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Abstract 
This paper describes ASPAR (Automalx and 
Symbolic PARallelization) which consisv: of a 
source-to-source parallelizer and a set of interac- 
tive graphic tools. While the issues of data 3epen- 
dency have already been explored and used in 
many parallel computer systems such as vex or and 
shared memory machines, distributed memory par- 
allel computers require, in addition, explic*it data 
decomposition. New symbolic analysis and data- 
dependency analysis methods are used tcl deter- 
mine an explicit data decomposition scheme Auto- 
matic parallelization models using high lev( 1 com- 
munications are also described in this papcr. The 
target applications are of the “regular-mesli 10 type 
typical of many scientific calculations. 
The system has been implemented for the language 
C, and is designed for easy modification fcir other 
languages such as Fortran. 

1. Introduction 
Distributed memory parallel computers, whii le offer- 
ing virtually unlimited, cost effective pertmnance 
[12], suffer by comparison with other architwtures in 
their perceived programming problems. Paialleliza- 
tion by individual users has shown that the arcliitecture 
is extremely powerful and has led to the dew lopment 
of sophisticated runtime systems such as Express 
which support the communication, decompca ition, I/ 
0, et.c requirements of such programs. DesIrite these 
advances application developers continue ta develop 
conventional sequential programs in which &it: natural 
or inherent parallelism is all too often obscured by pro- 
gramming “tricks”. Since these sequential algorithms 
are often required to execute on parallel comli uters for 
performance reasons we must develop methods by 
which they can be easily converted. 
There are several potential approaches to making pro- 
gramming for a parallel computer easy: 

1) New or extended languages: OCCAM, Ada, 
Strand, Fortran/8x [23], C* [19], etc 

2) Intelligent runtime support and ibraries: 
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Express [20], Linda, Helios, etc.[5],[6] 
3) Parallelizing translators or compilers: 

r31 ,HI, r 101 ,r:2 11 
ASPAR represents a :system of type (3) collaborating 
with Express, a system of type (2).In a similar manner 
to the “vectorizing coimpiler” and “autotasking librar- 
ies” [171,[181 this system allows users who have little 
interest in the details of distributed memory parallel 
computers to use them. 
Much work concerning parallelization and optimiza- 
tion for vectorizing arid shared memory parallel com- 
puters has been done. [1],[111,[131,[14],[151,[221,[231 
In addressing distributed memory machines some re- 
searchers have adopted the approach of extending 
techniques of other p<arallel architectures such as “A 
virtual shared memory machine on a distributed mem- 
ory machine”[lO] In contrast with such work, our ap- 
proach is more application-oriented and more straight- 
forward. We attempt to find an explicit global data de- 
composition strategy for a sequential code by 
symbolic analysis, and then figure out appropriate 
communication requirements. We find that high level 
communication is more efficient than a simple “point- 
to-point” interface in terms not only of ease of paral- 
lelization but also for enhancing the performance of 
the parallelized progrm. 
It is naive to expect that all sequential programs can be 
automatically parallelized. One of our goals, therefore, 
is to delineate those applications and those software 
engineering practices which allow automatic parallel- 
ization. In order to hlelp guide the user to methods 
which will allow for successful parallelization AS- 
PAR provides interacltive graphical tools which allow 
the user to “visualize” the parallelism of a sequential 
program and understand problems preventing its par- 
allelization. 

2. System Overview 
Fig1 shows an overall picture of the system. The 
“bold” boxes represent the components of the auto- 
matic parallelizer. The: complementary graphical anal- 
ysis tools, “mapv” and “ f too l”  (described in 
section 6) are shown relative to the parallelizer at the 



appropriate stages of the parallelization process. Sup- 
port tools supplied by the basic Express system and 
which play an important role in the parallelization are 
shown underlined. 
The ‘‘Preprocessor” is a standard C pre-processor 
use to remove ‘#’ directives.”Parser”, the second 
phase of ASPAR, contains a C language parser and 
lexical analyzer and is used to break down a piece of C 
code to its “parse-tree” containing a significantly sim- 
plified representation of the original program. These 
two phases contain all the language dependencies for 
the programming language being padelized. 
The “Pre-analyzer” is an aggregation of techniques 
whose purposes are both to prepare the “parse-tree” for 
further complex manipulations and to improve the par- 
allelism of original code. Its basic tasks are: 

Link 
Individual parse-ms for single source fiies 

must be combined to form a representation of the 
whole program. This is similar in concept to a 
conventional object module linker except that it 
operates on the “parse-trees” in some internal 
representation mther than machine code object 
files. 

Loop normalization is a technique commonly 
used in optimizing and vectorizing compilers. 
Pointer expressions,” union” and got 0’s 
which make symbolic analysis impossible are in- 
hibitors for ASPAR preventing parallelization, 
Flow control statements (“if ”), nested loops and 
procedure calls do not necessarily inhibit paral- 
lelization. 

Several other common techniques are effective 

Loop normalization & “inhibitor” checking 

Other 

in helping subsequent symbolic dependency 
tests. Forward substitution, induction variable 
recognition [22] and compound statement fis- 
sions are used. Note that no loop reconstruction 
[13],[221,[23] techniques are applied since these 
methods are not particularly useful at the parul- 
lelization stage for a distributed memory archi- 
tecture. They can, however, be usefully em- 
ployed in the final node compiler after parallel- 
ization has been completed. 

The “Analyzer” module is used to extract the parallel- 
ism from the sequential program and its functions are 
described in detail in the next section. 
The “Translator” is responsible for modifying the 
original sequential program by the addition of suitable 
calls to the runtime library. Note that this translation is 
“source-to-source” to enhance the portability of the 
parallelized code and also to facilitate later “hand-tun- 
ing” by the user. 
To further enhance the performance and portability of 
the parallelized code we have adopted the Express 
runtime system for our work, shown in the bottommost 
box of Fig. 1. This system has the advantage of already 
providing many automated decomposition tools and a 
correspondingly matched communication, U0 and 
graphics system which can easily be used in perform- 
ing the types of decomposition used by ASPAR. The 
availability of high-level tools such as the debugger 
and performance analysis systems is also an advantage 
in providing the user an easy transition from sequential 
to parallel programming. 

3.1 “Yet another” dependency analysis tech- 

stool 
intermediate result 

<dependency) 

6 ommunication 

NDB: Source 1-1, 

P a r a l l e l  IIU, c 

Fig. 1: ASPAR Syste 
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C statement 

f o r  ( i = O ;  i < N ;  i++) 
i f  (aa [i] <sh) 
a a  [c [ i l  I =lo; 
cc=lO ; 
s func  (x,y) ; 

nique 
We chose to exploit the loop level parallelism exhibit- 
ed by the C language “for” statement as the lrasis for 
our parallelization. The parallelism implicit in such 
constructs is typically extracted by dependency analy- 
sis - if loop iterations show no inter-dependent es they 
can be executed in parallel. 
The technique of “data dependency analysis” has been 
explored by many researchers [131,[141,[151,[~:21,[231 
and is used as the vehicle of advanced compders for 
various type of parallel computers such as CRAY and 
Alliant. A typical technique is to construct a s;,-called 
“dependency-tree” which represents every type of de- 
pendency implied by the statements of the original se- 
quential code. In contrast with such an elegant but 
complex technique, the dependency analysis r :quired 
for a distributed memory parallel computer can be sim- 
plified by assuming that no loop reconstructicin (loop 
fusion, loop distribution, loop interchr anging, 
etc.[22],[23]) is necessary. One advantage of inhis fact 
is that C language constructs which typically ,>revent 
vectorization of “for”  loops will be allowed by AS- 
PAR. “Loop carried dependencies”, are the only con- 
ventionally recognized dependencies which iprevent 
parallelization. 
As a result the “A-list” (Atom list) method which rep- 
resents only the flow of variables through each state- 
ment (including flow control nad loop headers) is quite 
convenient for performing the analysis - a much sim- 
pler technique than building the full dependent y tree. 
In cases where loops involve flow control staiements 
dependencies are examined for each potential’ execu- 
tion path by “stacking” the A-lists dynamically In this 
way nested loops and procedure calls from within 
loops are reasonably simply dealt with. 
Note that not all “loop carried dependencies’l inhibit 
parallelization. The availability of such cca llective 
communication primitives as “excombine” allows 
loops with the “recurrence” dependency to be prallel- 
bed even when they would normally be forbid den. 
3.2 

The distinguishing feature of a distributed rrliemory 
parallel computer is the availability of no shared mem- 
ory. As a result the machines are cheap and simple to 
build and can be scaled to very large numbers of pro- 
cessors. Unfortunately their programming requires in- 
terprocessor communication which, if done carelessly, 

Local and Global Decomposability arralysis 

aa  [i] , :i, sh 

A-list 

i N 
hl JLL 
a s [ c [ i l l  c [ i ]  ,i 
C NULL 
NJLL 

Left-side 

can result in communiciation overheads dominating the 
amount of time spent by the CPU’s in useful work. A 
good strategy for such architectures is that of “domain 
decomposition” and it is this which ASPAR attempts 
to implement in translating sequential programs. 
A major component of ASPAR, therefore is devoted 
to analysis of the possible global decomposition strat- 
egies. Once this is done interprocessor communication 
becomes well-defined and can be tackled separately. 
To solidify the issues surrounding the decomposability 
analysis consider a normalized “for” 1oop.The range 
of the loop can be defined by integer constants or vari- 
ables, and the loop incirement is +l. Assume that this 
loop has no “loop carried dependencies” so that paral- 
lelization is possible. Further assume that the loop con- 
tains reference to an i m y  “AR”, indexed by some 
function “f ( ) ”. Symbolically this specification takes 
the form: 

f o r ( e l ( i ) ;  e 2 ( i ) ;  e 3 ( i ) )  I 

1 

i 1,oop index 
Body (i , AR) One or more source statements 
involving the loop index and array “AR”. 
f (i) Array indexing function 

Body(i, A€<[.  . . I  [f (i) 1 [. . . I )  ; 

where 

Now we proceed to conisider each index of array “AR” 
independently. Denote by “FC the set of array index- 
ing functions used to address elements of AR through- 
out in this loop 

F1 = I f l ( i ) ,  f2( i ) , . . . ,  f , ( i ) 1  
We define this index of array AR to be “locally decom- 
posable”, (LDC) if and only if each indexing function 
can be expressed in the form, where a and b are interg- 
er constants. 

f k ( i )  = a k  * i. + b k  

andallakareequall <= k <= n. 
Furthermore define this index of array AR to be “glo- 
bally decomposable”, (GDC) if and only if it is locally 
decomposable in every loop, 1, each of these loops is 
parallelizable, and the values of ak are identical in 
each case. 

1107 



0 0 . 0  Micro stencil 
0 Irrelevant point array data: za (i+LJ) Fragment of source program 

xs 
for(i=l ; icxs; i++) { 

for(j=l ; jcys; j++) { 
qa = za[i][l+l] + zr[i][j] + 

za[i][j-l] * zb[i][i] + 
za[i+l][i] + zu[i][j] + 
za[i-l][i] zv[i][j] + zz[i][j]; 

0.1 75 * (qa - za[i][j]); 
za[i][i] = za[i][j] + 0 

1 
1 

Figure 3. Construction of “micro-” and “macro-” stencils from update scheme 

3.3 LOOP range variation 
Having made these decisions we need to further check 
that the range of array indices used by the program is 
consistent in each instance. All loops which involve 
the globally decomposable array ‘‘AR” should have the 
same range of indices. In the case where loop indices 
are constants this is easy to verify. Where loop ranges 
are indicated by variables it is impossible to statically 
determine whether or not the ranges are equal. One op- 
tion would be to implement a dynamic load balancing 
strategy which would be able to take care of potential 
changes in array usage. This solution is, however, ex- 
tremely costly to implement both in terms of human 
effort and also its impact on algorithmic performance. 
Instead ASPAR makes a simpler assumption that ar- 
ray ranges specified by variables will remain constant. 
This assumption is valid in the vast majority of the reg- 
ular applications at which ASPAR is directed. 
3.4 Communication analysis, “stencils” 
A “stencil” is a range of distances from a particular 
point in the mesh from which information is required 
to update and maintain the integrity of the data in a dis- 
tributed memory architecture. In the trivial case each 
grid point is independent and no interprocessor com- 
munication is required when parallelizing the algo- 
rithm. In more common cases, such as the one shown 
in Fig. 3, a stencil can be constructed of finite size to 
direct the communication required by the parallel al- 
gorithm. 
Fig. 3 shows a typical stencil associated with to a nest- 
ed “FOR” loop. We can distinguish two types of sten- 
cil: micro and macro-stencils. The “micro-stencil” de- 
scribes the update scheme for a single point in the grid 
whereas the macro-stencil describes the area where the 
various decomposed domains overlap and communi- 
cation is required. In the example of Fig. 3 values from 
nearest neighbors are required to update the point at 
(i , j ) . This means that the “micro-stencil” for the 
first array index is (-1:l). Similarly the stencil for the 
second index is seen to be (- 1 : 1). In principle we could 
use these “micro-stencils” to implement a strategy in 
which individual grid points were communicated 
whenever necessary. 

Using the “micro-stencils”, however, it is possible to 
construct a “macro-stencil” which describes the areas 
where the entire decomposed domain ‘‘overlaps’’ with 
neighboring domains. Having done this we can simpli- 
fy and optimize the inter-node communication by us- 
ing the collective communication ability of Express 
to transmit all of the boundary messages to the appro- 
priate nodes before entering the nested loops. The ben- 
efit is that the number of communication calls is re- 
duced dramatically and a significant improvement in 
performance is obtained. 

4. Parallelization models 
In order to automatically parallelize a FOR loop, AS- 
PAR uses only 4 types of parallelization model, each 
of which uses a different high-level communication 
function from the Express library [121,[20]. This in it- 
self is an interesting result since it shows the impor- 
tance of the high-level “collective” communication 
routines over the simple “point-to-point” communica- 
tion schemes. 
Each of the four strategies is briefly described with an 
example of the original source code and the parallel- 
ked version. For simplicity the arguments to the Ex- 
press functions have been simplified. 

4.1 Independent cycles, no communication 
If a “for” loop has no loop carried dependency and 
every updated array is globally decomposable, it can 
be parallelized without any communication. A typical 
example is kernel #12 of the Livermore loop bench- 
mark, “fist difference”, shown in Fig.4. Parallelizing 
such a loop on a distributed memory computer is 
equivalent to simply dividing the loop range by the 
number of processors available, being careful to treat 
the remainder correctly!. This operation is performed 
by the function “AS set ranges” which calculates 
variables “AS-cnt= to inscate the range of loop iter- 
ations in each node. 
4.2 “Combine” type 
The typical example of this case is a “reduction” loop 
which has only one kind of loop carried dependency 
known as “recurrence’’. Typically the operation on the 
data values is some simple binary operator such as ad- 
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dition or subtraction. The example shown in Fig. 4 is 
the standard scalar product taken from kemel113 of the 
Livermore Loops. 
To parallelize such a loop a minimal type of iklgorith- 
mic modification is required since the order ccf opera- 
tion is changed in going to the parallelized vt. rsion of 
the code. The Express excombine functiom is used 
to recalculate the global quantity after the pmn llel loop 
operations have been completed. 
4.3 “Concatenation” type 
In isolation this type of loop has the same aplparance 

,- 

Sequential Code 
~~ 

Type 1: No Communication 

Type 2: “excombine” 

for(k=O; k<N; k++) { 
Q = 0.0; 

0 += (Z[k] * X[k]); 
1 

Type 3: “exconcat” 

for (i=O;i<elm;i++) { 
X[i]= 0.0; 
R[i] = bqi]; 
P[i] = bb[i]; 

1 

Type 4 “exchange” 

for(j=2; j<=6; j++) { 
for(k=2;k<=n;k++) { 

qa = za[k][j+l] * zr[k][i] + 
za[k][i-l] zb[k][j] + 
za[k+l][i] zu[k][i] + 
za[k-l][i] zv[k][i] + zz[k][i]; 

0.1 75 (qa - za[k][i]); 
za[k][i] = za[k][i] + 

1 

as that described in ration 4.1 which involved no 
communication: there is no loop carried dependency. 
If, however, some of the data in the loop is not decom- 
posed elsewhere in the: program it must be accumulat- 
ed in every processor. This operation involves broad- 
casting each node’s portion of the decomposed data to 
all others while simudtaneously receiving contribu- 
tions from all other nodes. It is handled by a simple call 
to the Express exconcat function. 
A good example of the use of this technique is the con- 
jugate gradient matrix solver described in section 5.2. 

Parallel Code 

AS-set-ranges(0, n, 1,O); 
for(k=l ; k<=AS-cnt[O],; k++) { 

x[kI = Y[k+ll- y[kI; 
1 

Q = 0.0; 
AS-set-ranges(0, N-1 , 0, 1); 
for(k=O; kcAS-cnt[O]; I(++) { 

excombine(&Q, D-PLIJS, ALLNODES); 

Q += (Z[k] * X[k]); 
1 

AS-set-ranges(0, elm-1, 0, 1); 
for (i=O;icAS-cnt[O];i++) { 

X[i]= 0.0; 
R[i] = bqi]; 
P[i+AS-ofst[O]] = bh[i]; 

1 
AS-size[O] = sizeof(doub1e) AS-cnt[O]; 
exconcat (&P[AS-of st [O]], P, AS-size[ 01); 

exvchange(&za[ 1 ][2], AS_num[ 1 1, LEFT, 
&za[AS-cnt[O]l[2] ,AS-num[l], RIGHT); 

exvchang e(&za[AS-cnt[ O]+ 1 ][2], AS-nu m[ 1 1, 
RIGHT,&za[2][2], AS-num[l], LEFT); 

exvchange(&za[2][1], AS-num[O], DOWN, 
&za(2][ AS-cnti[ 1 I], AS-n U m[ 01, UP) ; 

exvchange(&za[2][AS--cnt[l]+l], AS-num[O], UP, 
&za[2][2], AS-num[O], DOWN); 

AS-set-ranges(1, 6, 2,O); 
for(j=2; j<=AS-cnt[l]; j++) { 

AS-set-ranges(0, ri,  2, 0); 
for(k=2;k<=AS_cnt[O];k++) { 

qa = za[k][j+l] zr[k][i] + 
za[k][i-l] * zb[k][j] + 
za[k+l][i] ” zu[k][i] + 
za[k-l](j] * zv[k](j] + zz[k][j]; 

zaIk][i] = za[k][j] + 0.1 75 (qa - za[k][i]); 
1 

1 

Figure 4. Diffi!rent types of loop parallelization 
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4.4 -axcnange- type 

The “stencil” operations described in section 3.4 re- 
quire a rather different type of communication. Before 
any loop involving updates to decomposed data which 
possess a “macro-stencil“ we must arrange for the re- 
gions of overlap between processors to be communi- 
cated so that the updates can occur with valid data. 
Typical examples of this kind are partial differential 
equation solvers, image processing algorithms, etc. 
The particular example shown in Fig.4 is from 
kernel #23 of the Livermore Loops - “Implicit hydro- 
dynamics”. 
Note that this loop carries dependencies: from 
z a [ k l  [ j - l l t o  z a [ k l  [ j l  and from z:a[k- 
1 I [ j 3 to z a  [ kl [ j I . Normal dependency analysis 
would prohibit parallelizing this loop but ASPARpro- 
vides a special switch to enable the user to allow such 
parallelkations although the parallel algorithm is now 
subtly different from the sequential one. Alternate 
strategies which will be implemented in the future in- 
volve the “red-black” U scheme and the “hyper- 
plane” technique which both allow parallelization 
without algorithmic modification. 
Having made the decision that both loops are parallel- 
izable and that the arrays are decomposable a standard 
mapping to a two-dimensional grid is invoked and ap- 
propriate boundary information is updated with the 
Express exvchange  function. 

5. Experi 
To evaluate our methods we have processed several 

uliicrcni iyyyc;s UI appii~auuii wiui ~cv-nn 

5.1 Livermore loop kernels 
The Livermore kernels are 24 loops from actual pro- 
duction codes that have been widely used to evaluate 
the performance of various computer systems. [8] 
Written originally in Fortran, the benchmarks were re- 
written in C for this test. Table 1 shows the type of the 
application, its algorithmic complexity and the result 
of applying ASPAR. The complexity here is defined 
as the number of computations required to complete 
the main procedure on an ideal parallel computer as a 
function of input size [8]. The complexity of a vector 
sum, for example loop #11, is 0 0  on a sequential 
machine. It will, however, be O(1ogN) if it can be par- 
allelized in a binary tree fashion. If the iterations of a 
loop can be executed completely independently its 
complexity is O( 1). 
These tests determined that 14 of the loops were paral- 
lelized by ASPAR. Examination of the failed cases 
showed that some were not parallelizable, even by 
hand. In each successful case the parallel algorithm 
correctly matched the expected complexity for the ide- 
al machine. 
5.2 A Conjugate Gradient linear e ~ u a t i ~ n  solver 
While the Livermore loops provide an indication of the 
basic capabilities of ASPAR it is important to realize 
that “real” programs present significantly more com- 
plex problems, not merely because they use more com- 
plex algorithms but because a large application has 
more “baggage” surrounding it which can inhibit par- 
allelization in many ways. 

Table 1. R e ~ ~ l t s  of ~ l ~ n ~  ASPAR to the Livermore loop kernels 
indicates that automatic parallelization was possible) 

Loop number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Type of Application 

ynamics 
lete Cholesky 

Inner product 
Banded linear equations 
Tridiagonal elimination 
Linear recurrence relations 
Equation of state 
A.D.1 
Numerical Integration 
Numerical Differentiation 
Finite sum 
Finite difference 
2-D e in a cell” 
1 -D e in a cell” 

Search loop from Monte Carlo 
Implicit conditional computation 
2-D explicit hydrodynamics 
Linear recurrence relation 
Discrete ordinates transport 
Simple matrix calculations 
Planck distribution 

Prim Ple 
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Complexity Parallelized? 

Yes 
No 
Yes 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
No 
YeS 
Yes 
Yes 
No 
Yes 
No 
No 
Yes 
Yes 
Yes 
NO 



To look at the potential problems we tested ASPAR dex. 
on a complete algorithm I a conjugate gradi :nt matrix 
solver, the abbreviated source code for whicli is shown 
in Fig. 5. It is important to note that this is a “banded” 
solver rather than one for full matrices, which present 
considerably fewer problems. 

.$ * /’’ strings are comments inserted by ’- Mod- 
ifications ate usually indicated by variablaldfunctions 
whose names start with “AS-”. The inserted routines 
whose names begin with “ex” are calls to th,. Express 
runtime library inserted by ASPAR* 
The variable “PI” indicates a decomposed array m- 

Note that d l  arrays decompos& except =p**. This 
affay is an argument to the “band_”lti” function 
and is with too complex an index for ASPAR to 

The array “ar” could potentially be decomposed in 

trix it is better on grounds of global efficiency, howev- 
er, to decompose oIlly along he first dimension as 
shown in ~ i ~ .  7. the two inner loops of 
“band_”l i > y  Adhough the outer loop is 
ized despite the complex flow of control and nested 

The Parallelid code is shown in Fig. 6 The ‘1 * $ * * * two dimensions. due to the banded structure of the ma- 

a 

/“””’ Solver for linear equations by CG metha. “““I 
#include “stdi0.h” 
#define SZ 400 
#define BND 100 
#define ep (double)l .Oe-14 
double eps; 
double ar[S2J[BND],bb[SZl,xx[SZl,P[Sa,X[SZ]; 
double R[SZJ,newR[SZ],newP[SZl,KP[SZ],new 3 [SZ]; 
void band-multi(A,x,b,elm,hbnd) 
{ 

{ 

int elm.hbnd; 
double A[SZ][BND],xn,b[]; 

int i,j,band; 
double sum; 
band=hbnd*2-1; 
for(i=O;i<eIm;i++)[ 

sum4.O; 
if(ic h bnd) 

else 

bfi]=sum; 

for(j4;j<band;j++)sum+=A[i][i]‘r :U]; 

for(j&j<band;j++)sum+=A[i][i]’::[(j+l +(i-h bnd))]; 

I 
I 
{ 
main() 

int i,j ,k,elm,hbnd,param[2]; 
double suml ,sum2,rd,alpha,beta; 
read-data(ar ,xx, bb,param) ; 
elm=param[O],hbnd=pam[l]; 
for(i=O;i<elm;i++)[ 

x[i]=O.O; 
P[i]= bb[i]; 
R[i]=bb[i]; 

I 
sum14.0; 
for(i=O;i<elm;i++) 

epsap’suml ; 
k=l ,rd=(double)l OOOOO.0; 
while(rd>eps){ 

suml +=bb[i]’bb[i]; 

band_multi(ar,P,KP.elm,hbnd); 
suml=sum2=0.0 
for(i=0;i<elm;i++)suml +=R[i]’R[i]; 
for(i=0:i<elm;i++)sum2+=P[i]’KP[i]; 

for(i4;i<elm;i++)newX[i]=X[i]+alpha’P[i]; 
for(i=0;i<elm;i++)newR[i]=R[i]-alpha’KP[i]; 
sum2=0.0 
for(i&,i<elm;i++)sum2+=newR[i]’newR[i]; 
beta=sum2/surnl; 
for(i=O;i<elm;i++) 
newP[i]=newR[i]+beta’P[i]; 
&sum1 ; 
for(i=O;i<elm;i++){ 

P[i]=newP[i]; 
R[i]=newlR[i]; 
X[i]=new:lc[i]; 

alpha=suml/sum2; 

I 
k++; 

1 
print-result(X); 

I 

Figure 5 A sequential alllgorithm to perform Conjugate Gradient iteration 

X bb 

Fig.7: Domain decomposition strrntegy 
(Illustrated for four nodes) 

1 2 4 8 
Nurriber of Nodes 

16 

Fig. 8: Speedup of automatically parallelized code. 
The performance of the Conjugate Gradient (Fig. 6) is 

shown for matrices of order 200 and 300 with 
bandwidth 97. Data collected from an NCUBEllO 
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b $ $ $ $ $ $ $ ~ $ ~ $ $ ~ ~ ~  I*$ CONCATENATEP $'I 
1'6 AUTOMATICALLY PARALLELIZED PROGRAM 8'1 
(*$ Decompose this as 1 -D problem $'I 
I*$ P1: proc.number of 1st dimension $'I 
I*$ ASgrocs:Number of processors $'I 

$'I 
I*$ AS-1st:Table of logical-physical proc.numb $'I 
/*$ AS-ofst:Offset for undecomposed data $'I 
I*$ AS-cnt:No.cf iteration after parallelized $'I 
/*$$$$$$$$$$----EXPRESS header---$$$$ 
#defineP1(1) /'-You may change it-'/ 
#indude <express .h> 
struct nodenv env; 
int AS~lgc[3],ASgrocs[3],AS_lst[lOO], 

AS-type=l23,AS-ofst[3],AS-cnt[3],AS-size[3]; 
/"""'Solver for liner equations by C G method """'I 
#indude "stdi0.h" 
#define SZ 400 
#define BND 100 
#defineeD(double)l .&-I 4 

I*$ AS-1gc:Logical processor location (logical no) 

double eps; 
double a~SUPl][BND],bb[SUPl],xr[SUP1],P[SZI.X[SUPl]; 
double RiSUP1 1,newRiSUPi l,newPiSUP11,KPlSUPll, . .  

newX[s~pi ] ;  

int elm,hbnd; 
double A[SUPl][BND],x[],b[]; 

int i,j,band; 
double sum; 
band=hbnd'2-1; 

I*$ PARALLEL $'I 
AS-set-range(0,elm-1 ,O,l); 
for(i&;i<AS-cnt(O];i++)( 

sum=O.O; 
if(i +AS-ofst[O]<hbnd) 

for(j&;j<band;j++) 

else 

void band-multi(A,x,b,elm,hbnd) 

I*$ Sequential: Data-Decomp Strategy2 $'I 

sum+=A[i][i]'x[i]; 

for(j=O;j<band;j++) 

Wi]=sum; 

I*$ Sequential: D a t a - W m p  Strategy2 $7 

sum+=A[i][i]'x[(i+l +(i+AS-ofsqO]-hbnd))]; 

1 
I 
main() 

int i,j,k,eIm,hbnd,param[2]; 
double sum1 ,sum2,rd,alpha,beta; 

exparam( benv); 
ASgrocs[O]=env.nprocs; 
exgridinit(1 ,ASgrocs); 
exgridcoord(env.procnum ,AS-lgc); 
exconcat(AS~lgc,4,AS~lst,4,NULLPTR.ALLNODES, 

NULLPTR,MS-type): 

read_data(ar,xx,bb,pm); 
elm=param[O], hbnd=param [ 1 1; 

AS-set-range(O.elm- 1 ,0, 1 ) ; 
for(i=O;icAS_cnqO];i++)[ 

X[i]=O.O; 
P[i+AS-ofsqO]]=bb[i]; 
R[i]=bb[i]; 

( 

I*$$$$$$$$ lninalizatm for EXPRESS $$$$$$$$$*I 

l . ~ ~ $ $ $ $ $ $ $ ~ $ $  ~ $ $ $ $ ~ l  

I'd PARALLEL $'I 

1 

AS-size[O]=sizeof( 'P)'AS-num[O]; 
exconcat( bP[AS-ofst(O]] ,AS-size[O], P ,AS-size[O], 

suml=O.O; 
I*$ PARALLEL $'I 

AS-set-range(0,elm-1 ,O,l); 
for(i=O;i<AS-cnqO];i++) 

sum I +=bb[i]'bb[i]; 
I*$ COMBINE suml by PLUS $*I 

excombine(8sum 1 .f-add,sizeof(suml),l ,ALLNODES, 

eps=ep'suml ; 
k=l ,rd=(double)100000.0; 
while(rd*eps)( 

NULLPTR.env.nprocs.AS-lst,&AS-type); 

NULLPTR,&AS-type); 

band-multi(ar,P,KP,elm,hbnd); 
suml =sum24.0; 

I*$ PARALLEL $'I 
AS-set-range(0,elm-1 , O , l ) ;  
for(i=O;icAS-cnt[O];i++)sum 1 +=R[i]'R[i]; 

excombine(bsum1 ,f-add,sizeof(sumi ) ,I ,ALLNODES. 

AS-set-range(0,elm-1 ,O,l); 
for(i=O;icAS-cn~O];i++) 

I*$ COMBINE sum2 by PLUS $'I 
excombine(bsum2,f-add,sizeof(sum2),1 ,ALLNODES, 

alpha=suml/sum2; 

AS-set-range(O,elm-l,O,l); 
for(i=O;icAS-cnt[O];i++) 

newX[ i]=X[i]+alpha'P[ i+AS-ofst(O]]; 

AS-set-range(0,elm-1 ,O,i);  
for(i=O;i<AS-cnt[O];i++)newR(i]=R(i]-alpha'KP[i]; 
sum24.0; 

AS-set-range(0,elm-1 ,O,l); 
for(i4;i<AS-cnt[O]:i++)sum2+=newR[i]*newR[i]; 

excombine(&sum2.f-add,sizeof(sum2) ,1 ,ALLNODES. 

beta=sum2huml; 

AS-set-range(0,elm- 1 ,O , 1 ) ; 
for(i&;icAS-cnt[O];i++) 

rd=suml ; 

AS-set-range(0,elm-1 ,O, l ) ;  
for(i=O;i<AS-cnt[O];i++)( 

P[i+AS-ofst(O]]=newP[i]; 
R[i]=newR[i]; 
X[i]=newX[i]; 

I*$ COMBINE suml by PLUS 8'1 

I*$ PARALLEL $'I 
NULLPTR,bAS-type); 

sum2+=P[i+AS-ofstfO]]'KP[i]; 

NULLPTR.bAS-type); 

I*$ PARALLEL $'I 

I*$ PARALLEL $'I 

I*$ PARALLEL $'I 

I*$ COMBINE sum2 by PLUS $7 

NULLPTR,LAS-type); 

I*$ PARALLEL $7 

newP[i]=newR[i]-tbeta'P[i+AS-ofst[O]]; 

I*$ PARALLEL $'I 

1 
I*$ CONCATENATE P $'I 

AS-size[O]=sizeof( 'P)"AS-num[O]; 
exconcat(&P[AS-ofst[O]],AS-size[O],P,AS-size[O], 

k++; 

print-result(X); 

NULLPTR,env.nprocs,AS-lst,&AS-type); 

1 

1 

re 6. Parallel Comj gate Gradient Algorithm as generated by ASPAR 
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loop constructs. 
The current version of ASPAR was unabl : to cor- 
rectly parallelize the bounds on the 40 clmstructs 
and so these had to be modified by hand in xder for 
the algorithm to function correctly. The conilpilation/ 
linking process involved no special precauRions and 
some sample performance data for the paral le1 algo- 
rithm are shown in Fig. 8. We feel that the::e results 
are extremely interesting. The problems sc,lved are 
relatively small and, considering the banded nature 
of the matrix, the performance gains are quiRe strong. 
With relatively minor improvements in the nterface 
between ASPAR and Cubix, the parallel I/(’) system 
of Expressit should be possible to comp1eh:ly auto- 
mate the parallelization of this algorithm. 

6. Support Tools 
As well as the automatic parallelizer ASPA R offers 
several supporting utilities which aid useias whose 
programs are not immediately parallelized. 
“ f too l”  is a utility which allows the use1 to inter- 
actively visualize the flow of data/control cm a win- 
dow and the relevant source code on ano~ier win- 
dow. It also presents information about the loop car- 
ried dependencies and the possibilities of data 
decomposition corresponding each FOR limp. An 
example is shown in Fig.9. 
“mapv” is a set of tools which allow the ucer to in- 
teractively visualize the patterns in which tlie appli- 
cation accesses memory with blue colored I Eference 
and red colored update. This type of infomation is 
central to achieving good domain decon position 
strategies. The operation of this utility is a two-phase 
process. 

. 

1) Auto-profiling 
A profiling utility is used to “inslrument” 
the sequential program and record 
references to particular data simctures 
indicated by the user. 

Once the sequential program has been 
2) Visualization 

----- ----- Fagment of source code == 
for(i=O; icelm; i++) { 

sum = 0.0; 
if(ichbnd) { 

for(j-0; jcband; j++) 
sum += ar[i][i] vx[i]; 

1 :  

===== Analysis resuk ========= 
Dependency: none 

- 

executed a data file is created which 
contains mernory access pattern data. This 
can be visiualized with the “vtool” 
program which allows the user to “play 
back” the hisitory of memory accesses made 
by the sequential program. 

entered construct 0 

7. Conclusions 
ASPAR is a powerful tool which is able to automat- 
ically parallelize a significant sequential program for 
a distributed memory parallel computer. It is able to 
not only parallelize the basic sequential code but 
also modify its algorithm for parallel execution. Its 
basic abilities lie in Sophisticated symbolic analysis 
coupled to a knowledge base regarding “domainde- 
composition” parallelimtion. The Express runtime 
environment both simplifies the task of paralleliza- 
tion and also allows the user the flexibility to run the 
parallelized programs on a wide variety of parallel 
computer systems and network based workstations. 
Generally speaking, ASPAR works extremely well 
on applications which use regular meshes. Even 
when failing to parallelize a problem ASPA R gener- 
ally issues adequate diagnostics to correct the prob- 
lem or modify the cading to allow parallelization. 
Particularly important in this area are the graphical 
display tools which alllow the user to visualize prob- 
lem areas and interactively modify them. 
Although ASPAR is unable to parallelize all C pro- 
grams its current abilities, especially in regard to the 
efficiency of the padelized algorithms, are very 
encouraging. One area in which work remains to be 
done is the interaction with the I/O system. Once this 
is accomplished ASP,4 R should be capable of com- 
pletely parallelizing qiuite sophisticated C codes. 
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