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Abstract

Accurate pulmonary nodule detection plays an important role in early screening of lung
cancer. Although there are many presented CAD systems based on deep learning for
pulmonary nodule detection, these methods still have some problems in clinical use.
The improvement of false negatives rate of tiny nodules, the reduction of false alarms
and the optimization of time consumption are some of them that need to be solved as
soon as possible. In view of the above problems, in this paper, we first propose a novel
full convolution segmentation framework for lung cavity extraction in preprocessing
stage to solve the time consumption problem of the existing pulmonary nodule detection
systems. Furthermore, a 2D-NestedUNet segmentation network and a 3D-RPN
detection network is stacked to get the high recall and low false positive rate on nodule
candidate extraction, especially the recall of tiny nodules. Finally, a false positive
reduction method based on multi-model ensemble is proposed for the further
classification of nodule candidates. Our methods are evaluated on several public
datasets, LUNA16, LNDb and ChestCT2019, which demonstrated the superior
performance of our CAD system.

Introduction 1

Lung cancer is a leading cause of cancer-related death both in men and women. Every 2

year lung cancer results in about 170 million deaths worldwide. The early diagnosis of a 3

lung lesion is recognized as the most important method to reduce the lung cancer 4

mortality rate. The low-dose CT scans which is one diagnostic way can be used to 5

screen for lung cancer in people. Using this screening method can decrease the risk of 6

dying from lung cancer. Now researchers are looking for new attempts to refine CT 7

screening to better predict whether cancer is present [1]. Due to the rich pulmonary 8

vascular structure and the different skill levels of radiologists, the potential malignant 9

lesions are easy to be ignored. In the clinic, an effective way to deal with this problem is 10

to diagnose by two radiologists respectively and then to summarize their answers. 11

However, this may increase the workload of radiologists [2]. With the development of 12

digital medical image processing, using computer-aided diagnosis (CAD) system to 13

assist pulmonologists in clinical diagnosis is a trend. However, the traditional 14

approaches are less accurate and more complicated in detecting pulmonary nodules at 15

early stage of lung cancer so that are hardly applied to help doctors in clinical diagnosis. 16
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In recent years, with the rapid development of deep learning in the field of medical 17

image analysis, a large number of CNN-based CAD systems have been utilized for the 18

detection of pulmonary nodules [3–5]. Compared with the traditional methods [6,7], the 19

DNN-based methods have made great progress in accuracy and practicability of 20

pulmonary nodule detection. Nevertheless, many challenges still exist in the lung nodule 21

detection procedure. The detection procedure is usually divided in three stages, i.e. 22

image prepossessing, nodule candidates extraction and false positives reduction. Firstly, 23

in prepossessing step, how to quickly and efficiently extract lung cavity plays an 24

essential role. Due to the various sizes and morphology of pulmonary cavity, the 25

traditional multi-threshold-values based segmentation is not robust enough. Therefore, 26

offering an efficient lung cavity extraction method is very important. Secondly, in 27

clinical practice, radiologists pay more attention to small nodules, because these small 28

nodules are more likely to cause lung cancer in the future. To ensure high sensitivity for 29

them, in other words, CAD is needed to have a high recall rate for small nodules that 30

may better resolve lung cancer early screening. However, the size of small nodules is too 31

small and their radiographic manifestations always appear ground glass attenuation so 32

that it is likely to be neglected. The presented methods, neither using 2D nor 3D 33

system, can find small pulmonary nodules well [3, 4]. That means the developers need 34

invest more research in this area in the future. Thirdly, because abundant tissues exist 35

in the human pulmonary cavity, for instance blood vessel and chest wall, the 36

appearances of these tissues are very similar with the appearance of the pulmonary 37

nodules. This results in producing amounts of false alarms during detection. Making 38

something to accurately distinguish between tissues and nodules thereby reducing the 39

number of false positive signals is very important and necessary [8]. 40

The primary aim of this study is to develop an advanced CAD system that extracts 41

information from medical images efficiently and provides radiologists a precise and 42

timely diagnosis of lung lesion. The key contributions of this paper are summarized 43

below: 44

• we present a FCNN framework which is based on U-Net [12] for quickly and 45

stably performing pulmonary cavity extraction. 46

• we stack a 3D-RPN based detection network [3] and a 2D-NestedUNet based 47

segmentation network [13] for providing target candidates to satisfy high recall 48

rate and low false positive rate of pulmonary nodule detection. 49

• we propose an integrated classification network which consists of ResNet [23], 50

DenseNet [24] and SENet [25], summarizing the results from detection step and 51

classification step to reduce false candidates. 52

Related Work 53

Before the rapid development of CNN in medical image processing, the pulmonary 54

nodules detection was mostly based on hardcrafted features. In recent years, with the 55

successful application of deep learning in medical images, the intelligent screening 56

system of pulmonary nodules has been greatly developed. Based on the exploited deep 57

architecture, these approaches can be divided into proprecessing, candidate nodules 58

extraction and false positive reduction. In [3, 4, 14], the pulmonary cavity of the CT 59

scans was obtained by traditional image processing methods such as region growth and 60

morphological operations. [15] proposed the spot detection for extracting the nodule 61

candidates. Using this method, nodule and non-nodule samples could be distinguished 62

according to their different shape, size, specific texture, density and other features. 63

However, due to the choices of thresholds, the detection performance of this method for 64
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small nodules and tiny nodules was very poor and not robust. In recent years, many 65

excellent CNN-based CAD systems for automatic pulmonary nodules detection are 66

presented, which can roughly be divided into 2D image slices and 3D volume images. 67

In [3], 2D image slices were fed into Faster-RCNN [16] to locate suspected nodules and 68

output their sizes in CT images. First from the perspective of 3D volume images, [4] 69

established a pulmonary nodules detection system with the aid of 3D-Faster-RCNN 70

framework. This method could make full use of the spatial information of 3D images. 71

In [17], the attention mechanism is brought into the approach presented in [4] to further 72

acquire 3D spatial semantic information. In [18], a new self-supervised pulmonary 73

nodule detection framework is proposed based on 3D-RPN to improve the sensitivity of 74

nodule detection by adopting multi-scale features to increase the resolution of nodule 75

cubes. Compared with the 2D models, these 3D methods employ spatial semantic 76

information to better analyze the morphological characteristics of nodules and locate 77

them much accurately. However, their recalls for small nodules are not high so that 78

would be easy to increase the false negatives rate for small nodules and tiny 79

nodules. [19] presented a 3D full convolutional network which is based on V-Net [20] to 80

extract nodule candidates. A high recall is the advantage of this solution. For reducing 81

more false positives, [4, 6] proposed a simple 3D convolutional network adding the back 82

of detection module to filter false candidates. [21] introduced the attention mechanism 83

after false positive reduction module to facilitae the performance of classification for 84

pulmonary nodules (benign and malignant). 85

Methods 86

Our proposed CAD system can be roughly divided into three stages: 1) FCNN based 87

lung segmentation, 2) multi-model ensemble based pulmonary nodule extraction, and 3) 88

false positive reduction (the whole pipeline shown in Fig 1).

Fig 1. The Overview of Our CAD system. A whole CT scan is fed into our system to
predict nodule candidates. The process consists of three stages, i.e. preprocessing,
pulmonary nodules extraction and false positive reduction. In first stage, raw data will
be processed to extract lung cavity and then fed into second stage to find pulmonary
nodule candidates. Finally, the candidates will be filtered in stage 3 to reduce false
alarms.

89

Novel FCNN for Lung Segmentation 90

Accurate lung segmentation is the basics for rapidly constructing automated pulmonary 91

nodule detection system with high-accuracy and sensitivity. By using the traditional 92

method, the 2D single slice is first processed with a Gaussian filter to remove the fat, 93

water and kidney background and then followed with a 3D connection region extraction 94

module to remove irrelevant regions. However, this method is time consuming and 95

unstable. In order to accelerate this processing for experiment and deployment, this 96

paper propose a lung segmentation network, which is based on U-Net. The encoder path 97

includes five consecutive convolution modules, the number of feature maps is doubled at 98

each convolution module. Each convolution module consists of two convolution filters 99

with kernel size = 3, followed by a max pooling function with kernel size = 2 and stride 100

= 1. Each convolution filter is followed with a BatchNormalization and a nonlinear 101

activation function ReLU. Finally, the final layer in the encoder path produces a high 102

dimensional image representation with high semantic information. 103
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Assume that the input of the segmentation network is a single-channel grayscale 104

image with a size of 1×H×W, denoted as Iin, and the output of each convolution 105

module ith in the encoder path is denoted as Xi
e, which represents the number of output 106

channels, each convolution module ith takes as input to Xi−1
e . At the end of the encoder, 107

a feature map Fe will be obtained whose size is reduced by 4 times compared to Iin. 108

Different from the traditional U-Net structure, we make some modification for our 109

FCNN in the convolution mode of the decoder path, which is to use the same 110

convolution structure as the encoder path to implement feature decoding, and at the 111

end of the decoder, a convolution filter with kernel size = 1×1 used as the network 112

output layer. The entire network will eventually output a segmentation prediction result 113

with the same size as the input image. The predicted value of each pixel represents the 114

likelihood that this pixel belongs to a lung cavity. The overall lung cavity segmentation 115

network is shown in Fig 2, using the Dice coefficient as loss function which is same to 116

original U-Net [12]. 117

Fig 2. The Schematic of Our FCNN framework for Lung Segmentation.

Nodule Candidate Extraction based on Multi-model Ensemble 118

In this section, we design a multi-model ensemble network, which is combined with a 2D 119

segmentation network and a 3D detection network to sensitively screen the nodule 120

candidates. 121

2D NestedUNet for Pulmonary Nodule Extraction 122

NestedUNet [22] can accelerate network optimization by using dense convolutional 123

blocks which bridge the semantic gap between the feature maps of the encoder and 124

decoder. However, we found that NestedUNet with depth supervision module is difficult 125

to be optimized and easy to cause gradient explosion while training for pulmonary 126

cavity segmentation in this work. Thus we use the fast version of NestedUNet with the 127

same loss function from the original NestedUNet as our segmentation module, the 128

specific formulas are summarized bellow: 129

Loss = λLossBCE + LossDice (1)
130

LossBCE =
1

N

N∑

n=1

rn log(pn) + (1− rn) log(1− pn) (2)

131

LossDice = 1−

∑N

n=1
pnrn + ǫ

∑N

n=1
pn + ǫ

−

∑N

n=1
(1− pn)(1− rn) + ǫ

∑N

n=1
(2− pn − rn) + ǫ

(3)

where pn is the probability that pixel n is predicted as lung cavity, rn is the true 132

category of pixel n, rn = 1 for the lung cavity and, rn = 0 is regarded as backgound. 133

n ∈ {1, 2, 3 . . . N}, N = H ×W , ǫ is a minimal number. 134

3D RPN for Nodule Extraction 135

Pulmonary nodule detection, as a crucial step in the CAD systems, aims to accurately 136

locate the nodule, meanwhile catching more true nodule candidates and reducing the 137

number of non-nodule candidates as much as possible. We present a 3D RPN model for 138

detecting nodule candidates from CT images, where a modified U-Net is the backbone 139

network [4]. The structure of pulmonary nodule detection is shown in Fig 3. The 140
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network consists of an encoder and a decoder. Due to the limitation of GPU memory, 141

the input of the 3D RPN network is cropped from the 3D CT image. The size of the 142

input image is 128×128×128. The encoder includes 3D convolutional layers, 3D residual 143

blocks, and 3D maximum pooling layers. Each 3D residual block contains three residual 144

units. The decoder has deconvolutional layers, combining units and residual blocks. 145

Each combining unit concatenates the output of the convolutional layer and the 146

corresponding deconvolutional layer, which likes the long connection in U-Net. In the 147

left combining unit, the location information is introduced as an extra input, the feature 148

map of this combining unit has the size of 32× 32× 32× 131. Finally, the output 149

feature is resized to 32× 32× 32× 3× 5 after two convolutional layers. The last two 150

dimensions correspond to the anchors and regression box respectively. There are three 151

anchors with different scales, corresponding to three bounding boxes with the length of 152

3, 10 and 20 mm. The loss function is defined as below: 153

L = 0.5Lcls + pLreg (4)

where p ∈ {0, 1} (0 for negative and 1 for positive). The classification loss Lcls is the 154

cross-entropy loss and the regression loss Lreg is the smooth L1 loss function. 155

Fig 3. The Structure of 3D RPN for Nodule Detection. Each cube represents a 4D
tensor. The size is Length×Width×Height× Channels. The last two dimensions of
the output tensor correspond to the three anchors and five regression box indicators
(nodule coordinates x, y, z, nodule size r and probability).

Combination of Nodule Candidates 156

After a CT scan volume is fed to the aforesaid 2D and 3D pulmonary nodule extraction 157

methods respectively, two lists of pulmonary nodule candidates will be provided, here 158

denoted as L1 and L2. Then we can combine these candidates by using algorithm 1. 159

Firstly, based on NMS algorithm, we remove the parts of candidates whose detection 160

boxes have significant overlaps with others. After that, we delete the parts of candidates 161

from 2D segmentation that have high overlaps with above 3D handled results also based 162

on NMS. The 3D detection method has high accurate location as benefit point however 163

its recall rate is relatively lower than 2D segmentation method. Meanwhile, using 2D 164

segmentation network will provide a large number of false positive candidates. Combing 165

the results of two different methods can help us to get accurate position of pulmonary 166

nodules and avoid excessive false alarms. That is the reason why we use model ensemble 167

strategy. Besides, based on CUDA platform, we use multi-thread technology to fast 168

perform the calculation during the comparison process so that can dramatically reduce 169

the time cost of fusion phase. 170

False Positives Reduction 171

As previously mentioned, nodule candidates from detection phase may contain many 172

false alarms, although we have taken some measures to suppress this issue. To reduce 173

the non-nodule candidates, we propose a 3D DCNN-based false positive reduction 174

module which contains three network models. Fig 4 shows our architectural diagram for 175

false positives reduction, the module is based on the 3D network of ResNet [23], 176

DenseNet [24] and SENet [25]. For the center of a given nodule candidate, we extract a 177

3D data cube of size 32× 32× 32 that possibly includes pulmonary nodule as input to 178

the three network models, and then get the probabilities pi (i ∈ {1, 2, 3}) of the three 179

classifiers. To further eliminate false positives, we design the strategy described as 180

April 9, 2020 5/11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.14.040931doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.040931
http://creativecommons.org/licenses/by/4.0/


Algorithm 1 Merging two nodules results extraction

1: L1 and L2 are two results
2: LR is the result of the merge
3: L2 = NMS(L2)
4: for l2 in L2 do

5: for l1 in L1 do

6: if IOU(l2, l1) > thresh then

7: remove(l2)
8: end if

9: end for

10: end for

11: LR = L1 + L2

follows: 1) for predicted probability pi, if pi ≥ T1, the final classify probability of the 181

input cube is equal to the average value of all pi ≥ T1; otherwise, the final result is the 182

average value of all pi. 2) multiplying the classify probability from 1) with the detection 183

probability from detection step as the final predicted result of the CAD system, if the 184

value ≥ T2, input will be denoted as true alarm; conversely, as false alarm. During the 185

experiments, T1 and T2 are set as 0.5. 186

Fig 4. The Architectural Diagram for False Positive Reduction. 1) the input size of the
false positive reduction module is 32× 32× 32. 2) p1, p2 and p3 are the output
probabilities of ResNet, DenseNet and SENet respectively. 3) the final probability is the
average value of p1, p2 and p3.

Experiments 187

Dataset 188

In this paper we employed three lung nodule datasets in all. 189

• LUNA16 Dataset [9] comes from LIDC-IDRI [27] which consists of 1018 cases 190

from several institutions. The dataset excluded scans with a slice thickness greater 191

than 2.5 mm. In total, 888 CT scans are included. For each CT scan, nodule 192

candidates are provided and the corresponding class labels (0 for non-nodule and 1 193

for nodule) are also annotated. 1186 nodules are annotated across 601 patients. 194

• LNDb Dataset [10] contains 294 CT scans collected at the hospital CHUSJ in 195

Porto, Portugal between 2016 and 2018. The dataset excluded scans with a slice 196

thickness greater than 1 mm. All CTs were annotated by at least one radiologist. 197

Finally, the dataset includes 1897 annotations by the 5 radiologists with 1429 198

corresponding unique findings. 199

• ChestCT2019 Dataset [11] is proved by TIANCHI medical AI competition. We 200

get 1397 samples with nodule from the CT scans of 1000 patients. The slice 201

thickness of CTs is less than 2 mm. The biggest difference between ChestCT2019 202

and the two above datasets is that the slice spacings of CTs in ChestCT are 203

almost all 5 mm. 204
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Data Preprocessing 205

The HU values commonly observed in pulmonary nodules in CT scans are used. The 206

Hounsfield scale of tissue density is based on two values: air as -1000 HU and water as 0 207

HU. Density of other tissues is related to this range, usually from -1000 to +400 HU for 208

pulmonary CT image analysis. Because in pulmonary CT scan exist abundant tissues, 209

in order to decrease the impact of other tissues and avoid losting more information 210

details after we compress raw images into 256-bit grayscale images, we selected [-1350, 211

150] as the observation range. As the images were collated from different institutions 212

using different CT scanners which results in a wide variation of image parameters within 213

our training dataset, we rescaled the slice thickness of all used CT scans to 1.0 mm. 214

Implementation Details 215

Lung Segmentation 216

The training data of lung cavity segmentation comes from LUNA16. The original label 217

contains five types, background, left lung, right lung, and nodules etc. For lung cavity 218

segmentation, we first merged the label = 3, label = 4 and label = 2 as the lung cavity, 219

label = 1 and label = 5 as the non-lung cavity, and the samples with false label were 220

eliminated. Then, a single CT slice image was selected along the axial direction as input 221

for training. To effectively reducing the over-segmentation rate, when selecting 2D slice 222

images, we set the proportion of slice including and excluding the lung cavity to 7:3. 223

Prevent model overfitting and enhancing its generalization ability, in data augmentation 224

stage we taken some measures like 1) random flipping horizontally or vertically, 2) 225

adding random Gaussian noise, and 3) standardization with the mean of 0 and the 226

variance of 1. During the training, SGD with momentum of 0.9 and initiative learning 227

rate 0.001 is used as optimizer to minimize the our loss function. 228

Pulmonary Nodule Extraction 229

a) 2D NestedUNet for Pulmonary Nodule Extraction: The dataset that we use in this 230

task is from LIDC-IDIR [27], because it contains the particular and relative precise 231

description of pulmonary nodules compared with other datasets, which is helpful to 232

build an accurate segmentation model. For making suitable data as input to network, a 233

large number of patches are randomly cropped from 2D slices according to the center 234

coordinates and sizes of the nodules, whose size is 256× 256 and must contain complete 235

nodules within the region. To reduce the false positives, we also select the patches 236

which have no nodules for training. In addition, the approaches such as random 237

horizontal and vertical flip, random shift from the crop center, random angle rotation, 238

random color dithering and Gaussian smoothing are used to augment training samples. 239

During the training, SGD with momentum of 0.9 and initiative learning rate 0.001 is 240

used as optimizer to minimize the our BCEDiceLoss (binary cross entropy loss and dice 241

coefficient loss combined with weight). 242

b) 3D RPN for Nodule Extraction: As the 3D RPN network is deep, and has more 243

parameters than 2D RPN, the model is easy to overfit on small dataset. To solve this 244

problem, we use similar methods with above task to enlarge the number of training 245

data. In Section we have discussed the significance of the location of tiny nodule in 246

early pulmonary nodule detection. Hence we increase the sampling frequencies of tiny 247

nodules in the training set. Specifically, the sampling frequencies of nodules larger than 248

10 mm and 20 mm are expanded 2 and 4 times higher than other nodules, respectively. 249

The sampling frequency of tiny nodules smaller than 3mm also increases 2 times. Some 250

of negative samples have similar appearances with pulmonary nodules, making them 251
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Table 1. Comparison with Different Pulmonary Nodule Detection Methods on Lung
Database [28]

Methods F1 score Sensitivity Specificity Accuracy Dice
Avg. per
scan(s)

F. Liao [4] 0.9408 0.8753 0.9994 0.9841 0.9313 63

U-Net [12] 0.9658 0.9696 0.9872 0.9872 / /

R2U-Net [29] 0.9832 0.9944 0.9832 0.9918 / /

LGAN [30] / / / / 0.9850 /

Our FCNN 0.9836 0.9834 0.9985 0.9965 0.9864 7.7

difficult to be classified correctly. Hard example mining is a common technique to solve 252

this problem. 253

False Positive Reduction 254

As for training data of the proposed networks, we firstly rescale each CT in [0, 255] 255

using the specified windowing values, and then normalize it in [0, 1]. After that, for 256

each selected candidate, we use the center of candidate as the centroid and then crop a 257

64× 64× 64 cube. In the training data, there is an imbalance problem on the number of 258

positive and negative samples. To solve the problem, we use the following strategies to 259

augment data: 260

• Random crop: for each 64× 64× 64 cube, we crop smaller cubes in the size of 261

32× 32× 32 from it. 262

• Rotation: for each 32× 32× 32 cube, we rotate it by 90◦, 180◦, 270◦ from three 263

orthogonal dimensions (coronal, sagittal and axial position), thus finally 264

augmenting 9 times for each chosen candidate. 265

• Multiple windowings: for each candidate, we use different windowing values (-1350 266

to 150 HU, 1200 to 600 HU and -1000 to 400 HU), thus augmenting 3 times. 267

The training procedure of three classification networks are almost identical. We use 268

SGD with the momentum of 0.9 as optimizer to minimize the loss function and update 269

the model parameters. The initial learning rate is 0.001 and decay is 0.9. The batch size 270

is set to be 128. Due to the imbalance problem of positive and negative samples, we 271

finally choose focal loss [26] as loss function. And the experiments proved that the effect 272

of focal loss is better than cross entropy loss. 273

Results 274

Lung segmentation is very important for analyzing lung related diseases. In this 275

experiment, we compare the performance of our FCNN model with the current methods 276

on dataset [28], including the traditional benchmark method [4], U-Net model [12], 277

R2U-Net [29], and LGAN [30]. 2D Dice score, F1 score and sensitivity were calculated 278

with same settings for each method. The performance comparison is shown in Table 1. 279

Compared with the state of the art methods, our FCNN model has the highest score, 280

with an average F1 score of 0.9836, an accuracy of 0.9965, and an average Dice score of 281

0.9864. Although the traditional method had the highest specificity, it requires a series 282

of thresholds, morphological manipulations, and composition analysis. Compared with 283

this method, our method provides an end-to-end solution, which takes an average of 3.4 284

seconds per scan. 285

In order to visualize the well performance of our proposed architecture, we compare 286

the predicted results of our FCNN on two different CT slices with the traditional 287
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Fig 5. Comparison with Traditional Method from F.Liao [4] and Our FCNN. The first
column lists two different scans and their corresponding ground truth in second column.
In the third column are the segmentation results by F. Liao and in last column are the
results by our method.

Table 2. The Average Recall Comparison of Detection Models

Method LUNA16 LNDb ChestCT2019 Ave. per scan(sec)
DSB 74.40 20.05 6.94 83

DeepLung 83.40 20.83 13.31 91
Ours(only 3D-RPN) 84.54 34.77 14.05 70

Ours 90.40 45.57 37.01 147

method. Fig 5 shows the segmentation results. The first and second column shows the 288

original input CT slice and the corresponding ground truth, and the other columns 289

display the segmentation results from traditional method and our FCNN respectively. 290

The significant improvement in lung segmentation by using our FCNN model can be 291

observed. 292

We trained the detection model on LUNA16 trainset and evaluated the performance 293

on the validation set of LUNA16. LNDb and ChestCT2019 are also evaluated. In 294

addition, we compared the performance with the DSB and DeepLung models on the 295

three dataset [4, 5]. DSB model from Data Science Bowl 2017 pulmonary nodule 296

detection competition and DeepLung from LUNA16 competition. The average recall 297

comparison of the detection models is shown in Table 2. 298

From the above table, we can see that our model ensemble method performs better 299

on each data set than the others. The average recall of our model ensemble method on 300

the LUNA16 is 90.4%, 45.57% on LNDB and 37.01% on ChestCT2019. The 301

performance of the only 3D-RPN used method is poor than our complete method, but it 302

takes the shortest time. In [4], the average recall of the DSB method model trained on 303

the Data Science Bowl 2017 competition data set is 0.8562, but it is designed to neglect 304

the very small nodules during training, the LUNA16 dataset is not suitable. 305

Conclusion 306

In this paper, we propose a high-performance pulmonary nodule detection system based 307

on stacking of deep convolution networks. We propose a novel full convolution 308

segmentation network based on U-Net for lung segmentation to solve the efficiency 309

problem of the existing pulmonary nodule detection systems. Furthermore, a 3D-RPN 310

detection network and a 2D-NestedUNet segmentation network is stacked to get the 311

high recall and low false positive rate on pulmonary nodule extraction. Finally, a false 312

positive reduction method based on multi-model ensemble is proposed for the further 313

classification of nodule candidates. Extensive experimental results on public available 314

datasets, LUNA16, LNDb and ChestCT2019, demonstrate the superior performance of 315

our CAD system. We believe that our CAD system will be a very powerful tool for 316

early diagnosis of pulmonary cancer. 317
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