
Received May 18, 2020, accepted June 16, 2020, date of publication July 1, 2020, date of current version July 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3006178

An Automatic Advisor for Refactoring Software
Clones Based on Machine Learning

ABDULLAH M. SHENEAMER
Department of Computer Science, Faculty of Computer Science and Information Technology, Jazan University, Jazan 45142, Saudi Arabia

e-mail: asheneamer@jazanu.edu.sa

This work was supported by Jazan University.

ABSTRACT To assist developers refactored code and to enable improvements to software quality when

numbers of clones are found in software programs, we require an approach to advise developers on what a

clone needs to refactor and what type of refactoring is needed. This paper suggests a unique learning method

that automatically extracts features from the detected code clones and trains models to advise developers

on what type needs to be refactored. Our approach differs from others, which specifies types of refactored

clones as classes and creates a model for detecting the types of refactored clones and the clones which are

anonymous. We introduce a new method by which to convert refactoring clone type outliers into Unknown

clone set to improve classification results. We present an extensive comparative study and an evaluation of

the efficacy of our suggested idea by using state-of-the-art classification models

INDEX TERMS Refactoring clone, machine learning, outlier detection, classification, AST and PDG

features.

I. INTRODUCTION

Code clones are pairs of code fragments which have a high

degree of similarity or which are identical. Code clones might

cause software maintenance to be more difficult and a sys-

tem’s source codesmore difficult to understand. Code cloning

is a popular practice in the software development process for

a number of reasons, such as reusing code by ‘‘copy-and-

paste’’ to increasing the speed of writing the code [1]. There

are various clone detector techniques which attempt to find

code fragments which have a high number of similarities in

the system’s source code. Additionally, there have been vari-

ous refactoring clone tools developed which change the struc-

ture of detected code clones without altering code fragment

behavior. The refactoring code clones are a method by which

tominimize the chances of introducing a bug [2]. Refactoring,

or removing, is utilized for improving software comprehensi-

bility and maintainability [3]. Although, Kim et al. [4] have

shown that clone refactoring cannot solve software quality

improvements for two reasons. Firstly, clones often have a

short lifespan. Refactoring is less effective if there are block

branches in a short distance. Secondly, longer-living clones

which have been altered with another element in the same

class are difficult to remove or refactor. Additionally, it is a

bug which can be simply corrected as the source code can be

The associate editor coordinating the review of this manuscript and

approving it for publication was Xueqin Jiang .

easily understood, which allows improvement of malleability

resulting in code extensibility.

Our approach provides different types of refactoring rec-

ommendation to a developer for preventing to remove the

positive side of code clones and builds a training model after

removing outliers to improve the results. Our tool can be

built and used to minimize bugs in a system. Our study can

improve clone maintenance by removing duplication code by

identifying refactoring clones. Also, the possibility of bad

design for a system, difficulty in a system improvement or

modification, introducing a new bug, can be decreased by

identifying and refactoring clones. In addition, our study can

be utilized by various applications such as source code or text

plagiarism, malware detection, obfuscated code detection.

In summary, the main contributions of this paper are:

• A presentation of a new machine learning framework

that automatically extracts features from the detected

code clones and trains models to advise developers on

the types of refactored clone code and those which are

not refactored.
• We explore a new method by which to convert clone

type outliers into an Unknown clone set from the train-

ing categories, significantly improving the classification

results.
• We present an extensive comparative study and an eval-

uation of the efficacy of our suggested idea by using

state-of-the-art classification models.

124978 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-2372-4154
https://orcid.org/0000-0002-0414-4349


A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

We have organized the paper thus: Section II introduces

the definitions of the cloned and refactored clones. Pre-

vious research in this arena is highlighted in Section III.

In Section IV, we suggest a new automatic advisor of

the refactoring clones approach. In SectionV, we perform

an evaluation and comparison of our suggested method

and detail the results. Threats to validity are reported in

Section VII. Last, our conclusion is in Section VIII.

II. DEFINITIONS OF CODE CLONES AND REFACTORINGS

Developers may apply clone refactorings after detecting code

clones to reduce code duplication and minimize the size of

the code and the bugs, should there be any bugs in the code.

However, some existing works have stated [5] [4] [6] that

not all clones need to be removed or refactored. Code clone

detection tools can report many code clones in a system so,

it would not be easy for developers to locate all detected

code clones that need to be refactored [4]. A technique based

on machine learning that automatically advises the necessary

clones for refactoring would be beneficial.

• Definition 1 (Code Fragment): Code fragments are

sequences of statements and a range surrounded by

{and}.

• Definition 2 (Code Clones): A code fragment is a copy

of another, either syntactically or semantically.

• Definition 3 (Type-I: Exact Clones): Code fragments

are identical, irrespective of their comments and white-

spaces, blanks and comments.

• Definition 4 (Type-II: Renamed Clones): A code frag-

ment which is syntactically similar except for names

of variables, identifiers, types, literals, layouts, whites-

paces, blanks, and comments.

These are created from Type-I clones.

• Definition 5 (Type-III: Gapped Clones):Code fragments

are sets of type-I and type-II clones, separated by lines

that are not syntactically identical, such as addition,

deletion, or modification of statements.

• Definition 6 (Type-IV: Semantic Clones): A semantic

code fragment which performs the same tasks, but which

is are implemented in a different manner.

• Definition 7 (ExtractMethod (EM)): is an extracted code

fragment as a new method, and which is replacing that

code fragment by calling to the new method. The extract

method is split into pieces.

• Definition 8 (Pull-Up Method (PM)): is a removed sim-

ilar method found in many classes by the introduction of

a generalized method in their common superclass.

• Definition 9 (Move Method (MM): is for creating a new

method in the class that most frequently employs the

method, and which then moves code from the older

method into there.

Machine learning and converting clone type of outliers into

an Unknown clone set is a good method for building such

models. Existing work [2] has shown that machine learning

integrates factors which could result in good accuracy in

the recommendation of clones. Yet, their work automatically

extracted only groups of refactored and non-refactored clones

from software repositories and trains the model to implicate

clones for refactoring. Our work, meanwhile, extracts differ-

ent types of refactoring patterns and builds a training model

after removing outliers to improve the results.

III. PRIOR RESEARCH

Several studies are related to code clone refactoring.

Higo et al. [7] suggest a method that refactors code clones

using existing refactoring patterns such as the Extract and

Pull Up Method. This research performed fully automated

refactoring without developer intervention. The developer

should evaluate refactoring based on their preference and

indicate any clone which is a probable candidate for refac-

toring. Conversely, our work extracts features and relies

on machine learning to build our model and classify

clones according to the type of refactored clone and those

which are not refactored. Next, the developer evaluated

the refactoring clones. Higo et al. [8] suggested a method

that detects refactoring-oriented code clone to improve the

usefulness and applicability of the software maintenance

method. Higo et al. [9] proposed a refactoring method for

merging software clones. Their technique can detect a

refactoring-oriented code clone in a general clone detected

by token-based or text-based clone detection tools. We refac-

tor clones using AST-based and PDG-based clone detection

tools.

Zibran and Roy [10] suggested a model for clone refactor-

ing in object-oriented and procedural source code. Addition-

ally, they proposed a constraint programming (CP) approach

for optimal conflict-aware scheduling of code clone refactor-

ing. However, their approach to refactoring the effort model

indicates that there are fine grained computations, which

could not be manually performed by the developers.

Hotta et al. [11] presented a method to refactor Type-III

clones by using the Template Method design pattern [19] and

program dependency graphs (PDGs). Their tool can only be

used on software systemswhich use object-oriented program-

ming language (OOP). These are semi-automated refactoring

clones which exist in the sub-classes.

Tairas and Gray [12] expanded upon Eclipse refactoring

to allow additional features amongst cloned code fragments,

for instance variations in field accesses, string literals, and

method calls without argument. Their tool is an Eclipse

plug-in termed CeDAR (Clone Detection, Analysis, and

Refactoring) which closes the gaps between refactoring and

clone detection. CeDAR only refactors Type-I and Type-II

code clones, while our tool is able to detect and refactor

Type-I, Type-II, and Type-III.

Saha et al. [20] conducted exploratory research on Type-I,

Type-II, and Type-III clone evolution in six open source

software systems which were written in two programming

languages and compared the results with past research to

increase understanding of Type-III clone evolution.

VOLUME 8, 2020 124979



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

Mandal et al. [21] investigated the identification of code

clones which are crucial for refactoring. They automatically

analyzed the history of clone evolution from thousands of

software system commit operations downloaded from online

SVN repositories, and found specific clone change patterns,

Similarity Preserving Change Pattern, whereby code clones

which have evolved following this pattern have importance

in refactoring.

Mondal et al. [22] performed an investigation of the

cross-boundary evolutionary coupling of SPCP clones and

discovered that SPCP clones have couplings which should

not be removed via refactoring. These SPCP clones (i.e.,

the cross-boundary SPCP clones) need to be considered for

tracking together with their relationships across the class

boundaries. The non-cross-boundary SPCP clones are impor-

tant for refactoring.

Wang and Godfrey [6] suggested an automated approach

for recommending clones for refactoring by extracting 15 fea-

tures from refactoring history and training decision tree-based

classifiers. Using their datasets this is compared with our

approach. We performed a comparison of Wang et al.’s

approach with our approach that uses Wang et al.’s features,

which significantly improved the classification results.

Tsantalis et al. [13] proposed a method which uses code

clones as inputs, and analyzes and examines clones in regard

to whether they can be refactored without altering program

behaviors. This refactorability analysis tool is used to perform

empirical studies on any clone detected by 4 common clone

detectors in 9 open-source real systems. However, it is dif-

ficult to make all four clone detectors with the same settings

since each clone detector has a different type of representation

such as CCFinder and Deckard converting code fragment

lines into tokens, CloneDR converts the source code lines

into AST nodes, and Nicad converts the code fragments into

lines. Therefore, each of the tools uses a different notation of

similarity and lead to different results.

Mondal et al. [14] presented a tool named SPCP-Miner

which can automatically identify SPCP clones by examin-

ing the software system’s clone evolution history. While our

approach provides different types of refactoring recommen-

dations to developers to prevent removing the positive side

of code clones and builds a training model after removing

outliers to improve the results.

Meng et al. [15] suggested a method for automated

clone refactoring on the basis of systematic edits. They

designed and implemented a tool termed RASE. RASE is

an automated refactoring tool consisting of four different

kinds of clone refactoring methods: using extract meth-

ods, using parameterized types, using form templates, and

adding parameters. This fully automates the process; there-

fore, the positive side of code clones would possibly be

removed. Mazinanian et al. [16] presented a tool for helping

developers for refactoring nontrivial clones in Java projects.

Yue et al. [2] introduced a tool called CREC,

a learning-based method which recommends clones via

extraction of 34 features of refactored clones and not

refactored from the current or previous software projects.

We compare our work for its ability to recommend refactoring

clones and show our novel technique performs much better

than the CREC technique.

Yoshida et al. [17] presented a proactive clone recom-

mendation system for ‘‘Extract Method’’ refactoring using

differential node identification. While our approach suggests

developers use more than one refactoring type.

Baars and Oprescu [18] extended the Eclipse refactor-

ing to enable more features among cloned code fragments,

for example variations in field accesses, string literals, and

method calls without argument.

Mondal et al. [23] presented a survey on the existing

tracking and refactoring tools and identified future research

opportunities in refactoring clones. They also compared the

state-of-art tools based on quality assessments features. They

stated that the automatic refactoring is not able to eliminate

the requirement of manual efforts regarding finding refactor-

ing opportunities, post refactoring takes extra effort and time

from the quality assurance engineers.

A summary of some of the approaches is reported

in Table 1.

IV. PROPOSED APPROACH

In this paper for the Unknown set classification, our adopted

work model combines supervised learning classifiers and

outlier detection for unknown classes. Figures 1 and 2 show

diagrams of our framework model.

This paper discusses the common and recent classification

algorithms used for refactoring code clone classification and

an outlier detection model combined for classifying the test

examples as belonging to known or unknown class sizes. The

improved performances of our classifier model is reliant upon

its closed set validation.Model validation inmachine learning

is the process whereby trained models are evaluated with

testing datasets. The testing dataset in closed set validation

contains examples which belong to known classes.

We ran an outlier algorithm for datasets to find the data

points which have considerably dissimilarity or inconsistency

with the other given data points. Then, the data point classes

are changed into unknown classes. After detecting outlier

data points, we build our model for closed-set classification

and perform analysis of their performance after training.

We train and test our classifier with vectors of datasets.

A. AUTOMATIC ADVISOR OF REFACTORING CLONES

FRAMEWORK

1) LOCAL OUTLIER FACTOR (DENSITY-BASED APPROACH)

The local outlier factor (LOF) is a score which is calcu-

lated by an unsupervised density-based algorithm suggested

by Mitchell et al. [24] which is reliant on nearest neighbor

search and indicates the likelihood that a particular data point

is an outlier/anomaly which is (LOF ≈ 1 ⇒ No Outlier) and

(LOF ≥ 1 ⇒ Outlier)

124980 VOLUME 8, 2020



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

TABLE 1. Brief summary of refactoring code clones techniques.

FIGURE 1. Workflow of the proposed outlier framework.

The outlier factor is the anomaly score of each sam-

ple. It detects outliers about their neighbors using k-nearest

neighbors for estimating the local density. It detects lower

density than their neighbors and considers outliers and

changes to unknown classes to the dataset. Our framework is a

step-by-step approach, firstly, we normalized all source code

fragments into special token sequences. Secondly, source

code fragments are transformed into abstract syntax trees by

existing lexical and syntax analysis tools to detect every block

from the provided source files. Thirdly, features are extracted

from each of the code fragments using the Java Development

Tool (JDT). Then, we created pairs of instances by features

vectors from the original data. We feed feature vectors of two

target blocks to feature vectors dataset and pass it through the

local outlier factor algorithm for outlier detection. Figure 1

demonstrates the workflow of our outlier method.

VOLUME 8, 2020 124981



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

TABLE 2. Brief description of publicly available Java code clone corpus contained different types of refactoring.

2) CLASSIFICATION MODEL

Machine learning is an understanding of the basic principles

of learning through mathematics, statistics, and computer

science. In other words, it is a branch of artificial intelli-

gence that aims to build a mathematical model based on data,

a well-known training group for making decisions or predic-

tions without being explicitly programmed. Machine learn-

ing contains many sub-domains and applications, including

statistical learning methods, neural networks, instance-based

learning, data mining, image recognition, natural language

processing (NLP), and enhanced learning [24].

We adopt machine learning algorithms to build detection

models for detecting refactored types. For each classifier,

the default configuration and parameters suggested by Weka.

Like any other machine learning framework, our framework

has two phases, training and testing. In training, we use

labeled pairs of refactored code from a given corpus. We train

and test our proposed framework using classification mod-

els, starting with the popular Bagging [25] and K-nearest

neighbors (KNN) [26] model to a recently published class

implementation, which can be used simply to solve both

classification and regression problems. Forest by Penaliz-

ing Attributes (Forest PA) [27] is a decision forest algo-

rithm building sets of very accurate decision trees using the

strengths of all non-class attributes in a dataset and simulta-

neously imposing penalties (disadvantageous weights). Ran-

dom Forest (RF) [28] creates multiple trees for classification.

FIGURE 2. Workflow of the proposed refactoring recommendation
framework.

In Figure 2, our approach shows themajor steps of the auto-

matic refactoring clone recommendation prediction model.

Our model uses 10 fold cross-validation to compare the

performance of classifiers before and after applying the local

outlier algorithm on the datasets and the application of super-

vised learning classifiers to predict recommendation refac-

toring clones. The final stage is the decision about whether

the class is refactored (Refactoring clone type and Unknown

clone type).

TABLE 3. Percentage of clone types can be refactored.

V. EXPERIMENTAL EVALUATION

A. DATASETS

We considered six publicly available datasets, which are

netbeans, eclipse-jdtcore, EIRC , J2sdk1.4.0-javax, eclipse-

ant , and cocoon. The details of the datasets are given

in Table 2 and Table 3 summarizes the data distribution in

six publicly available datasets in terms of clone types. For this

experiment, we consider every type of clone in datasets which

are 6 lines or 50 tokens or longer, since this is the standard

minimum clone size for benchmarking [29] and [30].We have

divided Type-I and Type-II clones into Move and Pull Up

Method refactoring and Type-III clones into Extract method

refactoring.

We also used six open projects [2]: Axis2, Eclipse.jdt.core,

ElasticSearch, JFreeChart , JRuby, and Lucene. These open

projects include refactoring and non-refactoring clones. The

details of the datasets are given in Table 4. We used

these datasets for two reasons. First, these datasets were

used by prior research [6] and [2]. Second, we used

Yue et al.’s datasets to compare our approach with previous

approaches [6] and [2]. Yue et. al. randomly chose a subset

of clone groups from clone sets without refactoring clones to

create a balanced data set of positive and negative examples.

The number of Non-refactoring clones’ subset is equal to that

of reported Refactoring clones.

B. EVALUATION

We generated excessive results for assessing the strength of

our suggested model in detecting clones and advising refac-

tored clones together with all other types. We experimented

with various numbers of features and with different data

124982 VOLUME 8, 2020



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

FIGURE 3. Performance of all the candidate classifiers with respect to F-measure assessment metric on different datasets.

TABLE 4. Brief description of publicly available Java code clone corpus
contained Refactored Clones and Non-Refactored Clones [2].

instances to demonstrate that our approach can achieve a

high degree of detection accuracy. Because of space limi-

tations, we reported only the best-performing classifiers for

most of the experiments and compared them with state-of-

the-art automatic recommendation refactored clone methods.

To generate AST from a given block to extract features,

we used Eclipse Java Development Tools (JDT).

1) PERFORMANCE OF DIFFERENT SUPERVISED LEARNING

CLASSIFIERS

We ran four different classifiers Bagging,KNN , ForestPA and

RF to compare the performance of classifiers before and after

applying the local outlier algorithm on the datasets. All the

candidate models were tested and trained by using 10 fold

cross-validation, whereby we ensured that the ratios between

refactoring clones and unknown classes were identical in

each of the folds and the same as in the overall dataset.

Figure 3 highlights the comparisons of all four classifiers

using the outlier algorithm and without using the outlier algo-

rithm respectively on our datasets. The experimental results

show that the decision tree algorithms, such as ForestPA and

RF, which are ensemble learning, achieved better outcomes

among all the classifiers. This is because RF combines a large

number of independent trees which are randomly trained.

2) PERFORMANCE COMPARISON WITH RECEIVER

OPERATING CHARACTERISTIC CURVE (ROC)

The classes in the classification curves are: Extract_Method,

Move/Pull_Method , Unknown. The receiver operating char-

acteristic (ROC) curve analysis is used as the measure of

performance. The higher value for the area under the ROC

curve indicates that the classifier the better it is at dis-

tinguishing refactoring clones in the classes. The Random

forest (RF) had a better performance in every class. There-

fore, we show an ROC curve for all datasets using RF.

FIGURE 4. Receiver operating characteristic curve (Roc) for netbeans
dataset.

FIGURE 5. Receiver operating characteristic curve (Roc) for eclipse.jdtcore
dataset.

RF has a ROC of 1.00 area under all classes on the net-

beans dataset as shown in Figure 4. The ROC curve area

under Extract_Method class is 0.99; other classes in the

ROC curve area is 1.00 on eclipsejdtcore dataset respec-

tively, as shown in Figure 5. On the EIRC dataset, the ROC

curve area under Extract_Method and Unknown class were

0.97; ROC curve area under Move/Pull_Method class was

0.92 as shown in Figure 6. We get also an ROC curve area

under Extract_Method class equal to 0.99 and 0.98 for other

classes on j2sdk1.4.0-javax dataset, as shown in Figure 7.

The ROC curve area under Extract_Method class is 0.87;

Move/Pull_Method class ROC curve area is 0.94; the ROC

VOLUME 8, 2020 124983



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

FIGURE 6. Receiver operating characteristic curve (Roc) for EIRC dataset.

FIGURE 7. Receiver operating characteristic curve (Roc) for
j2sdk1.4.0-javax dataset.

FIGURE 8. Receiver operating characteristic curve (Roc) for eclipse-ant
dataset.

curve area under Unknown class is 1.00 on eclipse-ant

dataset as shown in Figure 8. The ROC curve area under

Extract_Method and Move/Pull_Method classes is 0.90,

Unkonwn class is 1.00 on cocoon as shown in Figure 9.

Because of the imbalance of the dataset, Precision, Recall,

F1-measure was utilized for additional evaluation of the

classifiers

FIGURE 9. Receiver operating characteristic curve (Roc) for cocoon
dataset.

3) PERFORMANCE COMPARISON WITH OTHER

STATE-OF-THE-ART APPROACHES

However, because of the lack of refactoring methods research

papers, we compared how our method performed with

the existing and current approaches of refactoring clones,

using their reported Precision, Recall and F-score results

on datasets. We compare our method using CREC features

set [2] and the WangWei features set [6] with the CREC

approach and Wang et al. approach. Interestingly, most of

the refactoring methods are incapable of recommending the

types of refactoring clones. Wang and Godfrey [6] produced

a machine learning-based clone recommendation method,

which extracted fifteen features for clone relation, the con-

text of clones and cloned code snippet categories. Ten fea-

tures are representative of the current status of individual

clones, one of the features reflects the evaluation history

of each individual clone, three features describe the rela-

tionships between clones, and one feature shows any syn-

tactic differences between clones. The CREC approach [2]

extracts five categories of features: two categories model the

present version and historic evolution of an individual clone,

and three categories reflect the locations, code differences,

and co-change relationships amongst clone peers of each

of the groups. Figures 10 and 11 show a comparison of

our results using the RF algorithm with the state-of-the-art

approaches based on different assessment metrics on six

publicly available datasets. From the results it can be seen

that our approach performs much better based on the recall,

precision, F-measure and accuracy metrics. Results clearly

show whether our method is more effective in advising to

refactor clones, together with a comparison to the other meth-

ods. Our approach achieved the highest accuracy, at approx-

imately 93% in axis2-java project using CREC Features

set and approximately 87% in eclipse.jdt.core project using

Wang Wei features set. However, the method achieved better

results based on recall, precision and F-measuremetrics using

CREC Features set, except for the jfreechart and lucene

projects, which were better than our results. Additionally,

our method achieved better results based on recall, precision

124984 VOLUME 8, 2020



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

FIGURE 10. Performance comparison of different approaches with
respect to accuracy metrics on six publicly available datasets.

FIGURE 11. Performance comparison of different refactoring methods
with respect to different assessment metrics on six publicly available
datasets.

and F-measure metrics using the Wang Wei Features set in

all cases. Table 5 reports the results of our proposed work

compared with CREC and WanWei techniques [2] and [6].

VI. COMPARISON DISCUSSION

There are many methods which automatically remove clones

via application of refactoring [13], [15], [16]. Such methods

primarily perform an extraction of a method by parame-

terizing any clone differences and factorizing the common

part. Many researchers have carried out a program depen-

dency analysis to bring additional automation to the Extract

Method refactorings for near-miss clones. These are clones

containing different statements or divergent program syn-

tactic structures. In particular, Meng et al. found continually

updated clones in history and automated refactorings for

removing duplicated codes and to lower repetitive coding

efforts [15]. Tsantalis et al. automatically detected any dif-

ference between each clone, and additionally determined if

it was safe to parameterize those differences without altering

their program behaviors [13]. Later, Tsantalis et al. built an

additional tool that used lambda expressions for refactoring

clones [1]. As stated in past research [15], the above men-

tioned research primarily focuses on automated refactoring

feasibility rather than desirability.

Contrastingly, our research performs an investigation of

refactoring desirability. Through the extraction of various

elements which reflect the possible costs and benefit of refac-

toring, we rely onmachine learning for modeling the complex

interactions between clone-based features which are already

refactored or not refactored by developers. Thus, the trained

classifiers can imitate the humanmental processes of evaluat-

ing refactoring desirability, and also indicate the clones which

are likely to be refactored by developers.

To determine how appropriate refactoring is for each of the

clones, we utilize the machine learning approach to suggest

clones for refactoring by learning from refactoring abstract

syntax trees and program dependency of clones. In particular,

we collected examples of clone refactoring. Of the six target

systems, the extracted features are determined which are

related to cloned code. After assemblage of the features from

both ‘‘refactored’’ and ‘‘unrefactored’’ clones, we considered

clone refactoring as a classification issue. Therefore, our

approach captures the essence of analysis by the developers.

In particular, we trained classifiers to learn from features

from both refactored (with its types) and unrefactored clone

instances which occur in clone evolution. Our method was

evaluated by 10-fold cross validation, and cross-project val-

idation. This frees the developers from manually collection

and analysis of information for making decisions, which

allows developers to focus on the clones which seem the most

appropriate for refactoring.

Our approach performs an extraction of clone code which

can be refactored using a program dependency graph (PDG)

and an abstract syntax tree (AST). Consequently, it can

identify re-organized clone codes and can be used for pro-

cess extraction and structure analysis of the differences of

the statement, it can conduct variable identification and

extraction. Contrastingly, jDeodrant performs refactoring

of differing clones, but if the expressions appear in the

differences they are unable to be safely parameterized.

VOLUME 8, 2020 124985



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

TABLE 5. Results of our proposed work.

Not every difference requires parameterization. Additionally,

refactoring cannot cover every refactoring situation.

Regarding the clone code refactoring recognition stan-

dard, which clone code requires refactoring and which clone

code requires keeping track of attention, no established

standard currently exists. JDeodorant only evaluates the

predictions by collection of the attribute metrics of some

clone codes and does not consider the actual changes of

the software code. Even though these methods can evalu-

ate if the clone code requires refactoring, because of the

lack of qualitative analysis for evolution processes and the

actual nature of the code cloning operations, the main-

tenance personnel cannot accurately gain the information

needed.

124986 VOLUME 8, 2020



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

Tsantalis et al. automatically detected any difference

between clones and performed an assessment of if it was

safe to parameterize those differences without altering pro-

gram behavior. Our belief is that our approach uses AST

and PDG to lower the ambiguity of statement matching the

approach of Tsntalis et al. Yet, Tsntalis et al’s approach used

full automation, which might remove the positive side of the

code clones. Whilst our approach uses machine learning it

does offer a good method by which to construct such a model

and may prevent removal of the positive side of code clones.

Previous work [6] shows that the use of machine learning

is for integrating factors which may result in more accu-

rate recommendation of clones. Our model utilizes the out-

lier/anomaly algorithm which can be included into the model

of open-set classification as unknown classes to discover the

data points which have less similarity or inconsistency with

the other given data points. Next, these data point classes

are transformed into unknown classes. After detection of the

outlier data points, we construct out model for closed-set

classification and analyze their performance after training.

Tsantalis et al. [31] suggest using lambda expressions

(anonymous functions in Java 8) for addressing state-

ment/block level differences in cloned methods. In this

instance different lambda expressions are used as parameters

to a merged method and substitute various statements. The

same nine Java systems [23] were used for collecting clones.

Firstly, the authors used their approach to refactor 12,602 CPs

(covered by unit tests) from ‘‘JFreeChart’’, assessed as refac-

torable. Furthermore, they assessed 18,402 Type III CPs from

nine subject systems and approximately 60% of these were

reported as refactorable (but not actually refactored or tested).

Our approach used AST and PDG matching algorithms by

extending the ASTMatcher superclass given in the Eclipse

JDT framework. Our implementation also returns a differ-

ences list found amongst the matched PDG nodes used in

examining the preconditions.

A number of research types indicate that refactoring

improves software maintainability. It is required to recom-

mend a clone code which requires refactoring to maintenance

personnel. However, the management and maintenance of

clones has gained extensive attention recently, the methods

for predicting clone code refactoring are continuously pro-

posed, yet the existing tools for clone code refactoring is

imperfect, the degree of automation is low, and some errors

are introduced into the software. The technology required

for clone code refactoring remains unexplored, therefore it

is difficult to disseminate throughout the industry; no effec-

tive tools exist for the recommendation and management

of clones. Thus, exploring intelligent recommendation or

advisor methods is a vitally important content of clone code

refactoring research.

VII. THREATS TO VALIDITY

The datasets are restricted to Java-based clones. We per-

formed an evaluation and comparison of our method and

CREC and WangWei techniques, with only Refactoring and

Non-Refactoring clones extracted from their six open source

projects with a lack of labels of the refactoring types. The

evaluation may have a huge impact on the results if we

compare our method with current methods using refactoring

type clones.

VIII. CONCLUSION

This paper suggests a learning method which automatically

extracts features from the detected code clones and trains

the models to advise the developers in regard to what a

clone needs to be refactored and what is its type. We intro-

duce a new method of converting clone type outliers into an

Unknown clone to improve classification results. We present

an extensive comparative study and perform an evaluation of

the efficacy of our suggested idea by using state-of-the- art

classification models.

• We present a new machine learning framework that

automatically extracts features from the detected code

clones and trains models to advise the developers on the

type of refactored clone code and those which are not

refactored.

• We explore a new method by which to clone types of

outliers into an Unknown clone from the training cat-

egories, which significantly improves the classification

results.

• We present an extensive comparative study and an evalu-

ation of the efficacy of our suggested idea by using state-

of-the-art classification models.

We used four classification models to obtain their rela-

tive performance. The experimental results suggest that our

approach has high value in achieving high automated advis-

ing refactored clone accuracy. In future, we would like to

increase the scope of work to achieve additional improve-

ments, for example, by using set classification and deep

learning.

REFERENCES

[1] Y. Dang, S. Ge, R. Huang, andD. Zhang, ‘‘Code clone detection experience

at microsoft,’’ in Proc. 5th Int. Workshop Softw. Clones, 2011, pp. 63–64.

[2] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler,

‘‘Automatic clone recommendation for refactoring based on the present

and the past,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),

Sep. 2018, pp. 115–126.

[3] S. Kodhai and S. Kanmani, ‘‘Method-level code clone modification using

refactoring techniques for clone maintenance,’’ Adv. Comput. Int. J., vol. 4,

no. 2, pp. 7–26, Mar. 2013.

[4] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, ‘‘An empirical study of

code clone genealogies,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 5,

2005, pp. 187–196.

[5] N. Göde and R. Koschke, ‘‘Frequency and risks of changes to clones,’’ in

Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 311–320.

[6] W.Wang andM.W.Godfrey, ‘‘Recommending clones for refactoring using

design, context, and history,’’ in Proc. IEEE Int. Conf. Softw. Maintenance

Evol., Sep. 2014, pp. 331–340.

[7] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘Refactoring sup-

port based on code clone analysis,’’ in Proc. 135Int. Conf. Product

Focused Softw. Process Improvement. Cham, Switzerland: Springer, 2004,

pp. 220–233.

[8] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, and K. Words, ‘‘ARIES:

Refactoring support environment based on code clone analysis,’’ in Proc.

IASTED Conf. Softw. Eng. Appl., 2004, pp. 222–229.

VOLUME 8, 2020 124987



A. M. Sheneamer: Automatic Advisor for Refactoring Software Clones Based on Machine Learning

[9] Y. Higo, S. Kusumoto, and K. Inoue, ‘‘A metric-based approach to iden-

tifying refactoring opportunities for merging code clones in a java soft-

ware system,’’ J. Softw. Maintenance Evol. Res. Pract., vol. 20, no. 6,

pp. 435–461, Nov. 2008.

[10] M. F. Zibran and C. K. Roy, ‘‘A constraint programming approach to

conflict-aware optimal scheduling of prioritized code clone refactoring,’’

in Proc. IEEE 11th Int. Work. Conf. Source Code Anal. Manipulation,

Sep. 2011, pp. 105–114.

[11] K. Hotta, Y. Higo, and S. Kusumoto, ‘‘Identifying, tailoring, and sug-

gesting form template method refactoring opportunities with program

dependence graph,’’ in Proc. 16th Eur. Conf. Softw. Maintenance Reeng.,

Mar. 2012, pp. 53–62.

[12] R. Tairas and J. Gray, ‘‘Increasing clone maintenance support by unifying

clone detection and refactoring activities,’’ Inf. Softw. Technol., vol. 54,

no. 12, pp. 1297–1307, Dec. 2012.

[13] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, ‘‘Assessing the refac-

torability of software clones,’’ IEEE Trans. Softw. Eng., vol. 41, no. 11,

pp. 1055–1090, Nov. 2015.

[14] M. Mondal, C. K. Roy, and K. A. Schneider, ‘‘SPCP-miner: A tool for

mining code clones that are important for refactoring or tracking,’’ in Proc.

IEEE 22nd Int. Conf. Softw. Anal., Evol., Reeng. (SANER), Mar. 2015,

pp. 484–488.

[15] L. Hua,M. Kim, andK. S.McKinley, ‘‘Does automated refactoring obviate

systematic editing?’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng.,

vol. 1, May 2015, pp. 392–402.

[16] D. Mazinanian, N. Tsantalis, R. Stein, and Z. Valenta, ‘‘JDeodorant: Clone

refactoring,’’ in Proc. IEEE/ACM 38th Int. Conf. Softw. Eng. Companion

(ICSE-C), May 2016, pp. 613–616.

[17] N. Yoshida, S. Numata, E. Choiz, and K. Inoue, ‘‘Proactive clone recom-

mendation system for extract method refactoring,’’ in Proc. IEEE/ACM 3rd

Int. Workshop Refactoring (IWoR), May 2019, pp. 67–70.

[18] S. Baars and A. Oprescu, ‘‘Towards automated refactoring of code clones

in object-oriented programming languages,’’ EasyChair, Tech. Rep., 2019.

[19] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. New Delhi, India: Pearson, 1995.

[20] R. K. Saha, C. K. Roy, K. A. Schneider, and D. E. Perry, ‘‘Understanding

the evolution of type-3 clones: An exploratory study,’’ in Proc. 10th Work.

Conf. Mining Softw. Repositories (MSR), May 2013, pp. 139–148.

[21] M. Mandal, C. K. Roy, and K. A. Schneider, ‘‘Automatic ranking of

clones for refactoring through mining association rules,’’ in Proc. Softw.

Evol. Week IEEE Conf. Softw. Maintenance, Reeng., Reverse Eng. (CSMR-

WCRE), Feb. 2014, pp. 114–123.

[22] M. Mondal, C. K. Roy, and K. A. Schneider, ‘‘Automatic identification

of important clones for refactoring and tracking,’’ in Proc. IEEE 14th Int.

Work. Conf. Source Code Anal. Manipulation, Sep. 2014, pp. 11–20.

[23] M.Mondal, C. K. Roy, andK. A. Schneider, ‘‘A survey on clone refactoring

and tracking,’’ J. Syst. Softw., vol. 159, Jan. 2020, Art. no. 110429.

[24] T. M. Mitchell, Machine Learning. 1997, vol. 45, no. 37. Burr Ridge, IL,

USA: McGraw-Hill, 1997, pp. 870–877.

[25] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,

pp. 123–140, Aug. 1996.

[26] D. W. Aha, D. Kibler, and M. K. Albert, ‘‘Instance-based learning algo-

rithms,’’Mach. Learn., vol. 6, no. 1, pp. 37–66, Jan. 1991.

[27] M. N. Adnan and M. Z. Islam, ‘‘Forest PA: Constructing a decision forest

by penalizing attributes used in previous trees,’’ Expert Syst. Appl., vol. 89,

pp. 389–403, Dec. 2017.

[28] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,

2001.

[29] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, ‘‘Comparison

and evaluation of clone detection tools,’’ IEEE Trans. Softw. Eng., vol. 33,

no. 9, pp. 577–591, Sep. 2007.

[30] V. Saini, H. Sajnani, J. Kim, and C. Lopes, ‘‘SourcererCC and

SourcererCC-I: Tools to detect clones in batch mode and during software

development,’’ in Proc. 38th Int. Conf. Softw. Eng. Companion, 2016,

pp. 597–600.

[31] N. Tsantalis, D. Mazinanian, and S. Rostami, ‘‘Clone refactoring with

lambda expressions,’’ in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.

(ICSE), May 2017, pp. 60–70.

ABDULLAH M. SHENEAMER received the

B.Sc. degree in computer science from King

Abdulaziz University, Saudi Arabia, in 2008, and

the M.Sc. and Ph.D. degrees in computer sci-

ence from the University of Colorado at Colorado

Springs, USA, in 2012 and 2017, respectively.

He is currently an Assistant Professor of computer

science and the former Vice-Dean of the Faculty

of Computer Science and Information Technol-

ogy, Jazan University, Saudi Arabia. His research

interests include data mining, machine learning, software engineering, and

malware analysis. His current research interests include software clone and

refactoring software clone, malware detection, and code obfuscation detec-

tion using machine learning approaches. He has published several papers

in reputed international journals and conferences. He had reviewed several

articles in reputed journals, such as IEEE ACCESS, the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, Information Sciences (Elsevier), and the

Frontiers of Computer Science. He is also a Senior Meta Reviewer of the

IEEE International Conference on Machine Learning and Applications.

124988 VOLUME 8, 2020


