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An Automatic U -distribution and Markov Random

Field Segmentation Algorithm for PolSAR Images.
Anthony P. Doulgeris, Member, IEEE

Abstract—We recently presented a novel unsupervised, non-
Gaussian and contextual clustering algorithm for segmentation
of polarimetric SAR images [1]. This represents one of the most
advanced PolSAR unsupervised statistical segmentation algo-
rithms and uses the doubly flexible, two parameter, U-distribution
model for the PolSAR statistics and includes a Markov Random
Field approach for contextual smoothing. A goodness-of-fit testing
stage adds a statistically rigorous approach to determine the
significant number of classes. The fully automatic, algorithm was
demonstrated with good results for both simulated and real data-
sets. This paper discusses a re-thinking of the overall strategy
and leads to some simplifications. The primary issue was that
the Markov random field optimisation depends on the number
of classes and did not behave well under the split-and-merge
environment. We explain the reasons behind a separation of
the cluster evaluation from the contextual smoothing as well as
a modified rationale for the adaptive number of classes. Both
aspects have simplified the overall algorithm whilst maintaining
good visual results.

Index Terms—Polarimetric Synthetic Aperture Radar, Non-
Gaussian, Statistical Modelling, Clustering, Number of Classes.

I. INTRODUCTION

We have developed and demonstrated an advanced au-

tomatic clustering algorithm that combines a flexible non-

Gaussian class model for multi-look complex (MLC) covari-

ance matrix data, a Markov random field (MRF) for contextual

smoothing, and goodness-of-fit testing to optimise the seg-

mentation and determine an appropriate number of classes

[1]. The main features of this state-of-the-art approach are

summarised in Sec. II. This article will subsequently discuss

recent simplifications to the approach and demonstrate the new

algorithm.

Satellite-borne polarimetric synthetic aperture radar (Pol-

SAR) systems have many benefits, but analysis is hindered by

complicated non-Gaussian statistical methods. PolSAR data

models are generally derived from the product model [2],

which states that the backscattered signal results from the

product between a Gaussian speckle noise component and the

textured terrain backscatter. For multi-looked PolSAR matrix

data, the scaled Wishart distribution [3], [4], Wd, is the

simplest model to analyse but contains no texture parameter,

based upon purely Gaussian speckle. The Kd (or K-Wishart)

distribution [5], [6] and the G0
d-distribution [7], [8] are more

flexible, with one texture parameter, and are successful models
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for many PolSAR classes. The two parameter Kummer-U dis-

tribution has been used to model PolSAR vector data [9], with

promising contiguous segmentation results and demonstrated

that the two parameter model is even more flexible and able to

fit real data classes. The multivariate extension of the Kummer-

U distribution for MLC matrix data, hereafter simply called

the Ud-distribution, that was recently introduced [1], [10], and

used for real analysis in [11], gives improved results because

of its flexibility to model more varied textures and because it

includes the Wd, Kd and G0
d models as asymptotic cases.

As with many of these product models, the probability

density functions (PDFs) are complicated. Many variations

lead to different cases of the hypergeometric function that are

complicated to evaluate, often needing numerically integration,

and complicated with respect to maximising parameters in

the order term of the functions. Hence, maximum likelihood

parameter estimators are not usually available with closed-

form solutions. A practical solution is to estimate the model

parameters with the method of matrix log-cumulants [4],

because they have relatively simple numerical expressions and

possess lower bias and variance compared to single channel

(marginal) estimates or moment methods for product based

distributions.

Unsupervised clustering is achieved with the expectation

maximisation algorithm (EM-algorithm) [12], which is an

iterative method that repeatedly estimates the class posterior

probabilities based on the current parameters and then updates

the class parameters based upon the estimated probabilities.

It requires an initial state, the number of classes, PDF ex-

pressions for the class models, and update expressions for

the parameters. The Ud-distribution shall be used for the

model and the method of matrix log-cumulants for parameter

estimation. The initial state and the number of classes are

addressed with an automatic strategy by consistently starting

as one class and adaptively splitting classes until a statistical

criterion is satisfied.

The number of classes is determined from the additional

information contained in the goodness-of-fit of the data to the

estimated model [13]–[15]. There are several different ways

to implement this general framework, and our new strategy is

significantly improved and simplified.

Contextual smoothing is desired to improve the accuracy

and robustness of the image segmentation. It is achieved in

the clustering algorithm with an MRF approach that integrates

the Ud-distribution for the PolSAR data statistics conditioned

to each image cluster and a Potts model for the spatial

context. This extends our previous work with the K-Wishart

distribution [16], however, the parameter of the MRF model
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are now estimated with a mean-field like method [17]. The

inclusion of the MRF is not expected to compromise the

goodness-of-fit testing stage, because the MRF only affects

the local priors and the underlying model remains a mixture

of Ud-distributions.

The previous strategy applied the MRF based local prior

probabilities and optimised the MRF global smoothing pa-

rameter at every iteration, but this causes serious problems in

relation to the adaptive split-and-merge mixture modelling. We

now propose to entirely separate the EM-algorithm mixture

modelling from the MRF smoothing process in the new

strategy.

The proposed improvements still combine all the benefits

of a flexible non-Gaussian model for the covariance matrix

data classes, an MRF for contextual smoothing, and goodness-

of-fit testing to optimise the segmentation and determine an

appropriate number of classes.

The previous, state-of-the-art algorithm is described in Sec-

tion II, the main characteristics of the new strategy are intro-

duced in Section III, are demonstrated for both simulated and

real data-sets in Section IV, and, finally, the main conclusions

are given in Section V.

II. STATE-OF-THE-ART ALGORITHM

The scope of this algorithm is to analyse MLC data images,

where the data is an image of covariance matrices, C. We

assume the scalar product model is valid and that the MLC

data is formed by a simple box-car multi-look average from

the single-look complex scattering coefficients. The box-car is

used so that we can assume a global number of looks (degree

of smoothing) and “simpler” statistical models, as opposed to

advanced dynamic speckle smoothing methods that produce

a variable number of looks that complicate the modelling.

The number of looks, L is in practise substituted with an

equivalent number of looks (ENL) due to pixel correlations.

The ENL is either estimated in a pre-processing step or

optimised during the iterations by a minimum distance method

using log-cumulant expressions given all the current class

model parameters simultaneously.

Our main objective is to segment the image pixels into

separate clusters based upon the Ud-distribution model. The

statistical approach for clustering the images uses the iterative

EM-algorithm with a few modifications, as has previously

been described in detail in [13], [14], [16]. The extension

proposed in [1], was that each class is modelled with the

Ud-distribution PDF and that context has been incorporated

with an MRF technique based upon the Potts model. The key

features are detailed here.

Its main drawback seems to be computation time, but this

can be partly alleviated with a sub-sampling approach, as in

[14], that still finds the major classes of interest but sacrifices

smaller sub/side classes for reduced computation time.

A. Non-Gaussian Modelling: the Ud-distribution

Bombrun et al. [10] have shown the potential of the Ud PDF,

with texture parameters α and λ, to model both extremely

heterogeneous, moderately heterogeneous and homogeneous

clutter. It encompasses the other models as special cases, such

that it reverts to the Kd as λ → ∞, the G0
d as α → ∞,

and the WC

d as both α, λ → ∞. Therefore, this one model

supersedes many previous modelling algorithms. Nevertheless,

these special cases may be implemented to improve the

numerical evaluation in different parameter ranges. Table I

lists the probability density functions and the matrix log-

cumulant expressions for the matrix variate Wd, Kd, G0
d , and

Ud distributions.

B. Parameter Estimation

Texture parameter estimation is achieved with the method

of matrix log-cumulants (MoMLC) because closed-form max-

imum likelihood solutions don’t exist. MoMLC has become

the popular estimation choice, because it is fast to compute

and achieves the most accurate results among the practical

alternatives [4]. Although the log-cumulants are also not in

closed-form, they are faster to compute than the probability

density functions. A simple gradient search algorithm in the

multivariate log-cumulant domain is used to optimise the two

texture parameters, α and λ, for each class, from member-

ship weighted log-cumulant estimates, and then the ENL is

similarly optimised, but over all classes simultaneously.

The model covariance matrix Σ is determined with the

sample covariance matrix estimator, which becomes a mem-

bership weighted mean over the C matrix data samples in the

fuzzy clustering sense. Although some authors, e.g. [18], have

recently promoted the fixed-point estimator for the covariance

matrix under the product model, it has a significant bias in

low texture regions and only becomes beneficial in quite high

texture areas. This is clearly demonstrated in [19]. The fixed-

point estimator was tested in early versions of the algorithm,

but showed no significant benefit, even for high texture cases,

given the large sample sizes and that it is slower to compute.

C. Goodness-of-fit testing

The EM-algorithm was modified to incorporate a split-and-

merge stage, at regular intervals within the main iterations. The

stage introduces an hypothesis test based upon the goodness-

of-fit of the current cluster model to the observed data. Given

that the assumed model distribution is appropriate, then a

poor fitting data-set must represent a mixture of clusters and

we therefore split that cluster in two and continue the EM-

algorithm clustering. Conversely, a merge test checks whether

two clusters are converging to the same data group, and was

found to be necessary due to the chance of over-splitting by

testing before full convergence. The true population model will

never be known, so we test against the estimated model instead

and just assume that the variation around the true model and

the variation around the estimated model are similar. Our end

objective is to determine whether the current number of classes

and model parameters could explain the data-set to the given

confidence level.

The hypothesis test may be implemented in several ways

and we have used two distinct methods with acceptable results.

Firstly, we have used a distance measure in a multiple log-

cumulant domain (well described in [14], [20]), since we
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TABLE I
PDFS AND LOG-CUMULANT EQUATIONS FOR THE COVARIANCE MATRIX DISTRIBUTIONS UNDER THE PRODUCT MODEL [4].

Family fC(C) of covariance matrix C MoMLC equations

WC

d
(L,Σ) L

Ld|C|L−d

Γd(L)|Σ|L
exp

(

−Ltr(Σ−1C)
)

κ1{C} = ln |Σ|+ ψ0
d
(L)− d lnL

κν>1{C} = ψν−1
d

(L)

Kd(L,Σ, α)

2|C|L−d

Γd(L)Γ(α)|Σ|L
(Lα)

α+Ld

2

(

tr(Σ−1C)
)

α−Ld

2 κ1{C} = ln |Σ|+ ψ0
d
(L) + d

(

ψ0(α)− ln(αL)
)

×Kα−Ld

(

2
√

Lαtr(Σ−1C)

)

κν>1{C} = ψν−1
d

(L) + dνψν−1(α)

G0
d
(L,Σ, λ)

L
Ld|C|L−d

Γd(L)|Σ|L
Γ(Ld+λ)(λ−1)λ

Γ(λ)
κ1{C} = ln |Σ|+ ψ0

d
(L) + d

(

ln(λ−1
L

)− ψ0(λ)
)

(

Ltr(Σ−1C) + λ− 1
)−λ−Ld

κν>1{C} = ψν−1
d

(L) + (−d)νψν−1(λ)

Ud(L,Σ, α, λ)

L
Ld

Γd(L)
|C|L−d

|Σ|L
Γ(α+λ)Γ(Ld+λ)

Γ(α)Γ(λ)

(

α

λ−1

)Ld
κ1{C} = ln |Σ|+ ψ0

d
(L) + d

(

ψ0(α)− ψ0(λ) + ln(λ−1
αL

)
)

×U
(

Ld+ λ, Ld− α+ 1, Ltr(Σ−1C)( α

λ−1
)
)

κν>1{C} = ψν−1
d

(L) + dν
(

ψν−1(α) + (−1)ν−1ψν−1(λ)
)

were already using log-cumulants throughout the algorithm.

This was initially implemented with the log-cumulants for the

compacted measure with sampling distribution,

trace(Σ−1
C) ∼ Ud(Ld, d, α, λ). (1)

This sampling distribution was determined though logical con-

struction from the properties of the Ud distribution under linear

combinations, and has been empirically verified through large

sample simulations. Although it may only be asymptotically

correct, it is sufficiently accurate for the algorithm’s model

fitting test. We used the first 3 to 5 log-cumulants in a multi-

variate distance test, and either assumed the asymptotic Chi-

squared model in [20], or used a Monte-Carlo technique for

low sample sizes. Secondly, we have used a simple histogram

test based on the multinomial distribution and Pearson’s Chi-

squared test. We use an irregular, equiprobable partition of

the data and compare directly to the PDF. The normalised

total squared error is asymptotically Chi-squared distributed

as detailed in standard text books, e.g. [21]. This test is quite

generic and may be easily implemented for any model with

numerical inversion directly from the PDF expressions that are

used in the EM-algorithm.

We recommend the Pearson’s test, because the log-cumulant

distance test shows some loss of sensitivity at both high texture

and low sample sizes that probably reflects that the distance

measure is only asymptotically Chi-squared.

D. Markov Random Fields

Markov Random Field modelling is a contextual smoothing

technique which gives more weight to the class memberships

of spatially neighbouring classes. The class label image is

modelled as an MRF together with an isotropic second-order

neighbourhood system, defining the eight surrounding pixels

as the neighbourhood for each site. The class label MRF easily

combines with a finite mixture model’s spectral clustering, i.e.,

based on the pixel covariance matrix distributions, by replacing

the global class prior probabilities with spatially varying local

prior probabilities determined from the local neighbourhoods.

We introduce the MRF for the class labels, L with sites S , as a

global, isotropic Gibbs distribution, as in [22], with the energy

function being proportional to the local neighbourhood mean

probability for each class, that is, we implement a mean-field

like method [17] and we optimise the global MRF smoothing

parameter β with the pseudo-likelihood approach of [23].

Therefore, the k class mixture model for the matrix-variate

data at the ith location, C(i), may be summarised as:

PC(C
(i)) =

k
∑

j=1

Ud(C
(i);L,Σj , αj , λj)π

(i)
j (β,L) (2)

where the local priors for each class, π
(i)
j , are derived from

the mean of the current class memberships (posterior proba-

bilities), m
(i)
j , for each class, j, over the neighbourhood of

site i, thus

π
(i)
j (β,L) =

exp
(

βm
(i)
j

)

∑k

l=1 exp
(

βm
(i)
l

) (3)

The MRF spatial smoothing parameter β > 0, which is

a measure of correlation between neighbouring pixels, is

found with the pseudo-likelihood method [23], at each MRF

iteration, by maximising

β = arg max
β

∑

i∈S

k
∑

j=1

P (L(i)=j|C(i), β,L) log π
(i)
j (β,L)

(4)

III. IMPROVEMENTS

The modifications discussed here keep all the advantages

of the state-of-the-art algorithm whilst simplifying the overall
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procedure. They cover three main issues: 1) the MRF opti-

misation under the split-and-merge strategy; 2) computation

speed; and 3) test sensitivity. These points are discussed here

and demonstrated in the Results section, IV.

As mentioned in the introduction, we previously combined

the mixture modelling and MRF smoothing at each iteration

of the EM-algorithm and we used both split and merge

operations, because we did not wait until full convergence

to test the model fit. Both of these choices have had serious

consequences in relation to the mixture modelling.

Firstly, the early iterations of the EM-algorithm are a

poor representation of the final image and will cause the

MRF smoothing parameter, β, optimisation to be severely

inappropriate. The β parameter value is also dependent on the

number of clusters and hence the splitting and merging would

make β inappropriate at the next iteration. The previous β

parameter is generally too strong when increasing the number

of classes and allowed multiple clusters to persist even though

they were competing for one density cluster of samples.

Secondly, testing the model fit before full convergence

sometimes split classes based on poor parameter estimates and

often ended up with more classes than necessary. This was

“fixed” by also testing for competing clusters and merging

any that are good-fits to a single combined model. This

required estimating the parameters for the merged data, which

is computationally slow for the flexible U -distribution model,

and testing all pair-wise combinations, which quickly becomes

very many individual tests as the number of classes increases.

In combination with the effect of overly strong β parameter

smoothing, this added a huge computational burden to the

algorithm. To avoid these problems, we re-thought the whole

process and realised that the mixture modelling can be entirely

separated from the MRF smoothing and that the split-and-

merge procedure may be faster when simplified to a sequential

split-only procedure with full EM-algorithm convergence.

The contextual smoothing only affects the prior probabil-

ities, replacing the global priors with locally derived prior

probabilities based upon the neighbourhood, and although

the prior probabilities are changing locally, the actual pixel

values never change. Therefore, the independent collection of

samples, without spatial relations, is still correctly modelled

with global priors and a maximum a posteriori mixture model.

Thus, the entire adaptive mixture modelling to find the number

classes and model parameters can be accomplished without

the complications of the MRF. A foreseeable drawback is that

very small classes may be lost in the total sample clustering

(either not represented in the sub-sampling, or being swamped

by larger classes) that may be more distinct on a local level.

The option of sub-sampling to improve the processing speed,

also at the expense of class distinction, is greatly simplified

without the contextual smoothing with its dependence on the

spatial neighbours.

We also observed that under certain situations the combined

multi-variate tests (i.e., compacted to a 1-dimensional measure

using (1)) were not always detecting differences where the

classes were only different in some polarimetric channels

and were similar in others. This can be understood by the

well-fitting dimensions diluting the sensitivity of the poor-

fitting ones. We now suggest testing each of the d dimensions

individually with a confidence level d times less sensitive

to retain the same overall false alarm rate (essentially the

naive Bonferroni correction, from standard textbooks). The

compaction effect must be non-linear with respect to the

confidence level thresholds, because even this d times reduced

sensitivity gives better results than the compacted test. This

may not be ideal, and does not consider correlation effects (to

which we are exploring an whitened version of the testing),

but is simple to implement and appears to work. This also

simplifies the test, because we can use the class model PDF

directly in the Pearson’s goodness-of-fit test, albeit in 1-

dimension, and don’t need to derive the statistical model of the

compaction. In addition, this directs us to a simple splitting

mechanism, since we know exactly which dimension has the

worst fitting model, and we can split the cluster down the

mean or median value in that dimension and re-calculate the

parameters. The actual splitting implementation is not critical

because the next EM-algorithm stage will adapt the parameters

and it only needs to give two distinct groups. These could be

determined by random assignment, however, we found that

splitting in the middle often produces excellent separation at

the next iteration.

A. New Strategy

The new recommended strategy, summarised in Fig. 1, is to

separate the clustering from the MRF smoothing, fully con-

verge the EM-algorithm at each number of classes, goodness-

of-fit test each dimension individually and for each class,

and only split the worst class if above the confidence level

threshold. Once the automatic and adaptive algorithm has

found the number of classes and their class parameters, then

the new MRF contextual smoothing stage only requires the

maximum likelihood probability value for each class and each

pixel, calculated once, but needs to iteratively adapt and spread

the MRF field values, care of the Markov property. That is,

the class parameters and pixel-wise probability values are

fixed, and only the mean-field posterior weights and smoothing

parameter are iteratively updated. Starting with the global

priors achieves a smooth transition to the MRF local priors.

The full convergence and split-only approach is a much

simpler solution and still finds the minimum number of classes

that are able to describe the data-set to the given confidence

level.

B. Processing Speed

Initially, we gained a great reduction in processing time

when we separated the clustering from the MRF, because we

could take advantage of sub-sampling in the clustering phase

and still get full smoothing. We also believed that the split-

and-merge strategy was slower than the split-only, because

of excessive merge testing, but we now realise that this was

caused by other issues. Particularly, slower parameter esti-

mation and inaccurate log-cumulant tests for extreme texture

cases, such as mixtures, that was causing cyclic behaviour

(with the same clusters repeatedly splitting and then re-

merging). Such deadlock conditions were previously solved
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Fig. 1. New Strategy: workflow with comments.

empirically by ramping the confidence level sensitivity as

the iterations proceeded, but it is much better to avoid this

situation altogether.

After fixing these problems, and with equivalent code for

all aspects except the split-and-merge strategy, i.e. the same

parameter estimation and the same Pearson’s testing on the

compacted measure, then the timing was roughly equivalent

between the split-and-merge and split-only strategies and de-

pends mostly on the image complexity. Specifically, how many

classes are involved and how well separated or overlapped

the clusters are. We did, however, observe subtle differences

in the segmented results depending on the strategy. We find

the sequential, split-only approach slightly more sensitive and

has a cleaner interpretation with less concern about the β

optimisation.

IV. RESULTS

We demonstrate the characteristics specifically related to the

new algorithm with both simulated data, for validation, and

with real Pol-SAR images.

A. Confidence Level Check

We found that the Pearson’s test with 10 to 20 bins gave

very good sensitivity using a chi-squared with the number

of bins minus two degrees of freedom. If using the log-

cumulant based test, we found that the degrees of freedom

is a little more complicated and depends on the number of

cumulants used in both the testing and in the estimation

(constraints), as well as the dimensions. However, using an

incorrect degree of freedom will still work consistently, but

with a slightly different sensitivity or false alarm rate than

the chosen confidence level. We will be using the simpler

Pearson’s test hereafter.

Table II indicates the chosen confidence level versus the

observed false alarm rate for the Pearson’s test as a demon-

stration of the goodness-of-fit testing obtaining the specified

confidence levels. The result is for simulated data N = 1000,

d = 4, 9-looks, α = 14.8, λ = 52.8 (approx. texture of a

forest), and Σ included complex off-diagonal terms for the

co-polar correlation. A wide range of parameter values and

dimensions were tested and all showed this same representa-

tive behaviour.

TABLE II
CONFIDENCE LEVEL VERSUS MEASURED FALSE ALARM RATE. PEARSON’S

TEST WITH 10 BINS AND 8 DEGREES OF FREEDOM, 1000 REPEATS.

Confidence level % Measured failures %
90.0 9.655
95.0 4.700
99.0 0.915
99.9 0.105

B. Test Individual Dimensions

By chance, one of our test images for Wishart data classes

had two clusters that were difficult to distinguish and at higher

sub-sampling factors were considered a good single class. The

polarimetric colours look distinctly different and we therefore

tried to improve the sensitivity of the testing by looking at

individual dimensions. Fig. 2 shows the segmented images and

the class histogram for both the compacted scalar test, i.e., the

trace statistic in (1), and the individual dimension tests. Note

how the pink class in the “Compacted” image is correctly

separated into the pink and grey classes in the “Individual”

image. The “Compacted” histogram was considered a good fit

at 99%, whilst the “Individual” histogram shows significant

variation in some dimensions that were subsequently split by

the algorithm. Note that the individual dimension test uses

a confidence level that is d times less sensitive, but still

manages to be better than the single compacted test statistic.

Since this is with the same number of samples, the individual

dimension test is considered more sensitive (See also Fig. 4).

The compacted test did manage to separate the classes when

using a lower sub-sampling factor, because the greater number

of samples were better able to distinguish the mixture at the

given confidence level.

C. Confidence level and sub-sampling effects

The number of clusters that are considered significant

depends on the chosen confidence level and the actual sep-

aration between the data points. This may be used to simplify

the image clustering result by decreasing the sensitivity, for

example changing from 95% to 99% or higher, and will likely

find fewer classes (and fewer false alarms) since each class

test would be more tolerant of random variation. Extremely

poor fits will still be separated and hence the major class
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Fig. 2. Compacted test versus individual dimension tests. Note how the pink
class in the “Compacted” image is correctly separated into the pink and grey
classes in the “Individual” image. The “Compacted” histogram was considered
a good fit (to the model density, red line) at 99%, whilst the “Individual”
histogram shows significant variation in some dimensions (coloured lines,
model in red), even when reduced to 99.75% confidence.

divisions are still detected, but less distinct clusters (i.e., sub-

class divisions) are grouped together. A simple example of

this effect may be seen in the first two segmentation images,

(b) and (c), of Fig. 3, where 14 classes were found at 95%

and 11 classes at 99.99%. The image is taken from the

EMISAR sample scene over Foulum, Denmark, 1998, L-band,

multi-looked by 18, 150 × 300 pixels. Image (a) shows the

Pauli polarimetric decomposition for reference, where different

colours represent different polarimetric properties, and depicts

agricultural fields, forest and buildings.

An alternative method to simplify the segmentation is by

increasing the sub-sampling factor, which reduces the number

of samples being tested, and hence lowers the sensitivity of the

test. Fewer samples also dramatically speeds up the algorithm,

because far fewer computations are needed during the slow

iterative clustering stage. This effect may be seen in the top

and bottom segmentations, (b) and (d), of Fig. 3 and seems

to have a more dramatic effect than changing the confidence

level. Both images use 95% confidence, but sub-sampling

by 25 obtained 14 classes, and sub-sampling by 100 found

8 classes. The main class distinction between forest (whiter

regions in Pauli) and fields (darker, redder regions in Pauli),

and the most different fields (i.e., different colouring) are

consistent in both of these two approaches to simplifying the

image segmentation.

Table III gives an indication of the processing times for the

Foulum data sub-set. The intention is to see the benefit of

sub-sampling compared to the full resolution analysis. The

tests were run on a 2.66GHz Intel Core i7 Apple laptop

with 4GB memory using MATLAB [24], and have not been

fully optimised. The old approach used to take hours to days,

depending on the size of the scene, but there have been too

many other coding improvements for a fair comparison of the

underlying strategy.

Note that the huge increase in both time and number of

classes for sub-sampling level 1 probably indicates a problem
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(a) Pauli image for reference.

(b) 95% confidence, sub-sampling by 25, 14-classes.

(c) 99.99% confidence, sub-sampling by 25, 11-classes.

(d) 95% confidence, sub-sampling by 100, 8-classes.

Fig. 3. Lowering the sensitivity finds fewer classes, but retains the major
class divisions. EMISAR image from Foulum, Denmark, 1998.

TABLE III
SUB-SAMPLING TESTS FOR REAL “FOULUM” IMAGE EXTRACT. NEW

SPLIT-ONLY STRATEGY, INDIVIDUAL DIMENSION TESTS, 99%.

sub-sampling pixels classes time (including final MRF)

1 45000 > 100 over 1 day

4 11250 29 3 hr. 18 min. 17 sec.

16 2850 14 36 min. 32 sec.

49 946 12 32 min. 50 sec.

100 450 7 12 min. 22 sec.

400 120 5 3 min. 21 sec.
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(a) Old strategy, split-and-merge, internal MRF, compacted tests.

(b) New strategy, split-only, final MRF, compacted tests.

(c) New strategy, split-only, final MRF, individual dimension tests.

Fig. 4. Results for different strategies. Main class boundaries are similar,
and all are smooth. The individual dimension test is more sensitive and
distinguishes more classes. EMISAR image from Foulum, Denmark, 1998.

and was therefore cancelled before it finished. The goodness-

of-fit tests become very sensitive when the sample sizes are

very large. Imprecise parameter estimation, particularly the

ENL parameter, or an incorrect model distribution could both

make the test fail under high sensitivity, even though they are

acceptable for a lower number of samples. Thus, there may be

extra benefits of using the sub-sampling, or setting a maximum

number of samples to test per class, but an optimum level is

probably application and data dependent.

D. Different Strategies

Some differences between the old split-and-merge approach

and the new split-only approach are shown in Fig. 4. All are

from the Foulum data-set, 18-look averaging, and sub-sampled

by 49. The segmentation with the old, split-and-merge strategy

and compacted tests found 8 major classes in (a), and is very

similar to the new split-only strategy results under the same

test conditions in (b). Segmentation (c) shows the result for

the new strategy when testing individual dimensions, which are

200 400 600 800 1000 1200 1400 1600

200

400

600

800

1000

1200

1400

1600

Fig. 5. Sea ice around Point Barrow, Alaska. Pauli image (top) and automatic
segmentation into 12 classes (bottom). Radarsat-2, C-band, June 2011, 16-look
averaging, sub-sampling by 256, 99% confidence level.

more sensitive, and found 12 classes. In all cases, the major

class boundaries are similar, the regions are smooth and solid,

and they can be seen to correspond with different coloured

regions in the Pauli image in Fig. 3 (a). Note that the boundary

between sparse forest and the dense forest is different in Fig. 4

(a) (red & blue classes) than in (b) (yellow & brown classes),

and must reflect the influence of the MRF strategy, because all

other aspects of the algorithm were the same. However, given

that both scenes have a constrained number of classes due to

sub-sampling, it is difficult to state which is best.

E. More Real Data Examples

We include two very different real image examples just to

demonstrate the flexible modelling and simplified segmented
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Fig. 6. San Francisco city. Pauli image (top) and automatic segmentation
into 23 classes (bottom). Radarsat-2, C-band, June 2008, 25-look averaging,
sub-sampling by 25, 99% confidence level.

images that may be generally used as an initial step for further

studies.

Fig. 5 shows an area of sea ice around Point Barrow, Alaska,

from a Radarsat-2, C-band, 16-look scene from 2011. It clearly

separates the darkest regions of open water (several classes due

to varying wind conditions) from the ice floes, the land-fast ice

and the land. The research interest here is in the few classes

in the land-fast ice region, which is of interest to the local

community who travel and hunt on the ice. This segmentation

may be used for further analysis of the polarimetric properties

to identify the type of ice in the regions.

Fig. 6 shows San Francisco city from the Radarsat-2 sample

scene, 25-looks, from 2008. Although 23 classes is a little

complicated, the different coloured segments do appear to

correlate with different coloured regions in the Pauli image

and has quite fine distinction at this sub-sampling level. Note

that urban areas have the most varied textures, which are satis-

factorily clustered with this flexible model. Besides capturing

these visible regions well, this segmentation also demonstrates

that the rotated buildings and the forested vegetation are

distinguished in the polarimetric data. Urban analysts may

subsequently explore the specific properties or features of the

polarimetry that best separate these regions.

V. CONCLUSIONS

We have proposed an improved strategy for our advanced

non-Gaussian clustering algorithm which maintains the bene-

fits of the flexible Ud-distribution for multi-look covariance

matrix data classes, Markov random fields for contextual

smoothing, and goodness-of-fit testing to optimise the number

of clusters. The new strategy simplified the logic of the

algorithm, making it more robust, improves the sensitivity, and

often leads to faster results.

This paper demonstrated that the goodness-of-fit testing is

statistically correct by measuring the expected failure rate,

gave an example to demonstrate the improved sensitivity by

testing each dimension separately, demonstrated how changing

the sensitivity and sub-sampling affects the number of classes

and can be used to simplify the segmentation result, gave an

example of the subtle differences that the choice of strategy

may produce, and included further examples for real PolSAR

images to demonstrate the generality of the algorithm for

different scene types and that the optimised MRF smoothing

level seems appropriate.

Visual inspection indicates that it achieves good results

that appear valid for real data images and is fully automatic.

Subsequent interpretation and identification of the segments

may be accomplished with ground truth information, or by

exploring the polarimetric class parameters.
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