20) were selected. All image stacks

were selected from the barrel cortex of the mouse brain data,

without overlapping each other. The sizes of K1 and K2 stacks

were 67668615 mm and 1006100615 mm, respectively. The

sizes of K3–6 stacks were all 10061006100 mm. For the two

C57BL/6 mice, the sizes of C1–20 stacks were all

2006200630 mm.

Quantitative Validation of Cell Detection
The performance of the detection algorithm can be described in

terms of precision and recall [17]. Manually marked cell centers

were recognized as the ground truth. The detected cell was

matched to a manually marked cell if the distance between their

cell centers was below the cell radius, Rc. Then, the detected cell

and the manually marked cell composed one unique pair (as one-

to-one match). A cell is correctly detected if it one-to-one matches

with a manually marked cell in the ground truth. Thus, we first

matched each detected cell to manually marked cells and vice

versa, assuming that there are Ng cells of ground truth, about Nd

cells have been detected and Nc of the Nd cells made a one-to-one

match with a manually marked cell. The definitions of recall and

precision are as follows:

Recall~
Number of Correctly Detected Cell, Nc

Number of Ground Truth, Ng

: ð11Þ

Precision~
Number of Correctly Detected Cell, Nc

Number of Detected Cell, Nd

: ð12Þ

The results of the proposed algorithm on the K1 stack are

shown in Figure 4, and the CPCC points are displayed in

Figure 4A. Twelve seed points (the red points in Figure 4B) of

touching cells were detected based on the CPCC points, and thirty

seed points of sparse cells were detected by local maximum of

Gaussian-convolved image (the light yellow points in Figure 4C).

With unique random colors, the cell segmentation results are

3D Detection and Segmentation for Touching Cells

PLOS ONE | www.plosone.org 6 August 2014 | Volume 9 | Issue 8 | e104437

www.cns.bu.edu/&sim;lgrady/random_walker_matlab_code.zip
www.cns.bu.edu/&sim;lgrady/random_walker_matlab_code.zip


shown in Figure 4D, and all cells are labeled. The results of the K2

stack are shown in Figure 5. Cells were mostly touching on the K2

stack. Fifty-four seed points (the red points in Figure 5B) were

detected using the CPCC points, and fifty-six seed points of sparse

cells were identified (the light yellow points in Figure 5C). The

segmentation results of K2 are shown in Figure 5D.

In the following section, we compared our 3D cell detection

algorithm with some 3D state-of-the-art methods, including the

multi-scale LoG (MSL) [3], gradient flow tracking (GFT) [14] and

TWANG [38] methods. The executable program of the GFT

method has been described by Li et al [14] (http://www.cbi-tmhs.

org/ZFIQ/download.htm). For the MSL method, we implement-

ed it with the FARSIGHT Toolkit (http://www.farsight-toolkit.

org/). The source code of the TWANG algorithm has been

described by Stegmaier et al and can be downloaded as a

supporting file (http://dx.doi.org/10.1371/journal.pone.

0090036). The parameters of these algorithms are set to fit the

datasets. We have presented only the values of the adjusted

parameters, and the parameters with default values are not shown.

For K1–K6 stacks, the main parameters of GFT method were

f=3, and for the C1–C20 stacks, the corresponding parameters

were f=2. For all the 26 stacks, the main parameters of MSL

method were smin=5 and smax=8. For the K1–K6 stacks, the

main parameters of the TWANG method were smin=5 and

smax=8, and for the C1–C20 stacks, the corresponding param-

eters were smin=7 and smax=10. For all the 26 stacks, the main

parameters of our proposed method were Eps=3,Minpts=5, and

Rc=7 mm. The background interference in our dataset was

substantial, and for a fair comparison, these algorithms were

executed on the background-subtracted stacks. These background-

subtracted stacks were the preprocessed binary image stacks with

foreground voxels filled with original gray values.

In Figure 6, we show the detected cell centroids produced by

our method and the other three algorithms on the K1–K2 stacks.

Manually marked cells were identified as the ground truth. The

GFT method did not detect some cells, especially in cell-touching

regions, and the green crosses label the undetected cells. The MSL

method detected nearly all cells, even though some cells were

closely touching. While this method detected redundant or false

cells in both isolated and touching cell areas, false cells are marked

with green arrows. The TWANG method also detected some

touching cells but had both missing and false detected cells. Our

proposed method had few missing and false detected cells. We will

further analyze the comparison results in the discussion section.

In Table 1, we present the detailed statistics (precision, P, and
recall, R) of the four quantitative detection results compared with

the ground truth on the K1–K6 stacks. The average recall rate of

the proposed method was 89.463.0%, and the average precision

rate was 88.861.3%. However, for the GFT, MSL and TWANG

methods, the average recall rates were 82.663.7%, 95.263.4%,

and 86.164.2%, respectively, and the average precision rates were

82.663.7%, 79.463.7% and 85.066.2%, respectively. The

Figure 4. Cell detection and segmentation on the K1 stack. The stack is a preprocessed binary image and volume-rendered with the color-
map’s alpha values of 0.2. (A) The CPCC point result (light green points). The dashed circle indicates the cell-touching region. (B) The seed point (red
points) of touching cells from the 26 cubic neighbor points of CPCC. (C) The seed points (light yellow points) of sparse cells. (D) Results of the CC-
random walker segmentation, where different cells are labeled in unique random colors.
doi:10.1371/journal.pone.0104437.g004
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Figure 5. Seed point detection and segmentation on the K2 stack. The stack is a preprocessed binary image and is volume-rendered with the
color-map’s alpha values of 0.2. The black ring is a large vessel. (A) The results of the CPCC points (light green point). (B) The seed points (red points)
of touching cells selected from the 26 cubic neighbor points of CPCC. (C) The seed points (light yellow points) of sparse cells obtained by extracting
the local maximum of the Gaussian-convoluted image. (D) Results of the CC-random walker segmentation. Different cells are labeled in unique
random colors.
doi:10.1371/journal.pone.0104437.g005

Figure 6. Comparison of different detection results achieved with the investigated methods on K1 and K2 stacks. The top and bottom
rows represent the K1 and K2 stacks. The stacks are preprocessed binary images and are volume-rendered with the color-map’s alpha values of 0.2.
The yellow points are the ground truth, and the red points are cell centroids achieved through different segmentation methods. The green crosses
indicated that the cells that are not detected. The green arrows indicated the false detected cells.
doi:10.1371/journal.pone.0104437.g006
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average recall rate of the MSL method was the highest, and it

could detect all the cells, but the precision rate was lowest because

of the false detected cells, which are presented in Figure 6. The

average recall rate of the GFT method was the lowest because of

the undetected cells (Figure 6). For the TWANG method, both the

recall and precision were lower than our proposed method, and

our proposed method had the best trade-off between recall and

precision.

To further evaluate the proposed detection method, we

employed our method on the C1–20 stacks. The detection results

of all the 20 stacks are presented in Table 2. The overall average

recall rate of the proposed method was 89.762.8%, and the

average precision rate was 88.062.7%. For the GFT, MSL and

TWANG methods, respectively, the average recall rates were

78.263.7%, 92.162.5% and 81.763.8%, and the average

precision rates were 82.065.4%, 80.067.9%, and 83.566.1%.

On these stacks, the multi-scale LoG method still produced the

highest recall, the GFT method still had the lowest precision and

our proposed method still had the best trade-off between recall

and precision.

Qualitative Comparison of Cell Contour Segmentation
Methods
In this section, we compared our cell segmentation algorithm

with some state-of-the-art methods. Two metrics, including over-

segmentation and under-segmentation, were utilized to evaluate

the segmentation results. The over-segmentation metric indicates

that a cell has been separated into more than one object. The

under-segmentation metric indicates that touching cells have not

been appropriately divided or that a cell is not segmented.

In Figure 7, the performance of the proposed segmentation

method was compared with the GFT, MSL and TWANG

methods. The two representative slices were chosen from the K1

and K2 stacks and were adjusted to the same size. Each segmented

cell is labeled with one gray value. The green crosses indicate

under-segmented cells, and the green arrows indicate over-

segmented cells. The red-dashed circles indicate missing segment-

ed cells. The GFT method tended to under-segment cells, as it

seldom segmented touching cells. The MSL method segmented

nearly all the touching boundaries of the touching cells, but tended

to over-segment the cells by segmenting one cell into multiple cells.

The TWANG method tended to under-segment the cells and even

eliminated most voxels of one cell, which is highlighted with the

red-dashed circles in Figure 7. Our proposed method could

segment the touching cells with little over-segmentation, although

some cells may not have been accurately segmented. We have

tried to quantitatively measure the segmentation accuracy;

however, the cell boundaries in our datasets were too blurred,

and the ground-truth annotations marked by different people

differed greatly. Therefore, we eliminated the quantitative

comparisons.

Moreover, our seed point detection step could be combined

with other segmentation algorithms, such as the k-mean and

watershed algorithms, with the detected seed points as the

initiation points or the initiation markers. We qualitatively

compared the CC-random walker segmentation method with k-

mean clustering (the seed point are the initiation points) and

marker-controlled watershed segmentation (the seed points are the

markers). The results of the three segmentation methods are

shown in Figure 8, and the extracted cell contours are displayed in

2D sections in Figure 8B–D. The results demonstrated that the

CC-random walker method was able to suppress the holes (light

green dashed circles in Figure 8B–D) and obtain the exact

contours of touching cells, but the k-mean clustering and
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watershed segmentation methods could not. Additionally, the

contours of touching cells were biased to larger cells and deviated

for smaller cells by the other two methods (light yellow dashed

circles in Figure 8B–D).

Discussion

The challenges of optical image segmentation behave as the

heterogeneous brightness and irregular geometric characteristic.

The brightness is often heterogeneous, however, in this study, the

seed points were detected on binary images. Cells possess various

geometric characteristics, and some of the cells have irregular

shapes and touch significantly, which are prone to producing a

poor detection result and under-segmentation. This study has

addressed the problem of closely touching cells by introducing the

CPCC method. The original 3D image stacks (the K1–K6 and

C1–C20 stacks) as well as the detection and segmentation results

are available for download from: http://bmp.hust.edu.cn/

publication/pone2014_he.

We have compared the detection results of these state-of-the-art

methods with our proposed CPCC method statistically. A

Student’s t-test is often used to test the average level difference

of small sample sizes (where the sample number is less than 30).

We used it to determine whether a significant difference existed

between the detected results of our proposed and state-of-the-art

methods. Three experiments (t-test comparisons) were performed:

(1) our proposed CPCC method vs the GFT method; (2) our

proposed CPCC method vs the MSL method; and (3) our

proposed CPCC method vs the TWANG method. We first

calculated the means and variances of the recall and precision

metrics for the K1–K6 (Table 1) and C1–C20 (Table 2) stacks.

And then the corresponding p values for the two metrics of CPCC

vs GFT, CPCC vs MSL, and CPCC vs TWANG are presented in

Table 3 with a confidence level of 0.05. We can conclude that

both the recall and precision of our method were significantly

higher than the GFT method. The recall of our method was

significantly lower than the MSL method, but the precision of our

method was significantly higher. For the K1–K6 stacks, no

significant differences between our method and the TWANG

method existed with respect to recall and precision. For the C1–

C20 stacks, both the recall and precision of our method were

significantly higher than the TWANG method.

Next, the performance of our proposed method compared with

the other state-of-the-art methods will be discussed. These state-of-

the-art methods achieved excellent results in their applicable

situations and all the discussions below were only limited to our

datasets. As for the GFT method, the under-detection and under-

segmentation were serious in our data. The main reason may be

that the GFT method relies on a gradient, and since our data are

heterogeneous, the gradient will not flow toward the cell centroid.

Also for the GFT method, Al-Kofahi et al described that the rough

chromatin texture may produce inaccurate flow values and/or

directions in their experiments [3]. Qi et al assessed that the GFT

method was not suitable for data containing large numbers of cells

with extensive overlapping areas [11], which was verified in our

datasets. The MSL method could detect and segment nearly all

the cells, including the touching cells. However, false detection and

over-segmentation were also significant, which were caused by the

heterogeneous brightness in our datasets. The authors mentioned

that over-segmentation usually occurs when a cell is chromatin–

textured, and the shape is highly elongated. Both under and over

segmentation occurred when the TWANG method was used with

our data. One reason may be that this method trades, on a certain

extent, accuracy for speed [38]. Also, as the authors previously

described, the algorithm tends to clip the tips of elongated cells.

Therefore, it is not suitable for the irregular cell shapes in our

datasets. Our proposed cell detection and segmentation method is

based on the binary image, which can avoid the influence of

heterogeneous brightness. Moreover, we made use of the concave

points to achieve seed points for touching cells, but some under-

segmentation still occurred when the shape of touching cell was

extremely irregular.

This study has yielded a CC-random walker method to segment

cell contours. The method can overcome the holes in the image,

even when the holes were very large. According to our analysis,

Figure 7. Comparison of different segmentation results achieved with the investigated methods on some two-dimensional slices.
The slices are from the 3D original and segmented results of the K1 and K2 stacks. Each cell is labeled using one gray value in the segmentation
results. The green crosses indicate the under-segmented cells. The green arrows indicate the over-segmented cells. The red dashed circles indicate
that most of the voxels of one cell are not segmented.
doi:10.1371/journal.pone.0104437.g007
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the voxels in holes were generally surrounded by foreground

voxels; thus, the probability of the voxels reaching the nearest

foreground seed point was greater than the probability of the

voxels reaching the nearest background seed point. Consequently,

the voxel of the hole was labeled as foreground. In addition, by

transforming the segmentation issue of the touching cells into an

independent optimization problem, we obtained accurate de-

tached contours for the touching cells.

There are three important parameters in the seed-point

detection step discussed below. The first two parameters are Eps
and Minpts in the Ckernel-DBSCAN algorithm. The value of

Minpts is set to 4 in DBSCAN [32] (a little larger also works), and

the value of Eps is determined by 4-dist graph or by some

attempts. We chose Minpts=5 and Eps=3 after some attempts.

When Eps and Minpts were set too large, the concave points of

different touching-cell-pairs were falsely clustered into the same

class, resulting in a reduction in the detection recall rate. When

Eps and Minpts were set too small, the concave points of one

touching-cell-pair were falsely clustered into different classes,

causing the precision rate to be reduced. The third important

parameter is Rc, which usually corresponds to the cell radius. We

counted the volumes of 100 real isolated cells and approximated

each isolated cell as a sphere to estimate the radius using the

volume formula of a sphere. The average radius of the 100 cells

was about Rc=7 mm. If Rc was too small, the seed points were

located too near to the cell contour, but if Rc was too large, the

seed points were located too near to the junction of touching cells.

To assess the general capabilities of our proposed method, we

added noise into the stack and evaluated the seed point detection

results. Because the seed point detection and segmentation steps

were both performed on the binary image, we chose salt and

pepper noise with noise density ranging from 0.00 to 0.10, i.e., {0,

0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0, 0.07, 0.08, 0.09, 0.10}, and

the parameters of the original binary image stack and the noised

binary image stack were the same. Finally, we computed the recall

and precision values at each noise level. The seed point detection

results of the K1 stack with some noise levels are shown in

Figure 9A–E. We found that the detection results were influenced

by noise to a certain extent. Some seed points were missing (see the

green dashed circle in Figure 9F–H) when noise was added.

Figure 9I shows the performance curves of the seed point

detection estimation (Precision, Recall) for varying noise densities.

The precision performance of the seed point detection varied with

the added noise, but it never varied by more than 10%, and the

recall performance was reduced with an increase in the noise

density. In the Ckernel-DBSCAN algorithm, we needed to

Figure 8. Comparison of the segmentation results using three different methods. The light green dashed circle indicates the holes in the
binarization step, and the light yellow dashed circle indicates detached contours of two touching cells. (A) Seed point (blue points). The three
segmentation methods are all based on the seed points. (B) The segmentation results of the k-mean algorithm, using seed points as the initial points.
(C) The segmentation results of the marker-controlled watershed algorithm. (D) The segmentation results of the CC-random walker method.
doi:10.1371/journal.pone.0104437.g008
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compute the density of concave points, and the addition of salt and

pepper noise can result in false positives for concave points. Thus,

the density of concave points was influenced, which may affect the

cluster concave point results, for example, the high density of noise

points caused concave points of different touching-cell-pairs to be

clustered together, reducing the number of clusters and omitting

the seed points of some touching cells (recall performance was

reduced).

The detection and segmentation algorithms were implemented

in MATLAB (Mathworks, Natick, MA). The demonstrated data

were processed on a personal desktop workstation (Intel Xeon

X5690/12 cores/3.46 GHz, 48GB). The computational complex-

ity of each step in this method will now be discussed. The time and

space complexity of the image enhancement, binarization, image

filling and morphological filtering were all linear O(n), where n
was the number of image voxels. Connected-component analysis

was implemented as a function in MATLAB, and the details of its

computational complexity were unclear. The time and space

complexity of concave point detection was O(n+D6W3), where W
was the size of the mask, M, and D was the number of contour

points. The time and space complexity of the Ckernel-DBSCAN

method was O(D6k), where k was the number of each concave

point’s SEps-neighbor. The process of achieving seed points was

relative to the number of concave point clusters, and the

complexity was O(s), s,,n. The time complexity of the random

walker segmentation was O(N6f(n/N)), where N was the number

of connected components and f(n/N) was the complexity of solving

n/N equations. The space complexity of the random walker

segmentation was O(N6(n/N)4). The most time consuming step

during segmentation was due to solving sparse linear equations in

the 3D image stack; for the K1 stack, the random walker

segmentation time was 0.012 s.

There were also some problems with our seed point detection

step. First, it was designed specifically for approximately spherical-

shaped cells. Second, it was based on binary images, and thus, it is

influenced by the binarization method. For isolated cells, when the

contrast on the surface varies greatly, there may be many ‘‘false’’

concave points at the surface after binarization. These ‘‘false’’

concave points may cluster into classes using the CPCC point, and

more than one seed may be detected (false positives). The potential

solution is to combine cell volume or other information to detect

isolated cells. Third, it may lead to more false negatives when cell

touching is very complex. For example, suppose there are three

touching cells, A, B, and C, with A and B touching each other, B

and C touching each other, and A and C touching each other. The

Ckernel-DBSCAN algorithm may cluster all the concave points

into only one class, and then the number of detected seed points

may be less than 3, which leads to under-segmentation in the

segmentation step. This problem is very difficult to solve, and we

should develop a more effective algorithm in the future. Finally,

the lighting conditions of the imaging system also have some

influence on the binariziation step, which further affects the

detection of seed points and segmentation.

Conclusions

We have proposed a complete pipeline for 3D detection and

segmentation of touching cells. The algorithm used in this study

had high recall and precision rates for seed point detection, even

when the cells were closely touching in 3D space, because the

neighbor points of the CPCC point had been used. Additionally,

the CC-random walker algorithm was not sensitive to the holes,

which is of significant benefit to the high accuracy of the cell

contour segmentation.
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Figure 9. Noise influences on the precision and recall for the K1 stack. Salt and pepper noise is used here. The red point is the detected
point, and the green dashed circle indicates a missing seed point caused by noise. (A–D) The volume-rendered (with the colormap’s alpha values of
0.5) binary image stack with different levels of noise density, i.e., 0, 0.03, 0.06, and 0.09. (E–H) The seed point detection results with different levels of
noise density, i.e., 0, 0.03, 0.06, and 0.09. For easy observation, the seed point is placed on the binary stack, pre-noise elimination, and the pre-noise
elimination binary stack is volume-rendered with the color map’s alpha values of 0.2. (I) Performance curves of the seed point detection estimation
with varying noise densities.
doi:10.1371/journal.pone.0104437.g009
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