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An Automatic Approach to the Detection and
Extraction of Mine Features in Sidescan Sonar

Scott Reed, Yvan Petillot, and Judith Bell

Abstract—Mine detection and classification using high-reso-
lution sidescan sonar is a critical technology for mine counter
measures (MCM). As opposed to the majority of techniques which
require large training data sets, this paper presents unsupervised
models for both the detection and the shadow extraction phases of
an automated classification system. The detection phase is carried
out using an unsupervised Markov random field (MRF) model
where the required model parameters are estimated from the
original image. Using a priori spatial information on the physical
size and geometric signature of mines in sidescan sonar, a detec-
tion-orientated MRF model is developed which directly segments
the image into regions of shadow, seabottom-reverberation, and
object-highlight. After detection, features are extracted so that
the object can be classified. A novel co-operating statistical snake
(CSS) model is presented which extracts the highlight and shadow
of the object. The CSS model again utilizes available a priori
information on the spatial relationship between the highlight and
shadow, allowing accurate segmentation of the object’s shadow
to be achieved on a wide range of seabed types. Results are given
for both models on real and synthetic images and are shown to
compare favorably with other models in this field.

Index Terms—A priori information, automated mine detection,
image analysis, Markov random field (MRF) models, shadow ex-
traction, statistical snakes.

I. INTRODUCTION

T
HE ANALYSIS of sidescan sonar images in the field of

mine countermeasures (MCM) is traditionally carried out

by a skilled human operator. This analysis is difficult due to the

large variability in the appearance of the sidescan images as well

as the high levels of noise usually present in the images. With the

advances in autonomous underwater vehicle (AUV) technology,

automated techniques are now required to replace the operator

to carry out this analysis on-board.

Complete MCM systems are usually composed of a detection

and a classification process such as the systems by Dobeck

et al. [1], Ciany et al. [2], [3], and Aridgides et al. [4]. All

three of these systems operate using the detection/classification

framework although they operate using very different models.

Dobeck implements a matched filter in [1] to detect mine-like

objects (MLOs) after which both a -nearest neighbor neural

network classifier and a discriminatory filter classifier are

used to classify the objects as mine or not-mine. The detection

process is relatively simple and is primarily for identifying

regions which definitely do not contain MLOs. The classifi-
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cation process then uses up to 45 features for every possible

MLO to determine which are real MLOs and which are false

alarms. The system in [2] utilizes an adaptive thresholding

technique for the detection after which geometric features

are extracted, allowing each MLO to be classified as mine or

not-mine. Adaptive Clutter Filter technology is used in [4] to

suppress the background clutter after which classification is

carried out on an optimum set of features. These systems are

similar in that the detected MLO is classified simply as mine

or not-mine by considering a set of features and that all three

require training using a large amount of ground truth data.

The success of these models is thereafter dependent on the

similarity between the training data and the test data with poor

results being observed when the difference between the two is

high [2]. It has also been shown in [5] that the success of trained

models can be dependent on the choice of data used to train

the system. The reported successes of these models have been

dramatically improved by fusing the results of the individual

models [2], [6], [7] together. This is based on the premise that

as the individual models use different mathematical functions

to carry out their procedures, fusing the results together will

both confirm suspected MLOs and help remove false alarms.

This idea has provided encouraging results and could be easily

extended to other automated MCM systems, both supervised

and unsupervised.

Instead of considering the computer aided detection/classi-

fication (CAD/CAC) problem as being completely integrated,

research is often carried out on a specific aspect of the problem.

Detection of possible MLOs has been attempted using fractal-

based analysis [8], spatial point processes [9], and dual hypoth-

esis theory [10] where an object is characterized as a disruption

in the local texture field. However, the success of these models

is heavily dependent on large training samples and simplifying

modeling assumptions, raising questions to their widespread ap-

plicability. Thresholding and clustering theory has been used in

[11] and [12] to segment the sidescan sonar image into regions

of object-highlight, shadow, and background after which neigh-

boring object-highlight and shadow regions were labeled as pos-

sible MLOs. This idea has been developed further in [13] where

two Markov random field (MRF) models were used to segment

the images using the a priori knowledge that object-highlight

regions generally lie close to shadow regions. While the tech-

nique is not a detection model as such (it identifies possible ob-

ject-highlight pixels rather than regions), it does demonstrate

that MRF models can provide a suitable vehicle for modeling

a priori information. The use of a priori information is con-

vincingly demonstrated in [14] and [15] where an MRF tech-
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nique was used to model some of the available information on

the sonar process.

After an MLO has been detected, a classification procedure

is required to determine whether the detected object is a false

alarm or not. While many systems define classification as

simply determining whether an object is mine or not-mine,

geometric analysis can be used in the classification stage to

determine the shape of the object [16]. Mines can often be

described by simple objects such as cylinders, spheres, and

truncated cones, therefore ensuring that, if the MLO can be

classified as one of these objects, it can be identified as a mine

with a high degree of confidence. A nonpositive classification

as one of these objects leads to the MLO being identified as

not-mine. Fawcett [17] has attempted this form of classification

using simple features drawn from a mugshot of the object (this

process assumed prior detection of the object). The technique

is interesting yet was tested using only synthetic data where the

success rate deteriorated when complex backgrounds where

added to the object mugshots. The extracted highlight region of

the object has also been considered in [18] and [11] for classifi-

cation but is usually too variable and dependent on the specific

sonar conditions to be used as a reliable classification feature.

A popular feature to use is the object’s shadow region which

is generally more dependable and can be used to accurately

classify the object if it can be extracted accurately.

Extraction of the shadow using classical edge-driven de-

formable models [19], [20] is generally not possible due to

the high levels of noise in sidescan imagery. Models have

been developed to overcome this problem using fuzzy logic

[21], histogram thresholding [22], and statistical models [23].

Although these models offer good results on relatively flat

seabeds, the presence of sand ripples often leads to inaccurate

shadow extraction [24]. Quidu et al. [22] classify the object

by extracting features from the shadow and comparing these

to a training set. Due to the nonlinear nature of the sonar

process (the same object at different ranges and orientations

will produce completely different shadow regions), the features

first had to be range normalized. Deformable templates have

also been used in [25] and [26] to directly classify the object.

Mignotte et al. [25] approximated the shadows produced by a

cylinder and a sphere as a parallelogram and spline templates

respectively, using affine transformations on these templates to

find the best fit to the shadow. While good results are observed,

these template models are disadvantaged for classification

purposes in that they usually include the assumption that the

MLO will match one of the tested templates. Also, altering the

shape of the shadow template directly instead of considering

the relationship between the objects parameters (size and ori-

entation) and the resultant shadow region will affect the ability

to determine the object’s dimensions during the classification

stage.

The solution presented here, which aims at solving the auto-

mated MCM problem, is a three-tier process as summarized in

Fig. 1. The first stage detects MLOs in the sidescan data. Having

identified these possible targets, the second stage extracts the

shadow cast by the object to be used later in the classification

stage. This classification stage will use the shadow information

to provide information on the shape and dimensions of the de-

Fig. 1. Overall proposed detection and classification system. The first two
parts are considered in detail in this paper.

tected object. This paper concentrates on the first two stages of

the process.

A novel, automated detection model is presented to fulfill

the first stage of the process in Fig. 1. This utilizes an MRF

model to carry out a detection-oriented segmentation on the raw

sidescan image. While most detection models which consider

the underlying label field use a two-tier process (the image is

first segmented after which the detection problem is consid-

ered), this model will directly segment the image into regions

of object-highlight, seabottom reverberation, and shadow using

available a priori spatial information on the appearance of mine

signatures in sidescan sonar. Results will then be presented on

both real and synthetic images.

The detection phase identifies (areas where the model has

identified a mine-like signature) which need to be extracted

from the image for further examination. A novel co-operating

statistical snakes (CSS) model is then presented which pro-

vides an accurate and robust method for extracting both the

objects highlight and shadow regions. The model segments

the object-highlight and the shadow region by considering the

image as being composed of three separate statistical regions.

Using a priori information on the relationship between the

object-highlight and the shadow, accurate segmentation can

be achieved on seabed types where other models would fail.

Results are given again on both real and synthetic images.

The paper will be laid out as follows. Section II details the

sidescan process and discusses what a priori knowledge on ob-

jects in sidescan sonar is used within this paper. Section III will

detail the unsupervised detection model. Section IV will out-

line the CSS shadow extraction model and highlight the link

between the two separate processes while Section V will con-

clude the paper.

II. OBJECTS IN SIDESCAN SONAR

For the purposes of this paper, it is assumed that all objects are

discrete and protrude above the seabed, but are still connected to

it [14]. If it is assumed that the sonar sound pulse moves without

refraction, the process can be approximated by tracing rays, sim-

ilar to the ray-tracing method used for simulating optical scenes

[27]. This produces the geometrical situation pictured in Fig. 2.

As the object is denser or has a higher reflectivity than the back-

ground, the return from the object surface (points A–B) is much

stronger than the background. The sonar shadow (points B–C) is

produced due to the object effectively blocking the sonar waves

from reaching this region of the seabed. While this model is not

correct in all cases (extreme range, floating objects), MCM data

is usually taken with a sonar fish at low altitude. This ensures
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Fig. 2. The formation of object in sidescan sonar images using the ray-based
approach to modeling.

that the objects produce shadows and therefore comply with the

model described in Fig. 2.

Fig. 2 illustrates the geometry for one line of a sidescan

image. As the full image is created by repeating this process for

each pulse as the AUV moves through the water, the shadow

region produced by the object can only be as wide as the object

in the sonar image (points D–E in Fig. 2).

The object signature observed in Fig. 2 allows common char-

acteristics to be modeled and used in both the detection and the

CSS model. As MLOs are small, the highlight observed is also

small, isolated, and compact. Due to the usual MCM procedure

of using a low altitude sonar fish, this small highlight will be

accompanied by a shadow region.

III. UNSUPERVISED OBJECT DETECTION

A. Introduction

The first stage in the automated MCM process is the detec-

tion of possible MLOs within the raw Sidescan image. While

many mine detection models act directly on the noisy Sidescan

image, promising results have been obtained by first trying to

segment the image to recover the underlying label field (in this

paper, the allowed labels are shadow, seabottom-reverberation

and object-highlight) [14], [24]. An MRF model provides a re-

liable framework for obtaining this underlying field by incorpo-

rating pixel dependencies into the segmentation model (i.e., a

pixel surrounded by shadow pixels is most likely to belong to the

shadow class itself). This ability to simply and effectively model

the inter-spatial dependencies between pixels has ensured that

simple MRF models have been used for a wealth of applica-

tions, obtaining accurate segmentation results in the presence of

strong noise [28]–[30]. However, within the context of sidescan

imagery, where there is a large variation in the appearance and

complexity of the images, more complicated models containing

parameter estimation phases are required to ensure a confident

segmentation. The MRF model used in this section extends the

two-class anisotropic MRF model in [25] to develop a detec-

tion-orientated segmentation model. This model uses a priori

knowledge on the size and appearance of mine signatures in

sidescan sonar to directly segment the images into regions of

object-highlight, shadow and seabottom-reverberation.

B. MRF Theory

A general MRF model consists of two fields, the observed

image and the underlying “true” label field which we wish

to recover. A pixel is assigned a label based on two cri-

teria. The first is dependent on the labels of the neighboring

pixels and is controlled by a local Markovian probability term.

The second criteria considers the probability of label pro-

ducing observed gray level . This requires that each possible

label field has a corresponding noise distribution from which its

observed graylevels can be drawn. Therefore, the MRF model

must first have the capacity to determine the parameters of the

Markovian probability term as well as the parameters of the

noise distributions.

We consider a more complex set of three random fields

where we define as the field of ob-

servations (this is the raw sidescan image) where each takes

it value from the possible gray-level values . Label

field is the underlying label field which we

wish to recover and so can take the value shadow ,

seabottom-reverberation , object -highlight .

is defined as the object field where each

is drawn from object non-object . This field

can be determined directly by considering label field where

object if object -highlight and

non-object otherwise. Label Field therefore shows the

clustering of object pixels. Based on the observed data

, the detection process can be cast as an analysis

of the conditional probability , the probability of

the “unobserved” true data given the observational data. Using

Bayes theorem, this probability can be expressed as

(1)

is the likelihood term where the data is as-

sumed to be independently conditioned on labeling process

. It can therefore be defined as a product of the individual

pixel probabilities where

is the probability of observed gray-level

being drawn from the noise distribution used to represent

label . is the Markovian prior distribution used to

model the dependencies between pixels of the label field .

is a prior probability which uses a priori informa-

tion on the size and geometry of mine signatures in sidescan

sonar to discourage clusterings of object which

have the wrong size. Expressing the posterior distribution as

[31], the underlying

label field can be obtained by minimizing the following

posterior energy:

(2)
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Fig. 3. Second-order neighborhood system with associated cliques and their
labeling notations.

Fig. 4. Overview of the detection model.

The first term on the right-hand side

is the energy term relevant to the likelihood

function . The second term describes the depen-

dency of label on the label values of the neighboring pixels

of where a second-order anisotropic model has been used.

Fig. 3 shows the four allowed cliques for this neighborhood,

thereby showing how or depending on

the relative position of the neighboring pixel to pixel .

The third term acts only on pixels with label

object-highlight . This uses an adaptation of a potential

term derived in [13], utilizing the a priori information that a

mine highlight should have a shadow to the right of it (port

configuration). The fourth term uses more a priori information

and favors the clustering of object pixels only if

they are of the right size. This function models the belief that

mine-like signatures are in general compact and separated.

An overview of the entire detection-orientated segmentation

process quantified in (2) can be seen in Fig. 4. The separate

components within this process will now be considered in detail.

C. Estimation of the Markovian Parameters and Noise

Parameters

For the estimation of the Markovian parameters

and the noise parameters, the

image is first considered to be composed of only two regions:

shadow and nonshadow. The likelihood term for the shadow

class is assumed to be a Gaussian with mean

gray-level and variance and , respectively. The likeli-

hood term for the seabottom-reverberation class

is described by a shifted Rayleigh law with minimum gray-level

and variance , thereby requiring noise parameters

to be estimated. Justification

for using a Rayleigh distribution for the seabottom-rever-

beration class can be seen in [32]. This argues that isotropic

seabed regions are described well by Rayleigh distributions

while it is assumed that the luminance within shadow regions

is essentially due to electronic noise and so is described by a

Gaussian distribution.

As mine-like objects are known a priori to be small and clus-

tered [10], the estimation of these parameters without consid-

eration to the third class object -highlight was ex-

pected to yield accurate results. Determining estimates to

and was done using the Iterative Conditional Estimation

(ICE) model described in detail in [31], and [33] and summa-

rized here. The ICE technique first requires initial estimates

and to the parameters and . The iterative technique

then defines and to be the conditional expecta-

tions of parameter estimators and , respectively, at itera-

tion dependent on the data and the current param-

eter fits and . Appealing to the law of large numbers,

these terms are related by

(3)

(4)

Both and can therefore be calculated by

drawing realizations from the posterior distri-

bution where , the number of realizations,

is set to 1. The Gibbs Sampler was used to generate samples

from this posterior distribution which was represented by a

simplified version of the posterior energy in (2). This gave the

posterior energy term described by

(5)

The last two terms of (2) have been neglected as these deal

with the object -highlight class and are therefore not

used in this parameter estimation step. For the ICE technique

to work, initial estimates and to the model parameters

are required, as is a method for determining and at each

iteration.

1) Determining and : Determining the estimator of

the Markov parameters, , is done by considering label field

and uses a least squares technique as developed by Derin et

al. [34]. Defining as the second-order neighborhood of pixel

as shown in Fig. 3, the Markovian probability can be written

as

(6)

where, using the labels in Fig. 3, we have

(7)

where and is the Kronecker delta function. This

probability describes the dependency of label on the labels

of the pixels in neighborhood . For a given neighborhood ,

the ratio of the probabilities of pixel being a shadow ( )
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or a seabottom-reverberation ( ) pixel can be calculated

using (6) and taking the logarithm to give

(8)

For each possible neighborhood configuration , the second

term in (8) can be approximated using simple histogramming

where the number of times each configuration occurs in the label

field is counted to give

(9)

This creates an over-determined set of equations for the four

unknowns which can be solved in a least-squares sense to pro-

vide an estimate for the Markovian model parameters .

Determining the estimator of the noise parameters

is achieved by considering the complete data and is

obtained using a simple maximum-likelihood method where

the individual components of can be determined by

(10)

(11)

(12)

(13)

where is the number of pixels with label .

2) Obtaining Initial Estimates and : Once an

initial label field has been determined, the initial

estimates and can be obtained using the techniques

described in the previous section. is obtained by

first splitting the image into nonoverlapping windows.

Each window is assigned a vector , where .

Each vector is composed of two components , the mean

gray level, and , the minimum gray level. These vectors are

then clustered into either a shadow or seabottom-reverberation

group using a -means clustering algorithm [31]. From this

clustering algorithm, the maximum-likelihood estimates of

can be obtained. The label field can then be

initialized using simple maximum-likelihood considerations

[essentially segmenting the image using only the first term on

the right-hand side of (5)]. From this, can be obtained

using the least-squares method described in the previous

section. Starting from initial parameter estimates and ,

the ICE model can thereafter produce more accurate estimates.

D. Obtaining and Updating Initial Object-Highlight Noise

Parameters

The appearance of object-highlight regions in sidescan sonar

is dependent on a large variety of factors such as the mate-

rial and orientation of the object involved. It therefore cannot

be described by a well-defined noise law as with the shadow

and seabottom-reverberation regions. However, due to the fact

that the objects protrude above the seafloor and that they have

often have a higher degree of reflectivity than the seafloor, ob-

ject-highlight regions are generally among the brightest parts

of the sidescan image (which are typically quantized to 8 b).

Teaching algorithms to model the object-highlight noise distri-

bution based on training sets would prove problematic due to

the large number of variables that dictate the appearance of the

highlight regions. For instance, sonar images taken on the same

heading but different altitudes would produce very different re-

sults. An AUV on a different heading altogether would likely

produce an image unrecognizable as the same area of seabed.

Due to these complexities, it is necessary to deduce the ob-

ject-highlight noise distribution on a per-image basis, using a

distribution that simply models the vague a priori belief that

the highlight regions are the brightest parts of the image. A nor-

malized linear equation is used with the form

(14)

where is the Heaviside function, is the gradient of the

line, is the intersect point, and are the minimum

and maximum allowed gray levels and ensures the func-

tion to be normalized within the allowed limits .

Initially we have no information on the expected range of the

object-highlight pixels and so the conservative values of

, , , are allocated.

is allocated the highest gray-level value in the image. This

produces a normalized triangular function. Using these param-

eter estimates for the object-highlight regions along with the

final parameter estimates , the label field can be initial-

ized for all three classes. This is demonstrated in Fig. 5 where

three images containing mines are shown along with the initial

labeling for field prior to segmentation.

As Fig. 5 shows, the accurate parameter estimation of

using the ICE technique has led to a good initialization for the

shadow and seabottom-reverberation regions. The description

of the object-highlight regions is much poorer due to the lack

of a priori information, highlighting the need for the two prior

terms in (2) to provide an accurate segmentation.

As the detection-orientated segmentation continues, the

priors which affect the object-highlight pixels (these

two terms are explained in the next section) will begin to

remove many of the false alarms allowing the noise distribution

for the object-highlight regions to be updated. This allows

the numerical values used for initialization to be updated as

the segmentation proceeds. and are updated by a

Least-squares method similar to that used in the estimation of

where a general linear line is fitted to a histogram of the

pixels labeled object -highlight .

Parameters and are estimated from the object-high-

light histogram while , the normalizing constant, is calcu-

lated by

(15)

E. Modeling the A Priori Information

Objects in sidescan sonar leave a recognizable signature char-

acterized by a highlight region followed by a region of shadow.
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Fig. 5. (a) Three images containing mines. (b) Initial three-class labeling of fieldX prior to the detection-orientated segmentation where black represents shadow
regions, gray represents seabottom-reverberation regions and white represents object-highlight regions.

As discussed in Section II, the highlight regions of these ob-

jects also generally appear in small dense clusters surrounded

by regions of seabottom-reverberation or shadow. This known

a priori information can be modeled to increase the robustness

of the detection algorithm.

1) The Shadow Prior Energy Term: The term

in (2) acts only upon pixels

with label object-highlight and discourages pixels

not in the proximity of a shadow region from being labeled

object -highlight [13]. A priori information on the

geometry of the signature (all examples here are for port

configuration) allow this criteria to become more specific in

that the shadow region must lie to the right of the highlight

region. We define a shadow pixel situated at row and

column of the image which generates a potential field

such that

(16)

where is the distance from pixel and controls

the rate of drop-off of the potential field. This is set at

throughout to allow a smooth drop-off in the potential. Utilizing

the a priori information that the shadow is always to the right

of the highlight region in port configuration, we can express the

total potential field at pixel as

(17)

where is the distance between pixels and , is the

Kronecker delta function, and is the Heaviside function.

2) The Clustering Prior Energy Term: The final term in en-

ergy equation (2), , considers object field

to promote situations where object-highlight regions appear in

small dense clusters. This a priori knowledge on the size of

the objects being searched for is described by object parame-

ters where and are the minimum

and maximum size of objects being searched for, respectively.

This assumes that the image has been geo-referenced prior to

analysis where each pixel is therefore a measure of distance

rather than time. New inertial navigational sensors (INS) sys-

tems for geo-referencing can offer good estimates on both the

AUV’s position and velocity, ensuring that the geo-referenced

image is a more accurate representation of the scene than the raw

image. However, to account for possible errors, and

Fig. 6. Definition of object mask used in prior. The physical size of the objects
being looked for is used to define the size of the inner region I.

are given conservative estimates, simply ensuring that cluster-

ings of pixels which are obviously too small or large to be a mine

are unlikely to remain labeled as object-highlight regions. Pa-

rameter is used to define a mask as shown in Fig. 6 where

the size of regions and will depend on the pixel resolution.

Mask is comprised of three regions: the pixel under con-

sideration , an inner region with width , and an outer re-

gion with width . The object-clustering field

at pixel can be determined by

(18)

where is the number of pixels in region , is the number

of pixels in region , and and are integers used to sum over

all the pixels in regions and , respectively. This function is

maximized when region is composed entirely of object pixels

and region is made up of nonobject pixels, thus rewarding sce-

narios where the object cluster is small and isolated. The func-

tion encourages clustering of object-highlight pixels of the size

of typical mines and is also useful in that it does not discrimi-

nate between the probability of a pixel belonging to the shadow

or seabottom reverberation class as non-object for

both .
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F. The Segmentation Process

Achieving the global minima of (2) is a computationally

huge task. The iterated conditional modes (ICM) technique

[28] dramatically lightens computational demands by swiftly

converging onto a local minimum. Segmentation is carried out

using a raster scan where each pixel is considered in turn. Each

pixel is assigned a label so as to always minimize energy

in (2).

After every sweep through the image, object field is up-

dated from label field . The shadow potential field is

recalculated for each pixel and the object-highlight noise pa-

rameters are also recalculated. While these calculations should

theoretically occur after every pixel label change, real-time con-

straints make this impractical and, in practice, good results are

obtained with the updates being calculated after every sweep.

G. Postsegmentation Processing

The detection-orientated segmentation process produces

a field which is segmented into regions of shadow,

seabottom-reverberation, and object-highlight. While the last

two terms in (2) discourage regions of object-highlight which

do not conform to the known mine signature in sidescan, false

alarms can occur. To remove these, a postsegmentation process

is carried out. This process will first use

to remove object-highlight regions which lie outside the

acceptable size range. It will also remove object-highlight

regions which do not lie in close proximity to a shadow region

by defining a maximum allowed distance . The set limits

for these techniques need not be rigidly defined and could be

made case-specific. For example, if the model was looking

for tethered mines, both the shadow potential and the

post-segmentation distance could be altered to detect

the expected signature left by such a mine. was set to 5

pixels in this model.

1) The Size of the Object: Model parameters

describe the minimum and maximum size of po-

tential objects being searched for by the model. The maximum

and minimum dimensions of each region were calculated by

ensuring each pixel labeled as object-highlight ( ) was

assigned— and . These equate to the maximum and

minimum run length of object-highlight pixels through each

pixel , considering only vertical and horizontal runs

of pixels. As the images were geo-referenced previously, these

run-lengths could be equated to the physical dimensions of the

object. To ensure that each pixel within an object-highlight

region was assigned the same dimensions, a simple iterative

labeling algorithm using a mode filter was carried out as

illustrated in Fig. 7.

2) The Distance From the Object Region to the Nearest

Shadow Region: Each pixel with object-highlight

was given a minimum distance to the nearest shadow

region to the right (port configuration). The labeling algorithm

described in Fig. 7 then ensured that every pixel within an

object-highlight region was assigned the same distance value.

Once each pixel object -highlight had been labeled,

regions which did not conform to the model could be simply

Fig. 7. Explanation of the labeling process using a mode filter to ensure that
every pixel within each object is described by the same size dimensions.

removed and replaced with seabottom-reverberation

pixels.

H. Results

The detection results given in this section assume that the

objects present in the images have where

these values are in meters. The detection model is first demon-

strated on two synthetic images generated using the sidescan

sonar simulator model developed by Bell [27]. This simulator

was used to provide fully ground truthed data where exact de-

tails of the scene and objects could be controlled. The first ex-

ample is a simple scenario where all the objects present appear

on an isotropic seabed while the second example is more diffi-

cult due to the presence of the sand ripples. Both images have

been geo-referenced so that each pixel has a resolution of 0.08

0.08 m. As Fig. 8 shows, the model succeeds in identifying

all the objects in both images (the objects are marked white in

the segmentation), offering no false alarms.

An important part of evaluating an object detection system is

to test the model on images containing no objects. Fig. 9 con-

tains two real sidescan sonar images where there is a high level

of clutter but no objects. These images have been geo-referenced

where each pixel has a resolution of 0.15 0.15 m. As can be

seen, the detection model correctly identifies that there are no

objects present regardless of the high amounts of clutter. An-

other complex image containing sand ripples and clutter but no

objects is shown in Fig. 10. This image has resolution 0.08

0.08 m, with the detection model again correctly identifying no

objects.

Fig. 11 contains two real sidescan images taken from another

trial. The difference in appearance between these images and

those in Figs. 9 and 10 is quite obvious, highlighting the need

for a robust detection system to cope with the large variation

in the appearance of sidescan sonar images. The first contains

only one object which the model correctly identifies. The second

contains multiple objects for which we have no ground truth data

results. However, the results obtained agree well with a skilled

operator’s interpretation of the image. It should be noted that

these two images are not geo-referenced as no navigational data

were available. The images have therefore been assumed to have

a pixel resolution of 0.08 0.08 m.

Fig. 12 shows a final real sidescan image. The image contains

four mines lying on a sand ripple seabed surrounded by large

amounts of clutter. The images has been georeferenced so that

the pixels have a resolution of 0.08 0.08 m. The detection

model successfully detects three of the mines along with several
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Fig. 8. (a) Synthetic image containing two mine-like objects and the detection-orientated segmentation result identifying all objects. (b) Synthetic image containing
four mine-like objects on a complex seabed and the detection-orientated segmentation result correctly identifying all objects.

Fig. 9. (a) Real sidescan image containing no mine-like objects and the
detection-orientated segmentation result which correctly detects no objects.
(b) Another real sidescan image containing no mine-like objects and the
detection-orientated segmentation result correctly identifying no objects.

false alarms. The failure to detect the fourth mine arose from the

region behind the object having a relatively high gray level

Fig. 10. (a) Real Sidescan image containing no mines but high levels of
clutter and complex seabed types. (b) Detection-orientated segmentation model
correctly detecting no objects in the image.

therefore being labeled seabottom-reverberation. This caused

the post-segmentation phase to remove the fourth mine as it had

no accompanying shadow region. The false alarms detected all

have sizes and signatures comparable to a mine-like object and

are a result of the image containing a lot of object-like clutter.

With the final three-tier classification system, it is hoped that

these detections will be removed after the classification phase

(see Fig. 1). Using the classification stage to remove false alarms

could eventually allow the postsegmentation process of the de-

tection model to be relaxed, thereby ensuring that the fourth

mine in Fig. 12 is not removed.

I. Summary

This section has introduced an automated detection algo-

rithm which conducts a detection-orientated segmentation of

the image using an MRF model along with a priori spatial

information on the expected signature of mines in sidescan.

The model has been tested on real and synthetic images, both of

which contained clutter and a variety of seabed types. Results
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Fig. 11. (a) Real sidescan image containing one object and the detection-
orientated segmentation result, correctly showing the one object. (b) Real
sidescan image containing multiple objects as well as the detection-orientated
segmentation result which correctly identifies all objects present.

Fig. 12. (a) Real sidescan image containing four mines. (b) The detection-
orientated segmentation result shows that three of the mines have been detected.
Several false alarms with mine-like signatures were also detected.

were very promising with false alarms occurring only in one

image where either the seabed or clutter presented a mine-like

signature. This would suggest that a texture-based model would

be useful to complement the spatial-based model presented

here to provide a complete automated unit.

Fig. 13. (a) Sidescan image containing three mine-like objects. (b) Detection-
orientated result successfully detecting the three objects. The images have been
altered to be the same size for visual purposes.

IV. EXTRACTING THE OBJECT FEATURES

After a mine-like object has been detected, its shadow can be

extracted and used later in the classification process (Fig. 1). If

the shadow of the object can be matched to the shadow from a

well-known mine shape such as a cylinder or a truncated cone,

the object’s shape can be correctly classified and identified as

a mine. For this process to be possible, it is necessary to first

obtain an accurate segmentation of the shadow.

Several models have been proposed for extracting an object’s

shadow [25], [23], [21] which offer good results on flat seabeds

but can yield poor results when complex seabeds such as sand

ripples are involved. This is because the shadows due to the

sand ripples are generally described by the same statistics as

the object’s shadow, often leading to inaccurate segmentations.

The Co-operating Statistical Snake (CSS) model described here

extracts both the object-highlight and the shadow. While the

use of the object-highlight for classification purposes is limited,

the known a priori information on the relationship between the

highlight and shadow can be used to ensure that the shadow seg-

mentation is accurate. The CSS model approximates the image

as three homogeneous regions—object-highlight, shadow and

background and so uses two statistical-snakes [35] to segment

both the object-highlight and shadow. The a priori information

between the object-highlight and shadow is used to constrain the

movement of the snakes so as to achieve accurate segmentation

results regardless of the seabed type involved.

If a mine-like object has been detected using the model de-

scribed in Section III, some of the available information from

the detection result can be used to overcome the initialization

problem which is inherent in many segmentation algorithms. As

the size and position in the image of the MLOs are known from

the detection result, the CSS model can be accurately initialized

by considering the label field. This is demonstrated in Figs. 13

and 14. Fig. 13 contains a reduced, raw sidescan image and the

final detection result showing three MLOs. Fig. 14 contains the

extracted label field for each of the objects as well as the initial

and final segmentation results of the CSS model. The initializa-

tion of the object-highlight and shadow boxes was conducted by

first restricting the two snakes to a rectangular form and using
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Fig. 14. (a) Label field mugshots of objects detected in Fig. 13 using the MRF detection model. (b) Initialization of the CSS model using label field.
(c) Segmentation result using the CSS model.

a term that considered the homogeneity of the object-highlight

pixels and shadow pixels within the object-highlight and shadow

snakes, respectively, as well as the boxes’ position with respect

to the center of the object. This ensured confident initial condi-

tions for the CSS snake every time.

Ideally the detection CSS models should be completely in-

tegrated, as demonstrated in Figs. 13 and 14, with the detec-

tion result providing the initialization step for the CSS snakes.

However, due to the sensitivity of the data involved, mine im-

ages used for test purposes are often provided as mugshots,

having already assumed that the object has been detected. This

is the case for the rest of the data presented in this section of

this paper.

For ease of notation, the raw data mugshots of the mines will

be referred to as , specifying a row and column

position of each pixel instead of the notation used to refer

to a specific data pixel in the detection model.

A. The Statistical Snakes

Assume that the observed scene (the raw sidescan image)

is composed of three areas: object-highlight, shadow, and back-

ground, of which we wish to segment the object-highlight and

shadow regions. We consider the image to be com-

posed of pixels where the highlight’s gray levels ,

the shadow’s gray levels , and the background pixels are

assumed to be uncorrelated and have , , and , pixels,

respectively. All three regions are described by probability den-

sity functions (pdfs) , , and where , , and are

the parameters of the three pdfs.

We define a template window function

which defines the shapes of the

two snakes at any given time. Defining to be equal

to 2 inside the highlight, 1 inside the shadow, or 0 every-

where else, the image becomes composed of three regions
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, ,

and . The observed image can be

viewed as the sum of the three components

(19)

where , , and are values drawn from their

respective probability distributions and is the Kronecker delta

function. Without any a priori knowledge, the best is chosen

by maximizing the likelihood

(20)

where

(21)

The likelihood is expressed as a product of probabilities

as the distributions are assumed to be uncorrelated and

.

The likelihood function in (20) depends on the parameters

of the probability functions as well as the template . The

parameters where are computed using a max-

imum-likelihood approach. Assuming that the three regions

are described by exponential distributions allows the parameter

estimates to be injected back into (20) to

obtain an expression for the likelihood that is simply dependent

on the sums of gray levels [35]. However, the detection model

described in Section III modeled the shadow, background,

and object-highlight regions using separate noise distributions

(Gaussian, Rayleigh, and triangular, respectively). Allocating

an exponential distribution which can accurately model all

three of these distributions is a difficult and unlikely task.

For simplicity and based on the assumption that the regions

are statistically quite separated, the Gaussian distribution was

chosen as the most suitable exponential function to describe

the three regions. While not exact, the results demonstrate

that this assumption is sufficiently valid to provide accurate

segmentation results. This leads to the log-likelihood function

[36]

(22)

where and

(23)

where is the number of pixels in region and

. An iterative scheme must now be used to maximize

this equation and produce the final segmentation result. To lower

the computation time, the two-dimensional (2-D) summations

in (23) can be converted to a one-dimensional (1-D) summation

around the borders of the two snakes.

Fig. 15. Explanation of how the 2-D summation over the image gray levels
can be modified to a 1-D summation around the snake.

B. Converting the Likelihood to a 1-D Problem

The terms , , and need to be computed every iteration,

making it important that the calculation is fast.

1) Object-Highlight and Shadow Regions: For the shadow

and highlight regions, which are enclosed by their respective

snakes and by considering Fig. 15, the first term on the

right-hand side of (23) can be written as

(24)

allowing the inside summation to be written as

(25)

where

(26)

This term can be deduced for every pixel before the

segmentation process, so similarly, if we express

, (23) can be rewritten as

(27)

for .
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TABLE I
RELATIONSHIP BETWEEN C(i; j), 
(i; j) AND �(i; j)

FOR THE TWO SNAKES, HIGHLIGHT AND SHADOW

Fig. 16. Description of how the Huffman encoding system varies between the
highlight and shadow snakes. This is so the model can distinguish between the
separate regions.

This can be expressed as a summation around the snakes

boundary to give

(28)

for [35]. is the associated Huffman

Encoding for each point on the snake, and

are defined in Table I, and the coding system is summa-

rized in Fig. 16. Note that the Huffman codes have been

arbitrarily chosen here so and

where the codes were computed

by vector considerations as in Chesnaud et al. [35].

2) The Background Region: Once and have been cal-

culated, it is simple to deduce by noting that

(29)

Fig. 17. The form of the log of the prior likelihood which awards large
differences in the mean gray level of the regions inside the two snakes.

and similarly

(30)

to allow the calculation of .

C. Modeling the a Priori Information

As in the detection model, a priori information can be mod-

eled to improve the model’s capability to successfully segment

the highlight and shadow. The CSS model uses two different

priors to award certain snake configurations:

• a high difference in mean graylevel between the highlight

and shadow snake;

• scenarios where the highlight snake and the shadow snake

have similar centroid positions and similar heights.

These two priors and their effects on the shadow extraction

will now be considered.

1) The Mean Prior: Object highlights are generally

amongst the brightest regions of an image while shadow

regions are amongst the darkest. A prior term of the form [10]

(31)

was used to award scenarios where there was a large difference

in the mean gray level of the pixels within the two snakes.

is the difference in the mean gray level, variables and are

used to ensure that this log function lies in the same dynamic

range as the log-likelihood term of the statistical snake while

controls the tanh functions crossover location, and controls

the crossover rate. The general function has the form shown in

Fig. 17.

As Fig. 17 demonstrates, under a given value are all clas-

sified as equally “bad” while over a given amount are all

classified as equally “good.” The transition between theses two

states is controlled by , the crossover rate, which has been se-

lected in this case to give a smooth change. The shape of this
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Fig. 18. A priori knowledge on the relationship between an objects highlight
and its shadow can be used to constrain the two snakes.

prior term stops the two snakes from simply collapsing to en-

sure a high .

2) The Position Prior: The presence of sand ripples can

often lead to an incorrect shadow extraction due to the ripple

shadows corrupting the results. However, in the cases where

an object highlight is present, it is possible to become more

assertive as to which shadow regions are due to the object and

which are not. We first define the variables , , , and

as described in Fig. 18 where is the coordinate of the

center of snake and is the maximum height of

snake such that

(32)

where is the boundary of snake , is the number of pixels

on the boundary edge, and where

. We can now define the differences and where

(33)

(34)

The ideal scenario is when both and are equal to

zero and so we define the allowed spread in these variables as

a Gaussian distribution with mean 0. Assuming that the distri-

butions of and the are independent of each other, the

combined log prior term can be written as a sum of the indi-

vidual log terms to give

(35)

where and and are constants. These determine the penalty

for moving away from the ideal case where both and

equal zero. is a constant to ensure that the prior lies in the

same dynamic range as .

3) Determining the Prior Constants: Both the mean and the

position priors discussed previously contain constants which

need to be determined before the segmentation can begin. This

is carried out as a presegmentation calculation. The two snakes

are initially restricted to only four points each and kept in rect-

angular form. A quick iterative process is carried out where

the rectangular snakes’ positions and dimensions (height, width,

position, and distance apart) are altered randomly within an al-

lowed range. At each position, the log-likelihood of the statis-

tical snake is measured using (22). To simplify this process, both

boxes have the same and height while the lengths of the

highlight and shadow boxes are kept at and , respectively.

This restricts the size of the parameter space to four parameters

( , , , and ) where is the coordinate of the center

of the highlight box and is the distance between the two boxes.

This simplistic box model for the two snakes allows a thorough

Fig. 19. (a) Two images containing mines with initial CSS snakes shown.
(b) Segmentation result obtained using the SS model. (c) Segmentation result
obtained using the MRF/CS model. (d) Segmentation result obtained using the
CSS model.

search through the parameter space for estimating the dynamic

range of the likelihood model as well as finding a favorable ini-

tial starting point for the two snakes.

As with all deformable models, a good initial starting point is

highly desirable. If the mugshot image of the object came from

the detection model detailed in Section III, an accurate initial-

ization of the CSS model is possible using the label field, as

shown in Figs. 13 and 14, where accurate size and positional

data can be extracted. However, for the data shown in this sec-

tion for which no a priori size or positional information is avail-

able, the initialization of the two snakes is carried out while the

prior constants are being estimated and is determined by using

the snake positions which maximize the difference in the mean

gray levels of the two box-snakes .

Using the rectangular snakes, the log likelihood

from (22) was calculated iteratively. and were

allocated the lowest and highest log likelihood found, re-

spectively. Defining the largest difference in log likelihood

allowed the prior constants to be defined

as

(36)

(37)

These values ensured that prior terms had roughly the same

dynamic range as the log likelihood . This is important

for ensuring that the relative importance of the different terms

can be controlled so that the log-likelihood term can

remain the dominant segmentation term while the prior terms

simply constrain the snakes’ movements in a sensible manner.

D. The Segmentation Process

The segmentation process has to maximize the posterior

function

(38)
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Fig. 20. (a) Three images containing mines with initial CSS snakes shown. (b) Segmentation result obtained using the SS model. (c) Segmentation result obtained
using the MRF/CS model. (d) Segmentation result obtained using the CSS model.

where is a smoothing prior [35] and

are weights used to control the impor-

tance of each term.

A multiscale maximum approach was used to segment the

highlight and shadow regions where both snakes were initialized

with only four points. The iterative approach randomly selects a

point after which its displacement from its old position is again

determined randomly. The displacement uses two 1-D Gaussian

proposal distributions such that, for the -displacement,

where is drawn from a Gaussian with mean and

standard deviation . After each displacement, a check

must be carried out to ensure that none of the snake segments

cross (the model operates under the assumption that the snakes

are simply connected) after which the decision on whether to

keep or reject the new configuration is made.

New points were added when convergence had been achieved

with the present set of snake points (this was defined to be

reached when the best fit solution had not changed for 200 it-

erations). new points were added between points and

where was the integer solution to , simply

being the distance between the two points. This allows the snake

progressively more flexibility as the algorithm proceeded. Ac-

curate segmentation results were seen to be obtained after two

additions of points.

Although all three terms lie within the same dynamic range,

it was important that the statistical snake term remained

the dominant term. and were maintained at 0.2 throughout

while was initialized at 0.0 and incremented by 0.05 every

time new points were added. This ensured that the snakes main-

tained a smooth form as they were given more flexibility of

movement.

E. Results

Results are given on seven real and two synthetic sidescan

images to allow the model to be tested over a large range of

conditions. The performance of the CSS model is compared to

the performance of two alternative models. The first is a single

statistical snake (SS) model as described in [23]. The second

is a classical-based snake technique as discussed in [24] where

the image is first binarized using a two-class hierarchical MRF

model (MRF-CS). The snake is driven by an energy term which

considers both the homogeneity of shadow pixels inside the

snake and the proximity of the snake to the edges of the bi-

narized image described by an edge potential field [25]. As an

aside, it should be noted that the MRF-CS model generally pro-

vides a smoother contour than the SS model due to its edge po-

tential term. Rather than insisting that the MRF-CS snake lie

directly on the shadow boundary, the edge potential term allows

the snake to simply lie in the proximity of the edge and so gen-

erally acts as a smoothing agent to the model.

The initial starting point for the CSS model’s snakes are also

shown. As discussed before, when using raw sidescan data, the

results from the detection model outlined in Section III can be

used to accurately initialize the CSS model. However, as most

of the data was obtained as mugshots, the CSS model was ini-

tialized using the method described in Section IV-C3 while the

prior constants were being estimated. While this gave a poorer

initialization point than using the detection result, the model is

still successful in obtaining the correct segmentation. The other

two models only segment the shadow and so were initialized

using the CSS model’s shadow initialization position.

Fig. 19 contains two images of objects lying on a flat seabed.

The first image contains an object with clear object-highlight

and shadow regions ensuring both the SS and the CSS models

provided an accurate segmentation result. The MRF-CS solu-

tion detects a smaller shadow region as the MRF two-class seg-

mentation removed part of the shadow region. The second image

contains a sharp drop in graylevel with range as well as an ob-

ject with very little highlight. Both the SS and the CSS model

provide good segmentations (even though there is no distinc-

tive highlight region) while the MRF-CS model gives a poor

segmentation. This was due to the extreme range variation in

graylevel leading to a poor MRF two-class segmentation.
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Fig. 21. (a) Four images containing mines on a sand ripple seabed with initial CSS snakes shown. (b) Segmentation result obtained using the SS model.
(c) Segmentation result obtained using the MRF/CS model. (d) Segmentation result obtained using the CSS model.

Fig. 20 contains three noisy images of objects (one cylinder

and two spheres) lying on a flat seabed. All three objects have

either an indistinctive or no highlight region. However, the

shadow regions are relatively clear and all three models provide

accurate shadow segmentation results.

Fig. 21 contains two real and two synthetic images where the

objects can be seen lying on sand ripple seabeds. In all four

cases, both the SS and the MRF-CS models provide poor seg-

mentation results as they cannot distinguish between the object

shadow and the ripple shadows. The CSS model, constrained by

its priors, achieves good segmentation results in all four cases.

F. Summary

A novel CSS model has been presented for extracting

the shadow of unknown objects in Sidescan imagery for

future classification. Whilst the extraction of the shadow is

relatively simple on a flat seabed, the presence of clutter or

ripple shadows confuses the situation leading to inaccurate

segmentations using standard techniques. A priori information

on the expected signature of objects in Sidescan imagery

was used to constrain the snakes’ movement so that accurate

segmentation results could be obtained regardless of the seabed

type involved. The CSS model’s extraction of the highlight

region is also useful in the later classification phase, where the

size and orientation information of the highlight region can be

used to constrain the possible object shapes which could have

produced the observed shadow region.

V. OVERALL CONCLUSION AND FUTURE RESEARCH

This paper has presented automated models for both object

detection and feature extraction in sidescan imagery. The detec-

tion model used spatial a priori knowledge on the size and ge-

ometry of object signatures in sidescan within the framework of

an MRF model to provide accurate detection results even when

large amounts of clutter were present. The model provides an

interesting alternative to the current trend of trained detection

models as in [1], [9], [2], and [14], making it applicable for a

wide range of data without the problem of requiring suitable

training data. This model was tested on both real and synthetic

data offering good results in all cases.

Once an object has been detected, its shadow can be

extracted for future classification. A novel CSS model was

presented which extracted both the object highlight and its

shadow. This technique demonstrated how the inclusion of a

priori information could again provide more accurate results.

Specifically, the problems inherent when considering complex

seabed backgrounds as noted in [17] and [24] did not impact

the accuracy of the results obtained using the CSS model. The

CSS model was favorably compared with a statistical snake

model and a MRF-based model with results presented on real

and synthetic data.

Although this paper has concentrated on the detection of

MLOs in sidescan imagery, suitable alteration of the priors

involved would allow the described techniques to be applied to

other fields such as pipeline or trawling scar detection. Future

research will concentrate on using the CSS model results for

classification purposes as well as developing a texture-orien-

tated detection model thereby producing the building blocks

for a complete automated classification system.
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