
An Automatic and Symllbolic Parallelizatioin System for Dis-
tributed Memory Parallel Computers

K. Iitudome, G. C. Fox
Caltech Concurrent Computation Program

California Institute of Technology, Pasadena, CA 91 125

A. Kdizwa, J. W. Flower
P,: irasoft Corporation

2500 E. Foothill Bllvd., Suite 205, Pasadena, CA 91 107

Abstract
This paper describes ASPAR (Automalx and
Symbolic PARallelization) which consisv: of a
source-to-source parallelizer and a set of interac-
tive graphic tools. While the issues of data 3epen-
dency have already been explored and used in
many parallel computer systems such as vex or and
shared memory machines, distributed memory par-
allel computers require, in addition, explic*it data
decomposition. New symbolic analysis and data-
dependency analysis methods are used tcl deter-
mine an explicit data decomposition scheme Auto-
matic parallelization models using high lev(1 com-
munications are also described in this papcr. The
target applications are of the “regular-mesli 10 type
typical of many scientific calculations.
The system has been implemented for the language
C, and is designed for easy modification fcir other
languages such as Fortran.

1. Introduction
Distributed memory parallel computers, whii le offer-
ing virtually unlimited, cost effective pertmnance
[12], suffer by comparison with other architwtures in
their perceived programming problems. Paialleliza-
tion by individual users has shown that the arcliitecture
is extremely powerful and has led to the dew lopment
of sophisticated runtime systems such as Express
which support the communication, decompca ition, I/
0, et.c requirements of such programs. DesIrite these
advances application developers continue ta develop
conventional sequential programs in which &it: natural
or inherent parallelism is all too often obscured by pro-
gramming “tricks”. Since these sequential algorithms
are often required to execute on parallel comli uters for
performance reasons we must develop methods by
which they can be easily converted.
There are several potential approaches to making pro-
gramming for a parallel computer easy:

1) New or extended languages: OCCAM, Ada,
Strand, Fortran/8x [23], C* [19], etc

2) Intelligent runtime support and ibraries:
1105

0-8186-21 13-3/90/0000/1105$01 .OO 0 1990 IEEE

Express [20], Linda, Helios, etc.[5],[6]
3) Parallelizing translators or compilers:

r31 ,HI, r 101 ,r:2 11
ASPAR represents a :system of type (3) collaborating
with Express, a system of type (2).In a similar manner
to the “vectorizing coimpiler” and “autotasking librar-
ies” [171,[181 this system allows users who have little
interest in the details of distributed memory parallel
computers to use them.
Much work concerning parallelization and optimiza-
tion for vectorizing arid shared memory parallel com-
puters has been done. [1],[111,[131,[14],[151,[221,[231
In addressing distributed memory machines some re-
searchers have adopted the approach of extending
techniques of other p<arallel architectures such as “A
virtual shared memory machine on a distributed mem-
ory machine”[lO] In contrast with such work, our ap-
proach is more application-oriented and more straight-
forward. We attempt to find an explicit global data de-
composition strategy for a sequential code by
symbolic analysis, and then figure out appropriate
communication requirements. We find that high level
communication is more efficient than a simple “point-
to-point” interface in terms not only of ease of paral-
lelization but also for enhancing the performance of
the parallelized progrm.
It is naive to expect that all sequential programs can be
automatically parallelized. One of our goals, therefore,
is to delineate those applications and those software
engineering practices which allow automatic parallel-
ization. In order to hlelp guide the user to methods
which will allow for successful parallelization AS-
PAR provides interacltive graphical tools which allow
the user to “visualize” the parallelism of a sequential
program and understand problems preventing its par-
allelization.

2. System Overview
Fig1 shows an overall picture of the system. The
“bold” boxes represent the components of the auto-
matic parallelizer. The: complementary graphical anal-
ysis tools, “mapv” and “ f too l” (described in
section 6) are shown relative to the parallelizer at the

appropriate stages of the parallelization process. Sup-
port tools supplied by the basic Express system and
which play an important role in the parallelization are
shown underlined.
The ‘‘Preprocessor” is a standard C pre-processor
use to remove ‘#’ directives.”Parser”, the second
phase of ASPAR, contains a C language parser and
lexical analyzer and is used to break down a piece of C
code to its “parse-tree” containing a significantly sim-
plified representation of the original program. These
two phases contain all the language dependencies for
the programming language being padelized.
The “Pre-analyzer” is an aggregation of techniques
whose purposes are both to prepare the “parse-tree” for
further complex manipulations and to improve the par-
allelism of original code. Its basic tasks are:

Link
Individual parse-ms for single source fiies

must be combined to form a representation of the
whole program. This is similar in concept to a
conventional object module linker except that it
operates on the “parse-trees” in some internal
representation mther than machine code object
files.

Loop normalization is a technique commonly
used in optimizing and vectorizing compilers.
Pointer expressions,” union” and got 0’s
which make symbolic analysis impossible are in-
hibitors for ASPAR preventing parallelization,
Flow control statements (“if ”), nested loops and
procedure calls do not necessarily inhibit paral-
lelization.

Several other common techniques are effective

Loop normalization & “inhibitor” checking

Other

in helping subsequent symbolic dependency
tests. Forward substitution, induction variable
recognition [22] and compound statement fis-
sions are used. Note that no loop reconstruction
[13],[221,[23] techniques are applied since these
methods are not particularly useful at the parul-
lelization stage for a distributed memory archi-
tecture. They can, however, be usefully em-
ployed in the final node compiler after parallel-
ization has been completed.

The “Analyzer” module is used to extract the parallel-
ism from the sequential program and its functions are
described in detail in the next section.
The “Translator” is responsible for modifying the
original sequential program by the addition of suitable
calls to the runtime library. Note that this translation is
“source-to-source” to enhance the portability of the
parallelized code and also to facilitate later “hand-tun-
ing” by the user.
To further enhance the performance and portability of
the parallelized code we have adopted the Express
runtime system for our work, shown in the bottommost
box of Fig. 1. This system has the advantage of already
providing many automated decomposition tools and a
correspondingly matched communication, U0 and
graphics system which can easily be used in perform-
ing the types of decomposition used by ASPAR. The
availability of high-level tools such as the debugger
and performance analysis systems is also an advantage
in providing the user an easy transition from sequential
to parallel programming.

3.1 “Yet another” dependency analysis tech-

stool
intermediate result

<dependency)

6 ommunication

NDB: Source 1-1,

P a r a l l e l IIU, c

Fig. 1: ASPAR Syste

1106

C statement

f o r (i = O ; i < N ; i++)
i f (aa [i] <sh)
a a [c [i l I =lo;
cc=lO ;
s func (x,y) ;

nique
We chose to exploit the loop level parallelism exhibit-
ed by the C language “for” statement as the lrasis for
our parallelization. The parallelism implicit in such
constructs is typically extracted by dependency analy-
sis - if loop iterations show no inter-dependent es they
can be executed in parallel.
The technique of “data dependency analysis” has been
explored by many researchers [131,[141,[151,[~:21,[231
and is used as the vehicle of advanced compders for
various type of parallel computers such as CRAY and
Alliant. A typical technique is to construct a s;,-called
“dependency-tree” which represents every type of de-
pendency implied by the statements of the original se-
quential code. In contrast with such an elegant but
complex technique, the dependency analysis r :quired
for a distributed memory parallel computer can be sim-
plified by assuming that no loop reconstructicin (loop
fusion, loop distribution, loop interchr anging,
etc.[22],[23]) is necessary. One advantage of inhis fact
is that C language constructs which typically ,>revent
vectorization of “for” loops will be allowed by AS-
PAR. “Loop carried dependencies”, are the only con-
ventionally recognized dependencies which iprevent
parallelization.
As a result the “A-list” (Atom list) method which rep-
resents only the flow of variables through each state-
ment (including flow control nad loop headers) is quite
convenient for performing the analysis - a much sim-
pler technique than building the full dependent y tree.
In cases where loops involve flow control staiements
dependencies are examined for each potential’ execu-
tion path by “stacking” the A-lists dynamically In this
way nested loops and procedure calls from within
loops are reasonably simply dealt with.
Note that not all “loop carried dependencies’l inhibit
parallelization. The availability of such cca llective
communication primitives as “excombine” allows
loops with the “recurrence” dependency to be prallel-
bed even when they would normally be forbid den.
3.2

The distinguishing feature of a distributed rrliemory
parallel computer is the availability of no shared mem-
ory. As a result the machines are cheap and simple to
build and can be scaled to very large numbers of pro-
cessors. Unfortunately their programming requires in-
terprocessor communication which, if done carelessly,

Local and Global Decomposability arralysis

aa [i] , :i, sh

A-list

i N
hl JLL
a s [c [i l l c [i] ,i
C NULL
NJLL

Left-side

can result in communiciation overheads dominating the
amount of time spent by the CPU’s in useful work. A
good strategy for such architectures is that of “domain
decomposition” and it is this which ASPAR attempts
to implement in translating sequential programs.
A major component of ASPAR, therefore is devoted
to analysis of the possible global decomposition strat-
egies. Once this is done interprocessor communication
becomes well-defined and can be tackled separately.
To solidify the issues surrounding the decomposability
analysis consider a normalized “for” 1oop.The range
of the loop can be defined by integer constants or vari-
ables, and the loop incirement is +l. Assume that this
loop has no “loop carried dependencies” so that paral-
lelization is possible. Further assume that the loop con-
tains reference to an i m y “AR”, indexed by some
function “f () ”. Symbolically this specification takes
the form:

f o r (e l (i) ; e 2 (i) ; e 3 (i)) I

1

i 1,oop index
Body (i , AR) One or more source statements
involving the loop index and array “AR”.
f (i) Array indexing function

Body(i, A€<[. . . I [f (i) 1 [. . . I) ;

where

Now we proceed to conisider each index of array “AR”
independently. Denote by “FC the set of array index-
ing functions used to address elements of AR through-
out in this loop

F1 = I f l (i) , f2(i) , . . . , f , (i) 1
We define this index of array AR to be “locally decom-
posable”, (LDC) if and only if each indexing function
can be expressed in the form, where a and b are interg-
er constants.

f k (i) = a k * i. + b k

andallakareequall <= k <= n.
Furthermore define this index of array AR to be “glo-
bally decomposable”, (GDC) if and only if it is locally
decomposable in every loop, 1, each of these loops is
parallelizable, and the values of ak are identical in
each case.

1107

0 0 . 0 Micro stencil
0 Irrelevant point array data: za (i+LJ) Fragment of source program

xs
for(i=l ; icxs; i++) {

for(j=l ; jcys; j++) {
qa = za[i][l+l] + zr[i][j] +

za[i][j-l] * zb[i][i] +
za[i+l][i] + zu[i][j] +
za[i-l][i] zv[i][j] + zz[i][j];

0.1 75 * (qa - za[i][j]);
za[i][i] = za[i][j] + 0

1
1

Figure 3. Construction of “micro-” and “macro-” stencils from update scheme

3.3 LOOP range variation
Having made these decisions we need to further check
that the range of array indices used by the program is
consistent in each instance. All loops which involve
the globally decomposable array ‘‘AR” should have the
same range of indices. In the case where loop indices
are constants this is easy to verify. Where loop ranges
are indicated by variables it is impossible to statically
determine whether or not the ranges are equal. One op-
tion would be to implement a dynamic load balancing
strategy which would be able to take care of potential
changes in array usage. This solution is, however, ex-
tremely costly to implement both in terms of human
effort and also its impact on algorithmic performance.
Instead ASPAR makes a simpler assumption that ar-
ray ranges specified by variables will remain constant.
This assumption is valid in the vast majority of the reg-
ular applications at which ASPAR is directed.
3.4 Communication analysis, “stencils”
A “stencil” is a range of distances from a particular
point in the mesh from which information is required
to update and maintain the integrity of the data in a dis-
tributed memory architecture. In the trivial case each
grid point is independent and no interprocessor com-
munication is required when parallelizing the algo-
rithm. In more common cases, such as the one shown
in Fig. 3, a stencil can be constructed of finite size to
direct the communication required by the parallel al-
gorithm.
Fig. 3 shows a typical stencil associated with to a nest-
ed “FOR” loop. We can distinguish two types of sten-
cil: micro and macro-stencils. The “micro-stencil” de-
scribes the update scheme for a single point in the grid
whereas the macro-stencil describes the area where the
various decomposed domains overlap and communi-
cation is required. In the example of Fig. 3 values from
nearest neighbors are required to update the point at
(i , j) . This means that the “micro-stencil” for the
first array index is (-1:l). Similarly the stencil for the
second index is seen to be (- 1 : 1). In principle we could
use these “micro-stencils” to implement a strategy in
which individual grid points were communicated
whenever necessary.

Using the “micro-stencils”, however, it is possible to
construct a “macro-stencil” which describes the areas
where the entire decomposed domain ‘‘overlaps’’ with
neighboring domains. Having done this we can simpli-
fy and optimize the inter-node communication by us-
ing the collective communication ability of Express
to transmit all of the boundary messages to the appro-
priate nodes before entering the nested loops. The ben-
efit is that the number of communication calls is re-
duced dramatically and a significant improvement in
performance is obtained.

4. Parallelization models
In order to automatically parallelize a FOR loop, AS-
PAR uses only 4 types of parallelization model, each
of which uses a different high-level communication
function from the Express library [121,[20]. This in it-
self is an interesting result since it shows the impor-
tance of the high-level “collective” communication
routines over the simple “point-to-point” communica-
tion schemes.
Each of the four strategies is briefly described with an
example of the original source code and the parallel-
ked version. For simplicity the arguments to the Ex-
press functions have been simplified.

4.1 Independent cycles, no communication
If a “for” loop has no loop carried dependency and
every updated array is globally decomposable, it can
be parallelized without any communication. A typical
example is kernel #12 of the Livermore loop bench-
mark, “fist difference”, shown in Fig.4. Parallelizing
such a loop on a distributed memory computer is
equivalent to simply dividing the loop range by the
number of processors available, being careful to treat
the remainder correctly!. This operation is performed
by the function “AS set ranges” which calculates
variables “AS-cnt= to inscate the range of loop iter-
ations in each node.
4.2 “Combine” type
The typical example of this case is a “reduction” loop
which has only one kind of loop carried dependency
known as “recurrence’’. Typically the operation on the
data values is some simple binary operator such as ad-

1108

dition or subtraction. The example shown in Fig. 4 is
the standard scalar product taken from kemel113 of the
Livermore Loops.
To parallelize such a loop a minimal type of iklgorith-
mic modification is required since the order ccf opera-
tion is changed in going to the parallelized vt. rsion of
the code. The Express excombine functiom is used
to recalculate the global quantity after the pmn llel loop
operations have been completed.
4.3 “Concatenation” type
In isolation this type of loop has the same aplparance

,-

Sequential Code
~~

Type 1: No Communication

Type 2: “excombine”

for(k=O; k<N; k++) {
Q = 0.0;

0 += (Z[k] * X[k]);
1

Type 3: “exconcat”

for (i=O;i<elm;i++) {
X[i]= 0.0;
R[i] = bqi];
P[i] = bb[i];

1

Type 4 “exchange”

for(j=2; j<=6; j++) {
for(k=2;k<=n;k++) {

qa = za[k][j+l] * zr[k][i] +
za[k][i-l] zb[k][j] +
za[k+l][i] zu[k][i] +
za[k-l][i] zv[k][i] + zz[k][i];

0.1 75 (qa - za[k][i]);
za[k][i] = za[k][i] +

1

as that described in ration 4.1 which involved no
communication: there is no loop carried dependency.
If, however, some of the data in the loop is not decom-
posed elsewhere in the: program it must be accumulat-
ed in every processor. This operation involves broad-
casting each node’s portion of the decomposed data to
all others while simudtaneously receiving contribu-
tions from all other nodes. It is handled by a simple call
to the Express exconcat function.
A good example of the use of this technique is the con-
jugate gradient matrix solver described in section 5.2.

Parallel Code

AS-set-ranges(0, n, 1,O);
for(k=l ; k<=AS-cnt[O],; k++) {

x[kI = Y[k+ll- y[kI;
1

Q = 0.0;
AS-set-ranges(0, N-1 , 0, 1);
for(k=O; kcAS-cnt[O]; I(++) {

excombine(&Q, D-PLIJS, ALLNODES);

Q += (Z[k] * X[k]);
1

AS-set-ranges(0, elm-1, 0, 1);
for (i=O;icAS-cnt[O];i++) {

X[i]= 0.0;
R[i] = bqi];
P[i+AS-ofst[O]] = bh[i];

1
AS-size[O] = sizeof(doub1e) AS-cnt[O];
exconcat (&P[AS-of st [O]], P, AS-size[01);

exvchange(&za[1][2], AS_num[1 1, LEFT,
&za[AS-cnt[O]l[2] ,AS-num[l], RIGHT);

exvchang e(&za[AS-cnt[O]+ 1][2], AS-nu m[1 1,
RIGHT,&za[2][2], AS-num[l], LEFT);

exvchange(&za[2][1], AS-num[O], DOWN,
&za(2][AS-cnti[1 I], AS-n U m[01, UP) ;

exvchange(&za[2][AS--cnt[l]+l], AS-num[O], UP,
&za[2][2], AS-num[O], DOWN);

AS-set-ranges(1, 6, 2,O);
for(j=2; j<=AS-cnt[l]; j++) {

AS-set-ranges(0, ri, 2, 0);
for(k=2;k<=AS_cnt[O];k++) {

qa = za[k][j+l] zr[k][i] +
za[k][i-l] * zb[k][j] +
za[k+l][i] ” zu[k][i] +
za[k-l](j] * zv[k](j] + zz[k][j];

zaIk][i] = za[k][j] + 0.1 75 (qa - za[k][i]);
1

1

Figure 4. Diffi!rent types of loop parallelization

1109

4.4 -axcnange- type

The “stencil” operations described in section 3.4 re-
quire a rather different type of communication. Before
any loop involving updates to decomposed data which
possess a “macro-stencil“ we must arrange for the re-
gions of overlap between processors to be communi-
cated so that the updates can occur with valid data.
Typical examples of this kind are partial differential
equation solvers, image processing algorithms, etc.
The particular example shown in Fig.4 is from
kernel #23 of the Livermore Loops - “Implicit hydro-
dynamics”.
Note that this loop carries dependencies: from
z a [k l [j - l l t o z a [k l [j l and from z:a[k-
1 I [j 3 to z a [kl [j I . Normal dependency analysis
would prohibit parallelizing this loop but ASPARpro-
vides a special switch to enable the user to allow such
parallelkations although the parallel algorithm is now
subtly different from the sequential one. Alternate
strategies which will be implemented in the future in-
volve the “red-black” U scheme and the “hyper-
plane” technique which both allow parallelization
without algorithmic modification.
Having made the decision that both loops are parallel-
izable and that the arrays are decomposable a standard
mapping to a two-dimensional grid is invoked and ap-
propriate boundary information is updated with the
Express exvchange function.

5. Experi
To evaluate our methods we have processed several

uliicrcni iyyyc;s UI appii~auuii wiui ~cv-nn

5.1 Livermore loop kernels
The Livermore kernels are 24 loops from actual pro-
duction codes that have been widely used to evaluate
the performance of various computer systems. [8]
Written originally in Fortran, the benchmarks were re-
written in C for this test. Table 1 shows the type of the
application, its algorithmic complexity and the result
of applying ASPAR. The complexity here is defined
as the number of computations required to complete
the main procedure on an ideal parallel computer as a
function of input size [8]. The complexity of a vector
sum, for example loop #11, is 0 0 on a sequential
machine. It will, however, be O(1ogN) if it can be par-
allelized in a binary tree fashion. If the iterations of a
loop can be executed completely independently its
complexity is O(1).
These tests determined that 14 of the loops were paral-
lelized by ASPAR. Examination of the failed cases
showed that some were not parallelizable, even by
hand. In each successful case the parallel algorithm
correctly matched the expected complexity for the ide-
al machine.
5.2 A Conjugate Gradient linear e ~ u a t i ~ n solver
While the Livermore loops provide an indication of the
basic capabilities of ASPAR it is important to realize
that “real” programs present significantly more com-
plex problems, not merely because they use more com-
plex algorithms but because a large application has
more “baggage” surrounding it which can inhibit par-
allelization in many ways.

Table 1. R e ~ ~ l t s of ~ l ~ n ~ ASPAR to the Livermore loop kernels
indicates that automatic parallelization was possible)

Loop number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Type of Application

ynamics
lete Cholesky

Inner product
Banded linear equations
Tridiagonal elimination
Linear recurrence relations
Equation of state
A.D.1
Numerical Integration
Numerical Differentiation
Finite sum
Finite difference
2-D e in a cell”
1 -D e in a cell”

Search loop from Monte Carlo
Implicit conditional computation
2-D explicit hydrodynamics
Linear recurrence relation
Discrete ordinates transport
Simple matrix calculations
Planck distribution

Prim Ple

1110

Complexity Parallelized?

Yes
No
Yes
No
No
No
Yes
Yes
Yes
Yes
No
Yes
No
YeS
Yes
Yes
No
Yes
No
No
Yes
Yes
Yes
NO

To look at the potential problems we tested ASPAR dex.
on a complete algorithm I a conjugate gradi :nt matrix
solver, the abbreviated source code for whicli is shown
in Fig. 5. It is important to note that this is a “banded”
solver rather than one for full matrices, which present
considerably fewer problems.

.$ * /’’ strings are comments inserted by ’- Mod-
ifications ate usually indicated by variablaldfunctions
whose names start with “AS-”. The inserted routines
whose names begin with “ex” are calls to th,. Express
runtime library inserted by ASPAR*
The variable “PI” indicates a decomposed array m-

Note that d l arrays decompos& except =p**. This
affay is an argument to the “band_”lti” function
and is with too complex an index for ASPAR to

The array “ar” could potentially be decomposed in

trix it is better on grounds of global efficiency, howev-
er, to decompose oIlly along he first dimension as
shown in ~ i ~ . 7. the two inner loops of
“band_”l i > y Adhough the outer loop is
ized despite the complex flow of control and nested

The Parallelid code is shown in Fig. 6 The ‘1 * $ * * * two dimensions. due to the banded structure of the ma-

a

/“””’ Solver for linear equations by CG metha. “““I
#include “stdi0.h”
#define SZ 400
#define BND 100
#define ep (double)l .Oe-14
double eps;
double ar[S2J[BND],bb[SZl,xx[SZl,P[Sa,X[SZ];
double R[SZJ,newR[SZ],newP[SZl,KP[SZ],new 3 [SZ];
void band-multi(A,x,b,elm,hbnd)
{

{

int elm.hbnd;
double A[SZ][BND],xn,b[];

int i,j,band;
double sum;
band=hbnd*2-1;
for(i=O;i<eIm;i++)[

sum4.O;
if(ic h bnd)

else

bfi]=sum;

for(j4;j<band;j++)sum+=A[i][i]‘r :U];

for(j&j<band;j++)sum+=A[i][i]’::[(j+l +(i-h bnd))];

I
I
{
main()

int i,j ,k,elm,hbnd,param[2];
double suml ,sum2,rd,alpha,beta;
read-data(ar ,xx, bb,param) ;
elm=param[O],hbnd=pam[l];
for(i=O;i<elm;i++)[

x[i]=O.O;
P[i]= bb[i];
R[i]=bb[i];

I
sum14.0;
for(i=O;i<elm;i++)

epsap’suml ;
k=l ,rd=(double)l OOOOO.0;
while(rd>eps){

suml +=bb[i]’bb[i];

band_multi(ar,P,KP.elm,hbnd);
suml=sum2=0.0
for(i=0;i<elm;i++)suml +=R[i]’R[i];
for(i=0:i<elm;i++)sum2+=P[i]’KP[i];

for(i4;i<elm;i++)newX[i]=X[i]+alpha’P[i];
for(i=0;i<elm;i++)newR[i]=R[i]-alpha’KP[i];
sum2=0.0
for(i&,i<elm;i++)sum2+=newR[i]’newR[i];
beta=sum2/surnl;
for(i=O;i<elm;i++)
newP[i]=newR[i]+beta’P[i];
&sum1 ;
for(i=O;i<elm;i++){

P[i]=newP[i];
R[i]=newlR[i];
X[i]=new:lc[i];

alpha=suml/sum2;

I
k++;

1
print-result(X);

I

Figure 5 A sequential alllgorithm to perform Conjugate Gradient iteration

X bb

Fig.7: Domain decomposition strrntegy
(Illustrated for four nodes)

1 2 4 8
Nurriber of Nodes

16

Fig. 8: Speedup of automatically parallelized code.
The performance of the Conjugate Gradient (Fig. 6) is

shown for matrices of order 200 and 300 with
bandwidth 97. Data collected from an NCUBEllO

1111

b $ $ $ $ $ $ $ ~ $ ~ $ $ ~ ~ ~ I*$ CONCATENATEP $'I
1'6 AUTOMATICALLY PARALLELIZED PROGRAM 8'1
(*$ Decompose this as 1 -D problem $'I
I*$ P1: proc.number of 1st dimension $'I
I*$ ASgrocs:Number of processors $'I

$'I
I*$ AS-1st:Table of logical-physical proc.numb $'I
/*$ AS-ofst:Offset for undecomposed data $'I
I*$ AS-cnt:No.cf iteration after parallelized $'I
/*$$$$$$$$$$----EXPRESS header---$$$$
#defineP1(1) /'-You may change it-'/
#indude <express .h>
struct nodenv env;
int AS~lgc[3],ASgrocs[3],AS_lst[lOO],

AS-type=l23,AS-ofst[3],AS-cnt[3],AS-size[3];
/"""'Solver for liner equations by C G method """'I
#indude "stdi0.h"
#define SZ 400
#define BND 100
#defineeD(double)l .&-I 4

I*$ AS-1gc:Logical processor location (logical no)

double eps;
double a~SUPl][BND],bb[SUPl],xr[SUP1],P[SZI.X[SUPl];
double RiSUP1 1,newRiSUPi l,newPiSUP11,KPlSUPll, . .

newX[s~pi] ;

int elm,hbnd;
double A[SUPl][BND],x[],b[];

int i,j,band;
double sum;
band=hbnd'2-1;

I*$ PARALLEL $'I
AS-set-range(0,elm-1 ,O,l);
for(i&;i<AS-cnt(O];i++)(

sum=O.O;
if(i +AS-ofst[O]<hbnd)

for(j&;j<band;j++)

else

void band-multi(A,x,b,elm,hbnd)

I*$ Sequential: Data-Decomp Strategy2 $'I

sum+=A[i][i]'x[i];

for(j=O;j<band;j++)

Wi]=sum;

I*$ Sequential: D a t a - W m p Strategy2 $7

sum+=A[i][i]'x[(i+l +(i+AS-ofsqO]-hbnd))];

1
I
main()

int i,j,k,eIm,hbnd,param[2];
double sum1 ,sum2,rd,alpha,beta;

exparam(benv);
ASgrocs[O]=env.nprocs;
exgridinit(1 ,ASgrocs);
exgridcoord(env.procnum ,AS-lgc);
exconcat(AS~lgc,4,AS~lst,4,NULLPTR.ALLNODES,

NULLPTR,MS-type):

read_data(ar,xx,bb,pm);
elm=param[O], hbnd=param [1 1;

AS-set-range(O.elm- 1 ,0, 1) ;
for(i=O;icAS_cnqO];i++)[

X[i]=O.O;
P[i+AS-ofsqO]]=bb[i];
R[i]=bb[i];

(

I*$$$$$$$$ lninalizatm for EXPRESS $$$$$$$$$*I

l . ~ ~ $ $ $ $ $ $ $ ~ $ $ ~ $ $ $ $ ~ l

I'd PARALLEL $'I

1

AS-size[O]=sizeof('P)'AS-num[O];
exconcat(bP[AS-ofst(O]] ,AS-size[O], P ,AS-size[O],

suml=O.O;
I*$ PARALLEL $'I

AS-set-range(0,elm-1 ,O,l);
for(i=O;i<AS-cnqO];i++)

sum I +=bb[i]'bb[i];
I*$ COMBINE suml by PLUS $*I

excombine(8sum 1 .f-add,sizeof(suml),l ,ALLNODES,

eps=ep'suml ;
k=l ,rd=(double)100000.0;
while(rd*eps)(

NULLPTR.env.nprocs.AS-lst,&AS-type);

NULLPTR,&AS-type);

band-multi(ar,P,KP,elm,hbnd);
suml =sum24.0;

I*$ PARALLEL $'I
AS-set-range(0,elm-1 , O , l) ;
for(i=O;icAS-cnt[O];i++)sum 1 +=R[i]'R[i];

excombine(bsum1 ,f-add,sizeof(sumi) ,I ,ALLNODES.

AS-set-range(0,elm-1 ,O,l);
for(i=O;icAS-cn~O];i++)

I*$ COMBINE sum2 by PLUS $'I
excombine(bsum2,f-add,sizeof(sum2),1 ,ALLNODES,

alpha=suml/sum2;

AS-set-range(O,elm-l,O,l);
for(i=O;icAS-cnt[O];i++)

newX[i]=X[i]+alpha'P[i+AS-ofst(O]];

AS-set-range(0,elm-1 ,O,i);
for(i=O;i<AS-cnt[O];i++)newR(i]=R(i]-alpha'KP[i];
sum24.0;

AS-set-range(0,elm-1 ,O,l);
for(i4;i<AS-cnt[O]:i++)sum2+=newR[i]*newR[i];

excombine(&sum2.f-add,sizeof(sum2) ,1 ,ALLNODES.

beta=sum2huml;

AS-set-range(0,elm- 1 ,O , 1) ;
for(i&;icAS-cnt[O];i++)

rd=suml ;

AS-set-range(0,elm-1 ,O, l) ;
for(i=O;i<AS-cnt[O];i++)(

P[i+AS-ofst(O]]=newP[i];
R[i]=newR[i];
X[i]=newX[i];

I*$ COMBINE suml by PLUS 8'1

I*$ PARALLEL $'I
NULLPTR,bAS-type);

sum2+=P[i+AS-ofstfO]]'KP[i];

NULLPTR.bAS-type);

I*$ PARALLEL $'I

I*$ PARALLEL $'I

I*$ PARALLEL $'I

I*$ COMBINE sum2 by PLUS $7

NULLPTR,LAS-type);

I*$ PARALLEL $7

newP[i]=newR[i]-tbeta'P[i+AS-ofst[O]];

I*$ PARALLEL $'I

1
I*$ CONCATENATE P $'I

AS-size[O]=sizeof('P)"AS-num[O];
exconcat(&P[AS-ofst[O]],AS-size[O],P,AS-size[O],

k++;

print-result(X);

NULLPTR,env.nprocs,AS-lst,&AS-type);

1

1

re 6. Parallel Comj gate Gradient Algorithm as generated by ASPAR

1112

loop constructs.
The current version of ASPAR was unabl : to cor-
rectly parallelize the bounds on the 40 clmstructs
and so these had to be modified by hand in xder for
the algorithm to function correctly. The conilpilation/
linking process involved no special precauRions and
some sample performance data for the paral le1 algo-
rithm are shown in Fig. 8. We feel that the::e results
are extremely interesting. The problems sc,lved are
relatively small and, considering the banded nature
of the matrix, the performance gains are quiRe strong.
With relatively minor improvements in the nterface
between ASPAR and Cubix, the parallel I/(’) system
of Expressit should be possible to comp1eh:ly auto-
mate the parallelization of this algorithm.

6. Support Tools
As well as the automatic parallelizer ASPA R offers
several supporting utilities which aid useias whose
programs are not immediately parallelized.
“ f too l” is a utility which allows the use1 to inter-
actively visualize the flow of data/control cm a win-
dow and the relevant source code on ano~ier win-
dow. It also presents information about the loop car-
ried dependencies and the possibilities of data
decomposition corresponding each FOR limp. An
example is shown in Fig.9.
“mapv” is a set of tools which allow the ucer to in-
teractively visualize the patterns in which tlie appli-
cation accesses memory with blue colored I Eference
and red colored update. This type of infomation is
central to achieving good domain decon position
strategies. The operation of this utility is a two-phase
process.

.

1) Auto-profiling
A profiling utility is used to “inslrument”
the sequential program and record
references to particular data simctures
indicated by the user.

Once the sequential program has been
2) Visualization

----- ----- Fagment of source code ==
for(i=O; icelm; i++) {

sum = 0.0;
if(ichbnd) {

for(j-0; jcband; j++)
sum += ar[i][i] vx[i];

1 :

===== Analysis resuk =========
Dependency: none

-

executed a data file is created which
contains mernory access pattern data. This
can be visiualized with the “vtool”
program which allows the user to “play
back” the hisitory of memory accesses made
by the sequential program.

entered construct 0

7. Conclusions
ASPAR is a powerful tool which is able to automat-
ically parallelize a significant sequential program for
a distributed memory parallel computer. It is able to
not only parallelize the basic sequential code but
also modify its algorithm for parallel execution. Its
basic abilities lie in Sophisticated symbolic analysis
coupled to a knowledge base regarding “domainde-
composition” parallelimtion. The Express runtime
environment both simplifies the task of paralleliza-
tion and also allows the user the flexibility to run the
parallelized programs on a wide variety of parallel
computer systems and network based workstations.
Generally speaking, ASPAR works extremely well
on applications which use regular meshes. Even
when failing to parallelize a problem ASPA R gener-
ally issues adequate diagnostics to correct the prob-
lem or modify the cading to allow parallelization.
Particularly important in this area are the graphical
display tools which alllow the user to visualize prob-
lem areas and interactively modify them.
Although ASPAR is unable to parallelize all C pro-
grams its current abilities, especially in regard to the
efficiency of the padelized algorithms, are very
encouraging. One area in which work remains to be
done is the interaction with the I/O system. Once this
is accomplished ASP,4 R should be capable of com-
pletely parallelizing qiuite sophisticated C codes.

8. Acknowledgments
K. Ikudome would like to thank the Caltech Concur-
rent Computation Ro-ject for enabling him to work
as a visiting research fellow on leave from Nippon
Steel Co.

Text window Graph window

Fig.9: A typical image drawn by ftool

1113

9. References
[11

in a knowledge-based parallelization tool”,
Parallel Computer, vol. 8, 1988, 11 1-1 19.

[2] M.Kumar, “Measuring Parallelism in
ComDutation-Intensive S cientific/Engineering:

T.Brandes, “Determination of dependencies

. ” ”
Applkations”, IEEE Trans. Computer, Sep
1988,1088- 1098.

[3] U.Kremer, H.J. Bast, M.Gerndt, H.P. Zima,
“Advanced tools and techniaues for automatic
parallelization”, Parallel Cgmputing, vol. 7 ,
1988,387-393.

[4] W.P.Zima, H.J.Bast, M.Gerndt, “SUPERB:
A tool for semi-automatic MIMD/SIMD
parallelization”, Parallel Computing, vol. 6 ,

[5] W.Muhlenbein, O.Kramer, F.Limburger,
M.Mevenkamp, S.Streitz, “MUPPET A
programming environment for message-based
multiprocessors”, Parallel Computer, vol. 8,

[6] R.Mirchandaney, J.H.Saltz, R.M.Smith,
D.M.Nicho1, K.Crowley, “Principles of
Runtime Support for Parallel Processors”,
Proceedings of the ACM, 1988.

[7] Th.Ruppelt, G.Wirtz, “From Mathematical
Specification to parallel program on a message-
based system”, Proceedings of the ACM, 1988.

[8] J.T.Feo, “An analysis of the computational
and parallel complexity of the Livermore
Loops”, Parallel Computing, vol. 7 , 1988, 163-
185.

[9] J-Dongarra, D.C.Sorensen, K.Connelly,
J.Patterson, “Programming methodology and
performance issues for advanced computer
architectures”, Parallel Computing, vol. 8,

programs for distributed-memory
multiprocessors”, Rice University Computer
Science Report, COMP TR88-74, Aug. 1988.

[l 11 W.R.Cowell, C.P.Thomson, “Transforming
Fortran DO loops to improve performance on
vector architectures”, ACM transactions on
Mathematicalsoftware, vol. 12 no.4, Dec. 1986,

S.W.Otto, J.Salmon, D.Waker, “Solving
problems on concurrent processors”, published
Prentice Hall, 1988.

B.Leasure, and M.Wolfe, “Dependence graphs
and compiler optimizations”, in Roc. 8th ACM
Symp. Principles Programming Languages, Jan.

1988, 1-18.

1988,201-221.

1988,41-58.
[lo] D.Callahan, K.Kennedy, “Compiling

324-353.
[121 G.C.Fox, MJohnson, G.Lyzenga,

[13] DJ.Kuck,R.H.Kuhn, D.A.Padua,

1981, pp. 207-218.

for Fortran programs”, Parallel computing, v d

[17] Cray Research Inc. “UNICOS Autotasking
user’s guide”, SN-2088 CFT77 3.1

[181 Cray Research Inc. “Cray X-MP user’s
manual“

[191 Thinking Machines Co. “Using the
Connection Machine System”, vol 1 & 2,1989

[203 Parasoff Co. “Express user’s manual”
1989

[21] A.E.Terrano, S.M.Dunn, J.E.Peters, “Using
an architectural knowledge base to generate
code for parallel computers”, Communications
of the ACM, vo1.32, no 9,1989,1065-1072

compiler optimizations for supercomputers”,
Communications of the ACM, vo1.29, no 12,

translation of Foman programs to vector form”,
ACM trans. on Programming Languages and
Systems, vo1.9, no.4, Oct. 1987,491-542

9,1988/89 25-35

[22] D.A.Padua, M.J.Wolfe, “Advanced

1986,1184-1201
[23] R.Allen, Ken Kennedy, “Automatic

1141 C.kolychponopoulos, “Compiler
optimizations for enhancing parallelism and
their impact on architecture design”,IEEE trans.
on Computers, vol37, no 8 1988,991-1004

[15] CPolychronopoulos, D.Kuck, D.Padua,
“Utilizing multidimensional loop parallelism on
large-scale parallel processor systems”, IEEE
trans. on Computers, vol. , no.9 1989, 1285-
1296

O.Brewer, J Dongarra, D.Sorensen, “Tools
to aid in the analysis of memory access patterns

[16]

1114

