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Abstract: Defect detection of petrochemical pipelines is an important task for industrial production
safety. At present, pipeline defect detection mainly relies on closed circuit television method (CCTV)
to take video of the pipeline inner wall and then detect the defective area manually, so the detection is
very time-consuming and has a high rate of false and missed detections. To solve the above issues, we
proposed an automatic defect detection system for petrochemical pipeline based on Cycle-GAN and
improved YOLO v5. Firstly, in order to create the pipeline defect dataset, the original pipeline videos
need pre-processing, which includes frame extraction, unfolding, illumination balancing, and image
stitching to create coherent and tiled pipeline inner wall images. Secondly, aiming at the problems of
small amount of samples and the imbalance of defect and non-defect classes, a sample enhancement
strategy based on Cycle-GAN is proposed to generate defect images and expand the data set. Finally,
in order to detect defective areas on the pipeline and improve the detection accuracy, a robust defect
detection model based on improved YOLO v5 and Transformer attention mechanism is proposed,
with the average precision and recall as 93.10% and 90.96%, and the F1-score as 0.920 on the test set.
The proposed system can provide reference for operators in pipeline health inspection, improving
the efficiency and accuracy of detection.

Keywords: petrochemical pipeline; defect detection; Cycle-GAN; YOLO v5; attention mechanism

1. Introduction

As the most commonly used component in modern industrial production, the indus-
trial pipeline is one of the most frequently damaged sections in many industrial accidents,
including corrosion, scaling, cracking, perforation, and other issues that seriously threaten
the service safety of pipelines due to their features of numerous points, extensive areas,
enormous volumes, changing curvature, and difficult working conditions. Safety events
that resulted from failing to respond to anomalous pipeline conditions in a timely manner
have been reported all over the world, so periodic maintenance and inspection are crucial for
keeping the pipeline operating steadily for a long time. Fixed-point monitoring and manual
testing from external pipelines are the primary methods at present. However, it is required
to erect scaffolding, remove external thermal insulation, and scrape rust from the exterior
walls when testing, which makes the test results not accurately reflect the whole situation,
provides a safety risk during construction, and brings higher construction costs. In addition,
the diversity of process medium, complexity of pipeline structure, and low accessibility such
as a suspended or buried pipeline will lead to missed detection and false detection.

With the rapid development of pipeline intelligent detection robot technology, pipeline
crawling robots have been applied widely to improve pipeline detection efficiency recently. A
novel method named Closed Circuit Television (CCTV) [1] which uses a small crawling robot
to shoot inside the metal pipe and identify the defects reflected in the video has become the
most widely used detection method in engineering fields. As an important supplement to
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the external detection technology, the in-pipeline detection is carried out based on CCTV to
collect the information of the condition in pipelines, and the detection data are transmitted to
the intelligent detection platform for video inspection and defect detection. It is challenging
to obtain ideal detection results only relying on traditional image detection methods due to
the complicated types of pipeline defects and the varied background of video data. Therefore,
the current pipeline defect detection work still needs to rely on the professionals to assess and
examine the situation in the pipeline. The main shortcomings of the manual work are as follows:

(1) Time-consuming and inefficient: It takes interpreters a long time to work on a large
number of detection videos;

(2) High false and missed detection rate: Even professionals can cause about 20% of false
and missed detection due to long-term fatigue, misjudgment, operational errors, and
missing data;

(3) Non-uniform evaluation results: The interpretation results are heavily influenced by
subjective factors because the definitions of some defects are relatively close, or even
a single defect can be interpreted as two or three different types;

(4) Inaccurate judgment of defect grade: It is difficult for the interpreter to measure
the grade of the defect from the currently commonly used video information on
subjective judgment.

Therefore, it is necessary to develop a method that can automatically identify the de-
fects inside the pipeline, which reduces labor and time costs while improving the efficiency
and quality of the detection.

With the advancement of computer technology, artificial intelligent methods such as
machine learning and deep learning are playing a role in more fields, and object detection
is one of the important application directions. Therefore, the machine learning approaches
are naturally applied to defect detection for such as metals, semiconductors, and fruits [2].
Compared with the traditional detection method, the method based on computer vision
shows strong advantages and leads to the automation of the detection process, which
improves the efficiency and accuracy of detection while saving labor costs. However, there
is not much research in the area of intelligent pipeline defect detection due to the complex
pipeline image background, a wide variety of defect categories, and the possibility of
different kinds of defects existing in the same area.

In this paper, a comprehensive defect detection system with high accuracy and robust-
ness for the pipeline inner wall is proposed. The main work is as follows:

(1) To address the issues of distortion, noise, and uneven illumination caused by the
hemispherical camera, the distorted pipe wall image is unfolded by geometric coor-
dinate transformation, and the uneven illumination is equalized by a Retinex-based
image enhancement method.

(2) For the high repetition of adjacent frames of video with contextual coherence, the
image stitching algorithm based on SIFT features is carried out on the unfolded pipe
inner wall images to obtain a complete and coherent image;

(3) To solve the problems of the small amount of sample data and the unbalanced number
of defect categories, a sample enhancement strategy based on Cycle-GAN is proposed
in which the defective areas are randomly generated at the non-defect pipe walls
to obtain pseudo-samples of defect pipe and enrich the sample diversity based on
existing data sets;

(4) YOLO (You Only Look Once) v5-based object detection network is used to detect the
specific defective areas on the stitched pipeline inner wall images and classify the
categories. The proposed network is first pre-trained on similar data sets; therefore,
the amount of required data is reduced by transfer learning methods. The Transformer
attention mechanism is integrated into YOLO v5 to help the network detect the region
of interest in images and improve the detection and recognition accuracy.
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2. Related Works
2.1. Pipeline Internal Defect Detection Based on Computer Vision

With the rapid development of robotics, pipeline CCTV detection technology first
appeared in the 1950s and was placed on various active pipeline robots for internal pipeline
operations. By the middle of the 1990s, CCTV detection technology had been estab-
lished as the most sophisticated and reliable method of identifying pipeline conditions
worldwide [3–6]. Robots have greatly expanded the detectable range of pipeline interiors
and enabled workers to more clearly inspect the inside conditions while determining the
health of the pipeline.

Moselhi et al. [7] introduced image processing into the automatic pipeline defect
detection and proposed an automated detection system including four modules of image
acquisition, image processing, feature extraction and defect classification, which provides
a basic framework for a computer vision-based pipeline internal defect detection system.
Yang and Su [8] combined morphological opening operation and OTSU thresholding to
segment CCTV video frames, and defined four ideal models of typical pipeline defects of
pipe wall collapse, pipe body breakage, object insertion, and joint detachment. However,
this method has a great limitation that it has strict requirements on the angle of video
shooting and environmental lighting. Myrans et al. [9] extracted GIST features from the
images and used the random forest algorithm to discriminate defects in the pipeline images.
In addition, they used Hidden Markov Model (HMM) and Order Oblivious Filter (OOF) to
process additional information between adjacent frames to further improve the prediction
accuracy and reduce the false negative rate (FNR), but the method is tedious and not
suitable for fast detection. Guo et al. [10] proposed a change detection based method for
pipeline video frames with image alignment, histogram matching, image filtering, and then
differencing the current frame of the pipeline video from the reference image to obtain the
region of interest and performing multilevel determination of the obtained region of interest,
which achieves high accuracy but also has a high false detection rate. Yang et al. [8] extracted
entropy features, clustering trends, and other features in the image through co-occurrence
matrix and wavelet transform to train a classifier based on SVM for effective pipeline
defect detection. In addition, many other CCTV-based methods were proposed and some
methods for specific pipeline defects are also proposed. Similarly, Ye et al. [11] accomplish
the classification of pipe defects by fusing multiple features of pipe images combined with
machine learning algorithms. Khalifa et al. [12] identify crack defects present in pipes by
morphological methods after noise removal from the original images. This method can
check for small cracks that cannot be judged by the naked eye, but the method cannot
make judgments about other defects. Halfawy et al. [13] use morphological techniques,
threshold segmentation, and median filtering techniques to delineate the region containing
pipe defects in the pipe image, and then extract specific features in that region and perform
defect detection by a support vector machine classifier. Like the previous method, this
method also targets specific defects, such as pipe defects caused by tree root intrusion.

In conclusion, the above process based on computer vision detection method includes
three steps: image preprocessing, feature extraction, and classification. These methods are
fast and do not require too much of the original data set. However, many methods can only
identify specific defects because the feature extraction is designed for a particular defect,
which limits the applicability. In addition, there is also the problem of low accuracy and
high false detection rate.

2.2. Pipeline Internal Defect Detection Based on Deep Learning

With the development of deep learning technology, it has been widely used in video
processing [14–17], water level calculation [18,19], pipeline semantic segmentation [20–22],
and pipeline defect classification [23,24] in the field of pipeline detection. Hassan et al. [25]
adopted AlexNet [26] into pipeline defect detection and used the images edited from
pipeline CCTV videos to form the training set for the model. Wang and Cheng combined
deep convolutional neural networks (CNN) with fully connected conditional random



Sensors 2022, 22, 7907 4 of 31

fields (Dense CRF) to form an end-to-end neural network named DilaSeg-CRF and jointly
train the parameters of segmentation layers and CRF layers. Later, many other CNN-
based methods have also been proposed. Hassan et al. [25] proposed a convolutional
neural network-based defect classification system for CCTV pipeline videos. The pipeline
image dataset is manually labeled according to six predefined defect types, and this CCTV
pipeline video defect classification system is able to identify pipeline defects in addition
to captions on CCTV pipeline videos, which helps to obtain the location information of
defects. Meijer et al. proposed a method of cross-validation to eliminate data leakage and
reduce the risk of overestimating the classifier performance. The metrics of sensitivity
specificity and recall precision are introduced to measure the performance of pipeline
defect classifiers. Wang et al. [27] applied Faster R-CNN to pipeline defect detection; this
method can assess the severity of defects as well as the condition of the pipe, but cannot
operate in real time. The first work of Faster R-CNN network for sewer defect tracking
was used by Kumar et al. [17]. This method can obtain the number of defects. However,
it requires training two models rather than an end-to-end framework. Kumar et al. [28]
further compared the Faster-RCNN model with the YOLO v3 and the Single-Shot Multibox
Detector (SSD), but it is not applicable to structural defect detection. Yin et al. [29] used the
YOLO v3 network, which covers defect detection, video interpretation, and text recognition
functions. Rao et al. [30] used a network combining CNN and non-overlapping windows,
which outperformed existing models in terms of detection accuracy; their study also
demonstrated that a deeper CNN model can have better performance, but also requires
longer inference time. Li et al. [31] used the Strengthened region proposal network (SRPN)
network structure, which can evaluate the defect level based on the effective localization of
defects, but it cannot be applied to online processing. Klusek et al. [32] used the YOLO v2
network, which covers the functions of defect classification, detection, and segmentation,
but the detection results are weak. Dang et al. [33] proposed a Transformer-based defect
detection (Defect TR); this method does not require priori knowledge and can obtain better
results with a limited number of parameters. However, the robustness of the method is not
strong, and it cannot be practically applied. Ma et al. [34] proposed a multi-defect detection
system for sewage pipes based on StyleGAN-SDM and fusion CNN, which alleviated the
problems of difficulty in data collection and small amount of data. However, only the
complete pipeline images were classified, and there is a lack of pixel-level classification
results and positioning information for the accurate defective area.

In short, the detection accuracy and efficiency of methods based on deep learning are
far higher than that of the traditional methods. However, the training of neural network
model generally requires more labor resources to label the CCTV pipeline video anomalies
and establish data sets for training and testing. From the essential standpoint, there are
huge gaps in the data amount among different categories of pipeline images, which leads
to the extreme imbalance and the overfitting of the networks. From the perspective of a
single image, the pipeline image may have a lot of noise including the image itself and
labels, which makes it difficult to train a perfect model. In addition, the detailed area in the
image may have low brightness, and it is difficult to distinguish some defects by naked
eyes, which further increases the difficulty of pipeline defection [35–38].

3. Proposed Methods

The data set used in this work is the video taken inside a pipeline of a petrochemical de-
vice to be tested using a hemispheric camera. In order to solve the image distortion problem
caused by the hemispherical camera shooting in the pipeline, the image is firstly unfolded
circularly, and the multi-scale Retinex [39] with chromaticity preservation (MSRCP) [40] is
applied to work out the problem of uneven illumination in the image. In order to make
full use of the context information in the video, an image stitching approach based on SIFT
features [41] is used to stitch adjacent frames to obtain a complete unfolded image of the
pipeline inner wall. However, the number of samples in the original data set after stitching
is not enough to support the training of the deep learning network because of the limited
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available data. Therefore, a sample enhancement strategy based on Cycle-GAN [42] is
proposed to randomly generate the defect regions on the original data and expand the
sample size by 5.5 times. Based on the enhanced dataset, a YOLO v5 target detection net-
work [43] is adopted to detect and identify the defective area, and the attention mechanism
is introduced to improve the recognition results. In addition, transfer learning strategy
is used to solve the overfitting problem caused by insufficient sample size. The overall
flowchart of this paper is shown in Figure 1.

Figure 1. The structure of the defect detection system.
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3.1. Pipeline Data Preprocessing
3.1.1. Image Unfolding

In order to separate the defective area accurately and restore the distorted image of
the inner wall of the pipeline, the original ring image of the inner wall of the pipeline is
firstly unfolded.

Because the pipeline data are mainly illuminated by its own light source when shoot-
ing, the image of the inner wall of the pipeline shows the features of black corners, darker
center, and brighter inner wall. The inner wall, center, and four corners of the pipeline are
divided apart by threshold segmentation method, and the noise is partly removed by the
morphological method. The circular region is detected by Hough transform to obtain the
center coordinate O1(u0, v0) of the pipeline. The outer circumference of the ring is tangent
to the edge of the image considering the features of shooting data, so the outer radius of
the ring is r = L/2, where L is the size of each frame of the image.

For the original ring image U, the pixel coordinate system uOv is established with
the center point O of the image as the origin, as shown in Figure 2a. The pipeline inner
wall image is unfolded counterclockwise with the actual center coordinate of the pipeline
O1(u0, v0) considered as the center and horizontal right as 0°. The corresponding unfolded
rectangular image I is shown in Figure 2b, where the coordinate system xOy is established
with the lower left corner A of the rectangle as the origin. Let any point C on the inner
wall of the pipeline be set as C(x, y) in the unfolded image, and C′(u, v) in the correspond-
ing pixel coordinate of the original image, so the function mapping relation needs to be
established as f : C′(u, v) ∈ U → C(x, y) ∈ I.

The unfolded result is shown in Figure 2, and the specific unfolding equations are
shown in Appendix A.

Figure 2. Original image and unfolded image.

3.1.2. Luminance Correction

When using the pipe-climbing robot to shoot inside the pipeline of the petrochemical
device, the auxiliary lighting device of the robot is applied since there is no lighting facility
inside the pipeline and the light is relatively dim, which will lead to uneven illumination
and even serious reflection in some areas of the pipe inner wall image taken. In order to
reduce the influence of uneven illumination on the image stitching and defect detection
results of the inner wall of the pipeline, it is necessary to perform image enhancement.
Because of the above issues, the MSRCP algorithm derived from the Retinex algorithm is
mainly used to process images with uneven illumination in this paper.

Retinex is a commonly used image enhancement method with the basic theory that
the color of an object is determined by its ability to reflect long-wave (red), medium-
wave (green), and short-wave (blue) light, rather than the absolute value of the reflected
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light intensity. The color of objects is not affected by lighting non-uniformity, leading to
its consistency.

The original image S can be represented as the product of the illumination image
L determined by external factors and the reflectivity image R determined by the object
itself, as shown in Figure 3. The algorithm can calculate the illumination image L from the
original image and extract the reflectance image R to remove the inconsistent illumination
achieving the image enhancement. Use the center surround function F(x, y) to extract the
illumination component of an unevenly illuminated image as

F(x, y) = λe−
x2+y2

c2 (1)

where c is the Gaussian surround scale, and lamda is a scale. The two values satisfy∫∫
F(x, y)dxdy = 1, (2)

and the output image is denoted as

r(x, y) = log R(x, y) = log
S(x, y)
L(x, y)

= log S(x, y)− log[F(x, y)⊗ S(x, y)]. (3)

Extracting the illumination components of the image through multi-scale can not only
compress the dynamic range of the image, but also maintain the consistency of the color
perception. The output image based on multi-scale is

r(x, y) = log R(x, y) = ∑
i

Weighti × [log Si(x, y)− log Li(x, y)] (4)

where Weighti represents the weight corresponding to each scale, with the sum of each
scale weight as 1. In the process of enhancement, the color of the local details in the image
may be distorted due to the increase of noise, which cannot display the real color of the
objects and cause the deterioration of overall visual perception. To solve this problem,
a color restoration function C is added to adjust the color distortion caused by contrast
enhancement in local areas of the image in MSRCR:

RMSRCRi (x, y) = Ci(x, y)RMSRi (x, y) (5)

Ci(x, y) = f
[
I′i (x, y)

]
= f

[
Ii(x, y)

∑N
j=1 Ij(x, y)

]
(6)

Ci(x, y) = β log
[
αI′i (x, y)

]
= β

{
log
[
αI′i (x, y)

]
− log

[
N

∑
j=1

Ij(x, y)

]}
(7)

where Ii(x, y) represents the image of the ith channel, Ci represents the color restoration
function of the ith channel to adjust the color ratio of the three channels, f (·) represents
the mapping function of the color space, β is the gain constant, and α is the controlled
nonlinear intensity.

The hue of the original image is reasonable, but the color bias problem occurs after
processing the classic MSRCR algorithm. Therefore, the MSRCP algorithm is used to
perform Retinex on the intensity data of the image, and then the data are mapped to each
channel according to the original RGB ratio, which enhances the image while preserving
the original color distribution.

3.1.3. Image Stitching

The data type used in this paper is video data, which has the features of coherent
context information and high similarity between adjacent frames. In order to fully utilize
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the temporal information in the video data while preventing repeated detection of similar
frames, the images of the pipeline inner wall are unfolded and stitched to obtain a coherent
and complete image and the defect regions.

Figure 3. Composition of images in Retinex theory.

Suppose It represents the video frame unfolding graph at time t, and I(t+1) represents
the video frame unfolding graph at time t + 1. The feature points should be detected
and matched first when stitching two frames of images. In this paper, the scale-invariant
feature transform (SIFT) matching algorithm is used to register the unfolded images of
two adjacent frames.

SIFT algorithm implements feature matching mainly in the following three processes:

(1) Extract key points: Search image locations on all scale spaces, and identify the po-
tential interest points with scale and rotation invariance through a Gaussian differen-
tial function.

(2) Locate key points and determine feature orientation: A fitted model is used to determine
the position and scale at each candidate position that feature sets
χt = {α1, . . . , αh} and χt+1 = {β1, . . . , βs} are established from the It and I(t+1),
respectively.

(3) Match feature point pairs to build the correspondence between images: The random
sampling consensus algorithm (RANSAC) is adopted to eliminate mismatched key
points in this paper. The data are cut into two parts of the correct points as inner
points, and the anomalous data as outer points. The iterative method is used to
find the optimal parameter model in the data set, in which the points that do not
conform to the optimal model are defined as “outer points”. Finally, the subsets
χ̂t =

{
αh1 , . . . , αhm

}
⊆ χt and χ̂t+1 = {βs1 , . . . , βsm} ⊆ χt+1 are generated, and for

each k ∈ {h1, . . . , hm}, there exists one j ∈ {s1, . . . , sm} such that αk matches β j.

The homography matrix H between the two images is calculated after obtaining the
SIFT feature matching point pairs,

H =

 Ra Rb Tx
Rc Rd Ty
Wa Wb 1

 (8)

where HR =

[
Ra Rb
Rc Rd

]
is the rotation matrix, MT =

[
Tx Ty

]T is the translation

matrix, and MW =
[

Wa Wb
]

is the deformation matrix.
Since the used data are from the pipe-climbing robot moving steadily in a straight line

in the pipeline, without rolling along the pipeline or view transformation, the calculation
can be simplified as the estimation of the translation component MT =

[
Tx Ty

]T

between two adjacent frames of images, and the affine transformation is not applied to the
new images in order to prevent extra distortion. Two adjacent frames of images are stitched
together after the deformation components are obtained. The complete pipeline inner wall
image and defect situation are obtained by continuously stitching new video frames It+n.
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3.2. Sample Balance Strategy
3.2.1. Framework Structure of Cycle-GAN

In this paper, Cycle-GAN is used to randomly generate pseudo samples in the defective
area based on the original data to expand the training data set because the original data set
has few samples, and the number of different defect samples is unbalanced between classes.

The main benefit of Cycle-GAN is that it can train the network to transfer picture styles
without needing pairs of data [44]. Another cycle-consistent constraint is implemented
in the Cycle-GAN network to get over the issue that the network ignores the input and
randomly generates the output image due to the lack of paired training data. The input
original domain image is transformed in two steps: (1) Mapped to the target domain with
the mapping relationship as G; (2) returned to the original domain to obtain the secondary
generated image with the mapping relationship as F. The influence of mismatched training
images is eliminated and the quality of the generated images is improved, by ensuring
that the secondary generated images match the source images as closely as feasible. The
principle of Cycle-GAN is shown in Figure 4.

Figure 4. The flowchart of the cycle-GAN network.

Cycle-GAN is a ring-shaped mechanism containing two groups of generators G and F
and two groups of discriminators Dx and Dy. The generator G converts the image in the
original domain into the image in the target domain of image Y. In turn, F maps the image
under the domain of image Y back to the domain of image X. Dx evaluates the reliability of
images in the domain of image X, while Dy is for images in the domain of image Y. In this
paper, the images of the pipeline inner wall without defect represent the original domain
images, while the images of the pipeline inner wall with defect represent the target domain
images. Multiple network models are trained for different defect categories.

The generator and discriminator are trained alternately by the Adam optimizer in
Cycle-GAN. The loss function is adopted to maximize log D(x, y) during the training of
the generator G, while the loss function of the discriminator D is divided into the average
of the loss of original images and generated images.

The loss function of Cycle-GAN consists of three parts with the first two as the loss of
general CGAN,

LGAN(G, DY, X, Y) = Ey[log DY(y)] + Ex[log(1DY(G(x))] (9)
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LGAN(F, DX , Y, X) = EX [log DX(x)] + EY[log(1DX(F(y))] (10)

Another part of the loss function comes from the definition of cycle consistency loss,
as the two mappings of F and G are required to satisfy F(G(y)) ≈ y and G(F(x)) ≈ x.
In addition, the two processes are expected to be mutually inverse that an image can be
returned to the original image under two iterations:

Lcyc(F, G, X, Y) = Ex[‖F(G(x))− x‖1] + Ey[‖G(F(y))− y‖1] (11)

The final loss function is

L = LGAN(F, DY, Y, X) + LGAN(G, DX , X, Y) + λLcyc(F, G, X, Y) (12)

G∗, F∗ = arg min
G,F

max
DX ,DY

L(G, F, DX , DY) (13)

3.2.2. Improved Loss Function of Cycle-GAN Based on Gradient Penalty

There are some following problems and challenges in training Cycle-GAN due to its
evolution from the ordinary GAN network [45]:

(1) It is necessary to carefully design and balance the training degree of the generator and
the discriminator in the process of training; otherwise, it serious gradient disappear-
ance in the generator will occur when the discriminator is trained better, making it
difficult to continue training;

(2) The loss function of the generator and the discriminator cannot indicate the train-
ing process, due to the lack of meaningful metrics associated with the quality of
generated images;

(3) The generated images may lack diversity because of the mode collapse. These defects
are caused by two reasons: one is that the distance measurement type of the equivalent
change is unreasonable, and the other is that the samples generated after random
initialization by the generator have almost no non-negligible overlap with the real
sample distribution.

The main idea of the improvement of Cycle-GAN is to introduce the gradient penalty
term, with the use of Wasserstein distance in place of JS divergence as a part of the loss
function. The normalization method in Cycle-GAN is instance normalization from the
idea of the least squares GAN network (LSGAN) [46], so only two steps are made when
improving: (1) The loss functions of the generator and the discriminator are no longer
logarithmic, and the gradient penalty term is added to the discriminator loss function;
(2) The sigmoid layer is removed from the last layer in the discriminator because it needs
to approximate the Wasserstein distance and performs a regression task instead of a binary
classification task.

The improved loss function is

LWGAN−GP(F, DX , Y, X) = Ey[DX(y)]− Ex[DX(G(x)] (14)

LWGAN−GP(G, DY, X, Y) = Ex
[
DY(G(x)]− Ey[DY(y)] (15)

L = LWGAN−GP(F, DY, Y, X) + LWGAN−GP(G, DX , X, Y) + λLcyc(F, G, X, Y) (16)

3.3. Defect Detection Based on YOLO v5

In this paper, an object detection method based on deep learning is performed to
detect and identify the defect of the pipeline inner wall after stitching the images of
the inner pipeline wall. Object detection is to find and classify one or more objects of
interest in images, and determine their category and location, which is often used in
autonomous vehicles, face detection, and other fields. In this paper, the object detection
algorithm of YOLO v5 is applied to the task of pipeline surface defect detection and obtains
gratifying results.
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3.3.1. Network Structure of YOLO v5

Object detection has made great breakthroughs in recent years. Most popular ap-
proaches can be divided into two categories: one is the R-CNN series algorithms based on
region proposal (R-CNN [47], Fast R-CNN [48], Faster R-CNN [49], etc.), which belong to
two-stage algorithms in which the candidate box is first generated as the target position,
where the classification and regression are performed. The two-stage approach has high
recognition accuracy but slow speed. The other is a one-stage algorithm such as YOLO and
SSD [50], in which only a backbone convolutional neural network CNN is used to directly
predict the categories and locations of different targets. One-stage approach is faster, while
most recognition accuracy is lower.

In this paper, YOLO v5 network is adopted to identify the defect in the pipeline inner
wall, which is an object detection method proposed by the ultralytics team in May 2020.
YOLO v5 has greatly improved the detection accuracy while retaining the advantage of
fast detection speed compared with the previous versions of the YOLO network, which
mitigates the drawbacks of the poor detection accuracy of the one-stage network.

The core idea of YOLO is to input the entire image into the network which is similar
to Faster-RCNN, and directly regress the locations and categories of the bounding boxes at
the output layer. The specific process is as follows:

(1) The image is divided into S× S grids cells, utilized for predicting the objects when
the centers fall in the grids;

(2) B bounding boxes are predicted per grids cell, with (x, y, w, h) and confidence for a
total of five values predicted on each bounding box.

(3) The category is predicted in each grid cell at a total of C categories. The final output
tensor is the S× S× (5× B + C) dimension, which is the prediction of the locations
and categories for B bounding boxes of S× S grids cells. The network structure of
YOLO v5 is shown in Figure 5.

Figure 5. The network structure of YOLO v5.

(1) Input
(a) Mosaic data enhancement
The mosaic data enhancement is operated on the data set in which four input pictures

of the pipeline inner wall in random scaling, random cropping, and random arrangement
are stitched at the input end of YOLO v5, which increases the size diversity of pipeline
images and improves the robustness of detection of small inner wall defective areas.
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(b) Adaptive anchor box
YOLO network outputs the prediction boxes on the basis of the initial anchor boxes

which are set with different lengths and widths for different data sets. The prediction
boxes are compared with the ground truth for calculating the gap between the two and
updating the network parameters by back-propagation to fit the shape of the defective area
of the pipeline.

(2) Backbone
(a) Focus layer
The input images are sliced in interval pixels to obtain four images halved in size

and complementary content in the Focus layer before entering a backbone network, which
concentrates the information of width and height space in the channel space. Finally, the
new image is convolved again to produce the double down-sampled feature map without
information loss.

(b) CSP structure
CSPDarknet53 is used as a backbone structure in YOLO v5, which is a backbone

structure of five CSP modules based on the YOLO backbone network of Darknet53 and the
ideas of CSPNet. The size of the convolution kernel in front of each CSP module is 3 × 3
with the stride of 2 for down sampling. The CSP module first divides the feature map of
the base layer into two parts and merges them through the cross stage approach, which
can reduce the computation flops while ensuring the accuracy. Therefore, the CSP network
structure in the backbone network of YOLO v5 has the advantages of enhancing network
learning ability, reducing computing bottleneck and memory cost.

(3) Neck
FPN+PAN structure is adopted in the Neck of YOLO v5 in which the FPN (Feature

Pyramid Network) layer conveys strong semantic features from the top down, while the
PAN (Path Aggregation Network) layer conveys strong localization features from the
bottom up. Feature aggregation is performed on different detection layers from different
backbone layers to improve the ability of feature extraction.

(4) Output terminal
(a) Loss function of bounding box
CIoULoss is used as the loss function of the bounding box, considering the coverage

area, center point distance, and aspect ratio between the prediction box and the bounding
box, respectively,

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv2 (17)

where v is the distance between the aspect ratios of B and G,

v =
4

π2

(
arctan

(
wgt

hgt

)
− arctan

(w
h

))2

. (18)

α is a weight coefficient,

α =
v

(1− IoU) + v
(19)

(b) non-maximum suppression
After detecting and classifying the defective areas, the non-maximum suppression

(NMS) is used to screen the detection boxes to solve the problem of overlapping target boxes.
The IoU value is calculated between the detection boxes with the highest confidence and
other detection boxes, and the boxes with the IoU value exceeding the specified threshold
are suppressed. The above process is iterated until each object owns only one corresponding
detection box. In YOLO v5, DIoU is introduced to quantify the overlapping parts, and
DIoUNMS is used to screen the detection boxes, improving the detection of overlapping
defective areas.



Sensors 2022, 22, 7907 13 of 31

3.3.2. Transformer Self-Attention Module

Attention mechanisms originate from the study of human vision in which humans
selectively focus on a portion of all information while ignoring other visible information
due to bottlenecks in information processing. Neural attention mechanisms allow neural
networks to focus on subsets of their inputs or features by selecting specific inputs. At-
tention can be applied to any type of input regardless of the shape, which is a resource
allocation scheme to solve the problem of information overload in the case of limited
computing power because it allocates computing resources to more important tasks.

The encoder part of Vision Transformer [51] is introduced in the replacement of the
bottleneck part in the original C3 module in this paper, mainly including MSA [52] and
MLP [53]:

z0 =
[

xclass ; x1
pE; x2

pE; . . . ; xN
p E
]
+ Epos, E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D (20)

z′l = MSA(LN(zl−1)) + zl−1, l = 1, . . . , L (21)

zl = MLP
(

LN
(
z′l
)
+ z′l , l = 1, . . . , L (22)

y = LN
(

z0
L

)
(23)

MSA module includes three parts of multi-head self-attention, skip connections (Add),
and layer normalization (Norm), while the MLP module includes three parts of feedforward
network (FFN), skip connections (Add), and layer normalization (Norm). An MLP is used
as the classification head behind layer normalization.

The transformer encoder block increases the ability to capture different local informa-
tion, and also makes use of the self-attention mechanism to mine the potential of feature
representation, which improves the detection of the network on a small-scale defect.

4. Implementation Details and Results
4.1. Pipeline Data Preprocessing
4.1.1. Analysis of the Pipeline Dataset

The pipe-climbing robot equipped with lighting source and camera equipment is used
to move forward axially inside the pipe to be inspected with a traveling speed of 3 m per
minute. The robot can record 180 m of video per hour with a frame rate of 15 fps, and the
resolution of each frame is 2888 × 2888 pixels. The defective area of the pipeline inner wall
is classified and labeled according to the inspection report given by professional pipeline
maintenance personnel. There are mainly four types of surface defects in the used pipeline
video data, and examples of different categories are shown in Figure 6.

Figure 6. Examples of different defect categories.

a. Corrosion: a local corrosion form of small holes in the corrosive medium on the
metal surface, which can seriously cause the perforation damage of the pipeline;

b. Oxide layer peeling: the oxide layer is prone to falling off when the pipeline is
heated at high temperature, which can lead to a pipe burst accident in severe cases;

c. Sediment: pipeline blockage and extraneous matter deposition and other issues
found in the inspection process;
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d. Penetration: The penetration of objects caused by inherent structure or defect needs
to be identified, and the pipe-climbing robots must be stopped moving forward in time.

In this paper, the original data set consists of 21 videos shot during the maintenance of
the pipeline, including drainage pipes, distillation unit pipes, catalytic fractionation tower
pipes, and reforming collection pipes, with a total duration of about 1170 min. In order to
convert the video data into an image data set, one frame is taken every 15 frames as one
second in videos, with a total of about 35,000 images selected for subsequent processing
operations of image unfolding, luminance correction, and image stitching. In addition,
706 images are obtained as the original data set after stitching of adjacent frames, including
1015 places of corrosion, 603 places of oxide layer off, 448 places of accumulation, and
55 places of insertion.

Figure 7 shows the video frame Ut and the unfolded image of the pipeline inner wall
It at time t. Considering that the most serious deformation appears on the outermost and
closest areas to the center in Ut, the 0.8r width area in the middle of the ring region is
selected for expansion.

Figure 7. Unfolding results.

4.1.2. Preprocessing Results

Balanced illumination is applied to the unfolded image It by three image enhancement
methods derived from the Retinex method including MSRCR, MSRCP, and auto-MSRCR.
The processing results of the three approaches are compared in Figure 8.

Since the image enhancement method for balancing the influence of illumination is
mainly for the image stitching, the focus is whether the brightness of the whole pipeline
inner wall image is at the same level, making the seams of subsequent image stitching
transitioning more natural. As shown in Figure 8, the result images of MSRCR lose more
color information, although the illumination is relatively average. The images processed
by Auto-MARCR retain good color and texture information; however, the brightness gap
between the upper and lower regions of the image is too large, which is not suitable for
image stitching. MSRCP has a good performance in processing image details and brightness
average. Therefore, MSRCP is adopted to remove the uneven illumination of the image of
the pipeline inner wall in this paper.

The enhanced images will be applied to stitching the inner wall of the pipeline, with
the stitching results shown in Figure 9 for continuous It, It+1, . . ., It+n frames. It can be
seen in Figure 9a that the integral stitched image without image enhancement shows
striped noise interference due to the obvious brightness gaps at the seams, while the seam
transition of the stitched image after image enhancement is natural without an obvious
stitching trace in Figure 9b. It can be concluded that the image enhancement method used
in this paper balances the illumination well.
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Figure 8. Comparison of the effects of different image enhancement methods.

Figure 9. Image stitching results.

4.2. Construction of Pipeline Defect Image Database
4.2.1. Defect Generation Based on Cycle-GAN

Directly using the unfolded pipeline data to train the defect detection network will
cause overfitting due to the limited amount; therefore, the Cycle-GAN network is adopted
to generate new defective areas on the original data set to expand the data set and increase
the diversity of samples. Training on the whole image with multiple defect areas of
different types will not be able to obtain defect details and detect defective areas accurately
for subsequent models; therefore, the non-defective areas of the original dataset and the
defective areas of different categories were cut out as the training set for Cycle-GAN.

Defects are mainly divided into four categories: corrosion, oxide layer peeling, sedi-
mentation, and penetration. Among them, the number of penetration defects is too small
to fit the requirements for the number of training data of Cycle-GAN and obtain effective
generation results. Therefore, non-defective areas are selected to randomly generate new
samples of other three types of defects. The three types of local defect images are shown in
Figure 10.
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Figure 10. Local images of corrosion, oxide layer peeling, and sediment.

The training data set for Cycle-GAN includes 1126 non-defect images, 245 corrosion
images, 735 oxide layer peeling images, and 169 sedimentation images, which are uniformly
resized to 256 × 256 pixels. The hyperparameters are set as follows: the batchsize is 1, the
learning rate is 0.0002, and the decay epoch is 9.

The non-defect images cropped from the original dataset and three different types
of defect images generated by Cycle-GAN are shown in Figure 11. It can be seen that the
generated images are similar to the real situation, which can be used as samples for training
the subsequent defect detection model.

Figure 11. The non-defect images in the original pipeline and the results generated by Cycle-GAN.

The corresponding defect region N is generated by Cycle-GAN on the non-defect
region, which is randomly selected on the images of the original dataset. In order to avoid
the overlap of the target area and original defective area Mi, the IOUi values between the
target area N and Mi are calculated, and the generation would be continued only when
∑n

i=1 IoUi = 1. The fusion strategy is adopted to fuse the new defect image D(x, y) with
the background I(x, y) better after generating the local defect image.The fusion results are
shown in Figure 12, and the fusion equation is as follows:

α =

∣∣x− w
2

∣∣
w
2

, β =

∣∣∣y− h
2

∣∣∣
h
2

, γ =

√
α2 + β2

2
(24)
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N(x, y) = γ · D(x, y) + (1− γ) · I(x, y) (25)

where N(x, y) is the fusion result, α, β, γ are transition parameters, and w× h is the size of
the area to be merged.

Figure 12. The original images and the fusion results.

4.2.2. Pipeline Data Set for Defect Detection

The original data set obtained 706 images, including 1015 samples of corrosion,
603 samples of oxide layer off, 448 samples of accumulation, and 55 samples of inser-
tion. After data enhancement, a total of 3200 images are generated by Cycle-GAN as the
generated data set, which includes 3565 samples of corrosion, 2797 samples of oxide layer
peeling, 3627 samples of sediment, and 3124 samples of penetration. The distribution ratio
of original and generated samples for different types of defect is shown in Figure 13, which
indicated that the number of each type is balanced, and the total number of samples is
sufficient to meet the subsequent training requirements for the detection model.
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Figure 13. Distribution ratio graph of original and generated samples for each type of defect.

The augmented pipeline data set for the defect detection model contains 3906 images
in total as about 5.5 times larger than the original data set, including 4580 corrosion areas,
3400 oxide layer peeling areas, 4075 sediment areas, and 3179 penetration areas. The
augmented data set is divided into three parts of training, verification, and testing in the
ratio of 6:2:2, where the original and generated images are also distributed in a ratio of 6:2:2
in the three parts. The proportion of the sample distribution is shown in Figure 14.

Figure 14. Proportion of sample distribution in the training set, validation set, and test set.

4.3. YOLO v5 Training and Evaluation
4.3.1. Computer Configuration

Training deep learning networks require powerful hardware support. All the training
and generation were implemented on a GPU server with Nvidia A40 4× 48 GB GPU, Linux
operating system, CUDA 11.1, Python 3.8, and Pytorch1.8.0.

4.3.2. Transfer Training

Transfer learning methods are frequently used to transfer prior knowledge learned in
one field to the other similar fields when deep neural networks lack sufficient data support.
In this paper, the amount of videos captured by the pipe-climbing robot is small, and the
information on various types of defect is scarce. Therefore, the transfer learning method is
introduced to train the feature extraction ability for the network on similar data sets and
transfer the knowledge of target detection to the pipeline defect detection task.

The steel surface defect detection competition data set released by Kaggle in 2019 is
used as the pre-training data set in this paper. In addition, 9500 images of the steel data
set are selected to train the defect detection network, which are divided into four different
defect categories, and each image has 1–2 different defect categories.

The specific training strategies is as follows: (1) The whole network weights are
trained for 500 epochs on the steel data set to obtain a pre-trained model, with the data
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set divided into 7000, 1000, and 1500 images for training, verification, and testing, respec-
tively. (2) Based on the pre-training model, the classification prediction head is randomly
initialized and firstly trained for 70 epochs on the expanded data set with the network
parameters of the backbone frozen to increase training efficiency and remain the feature
extraction network. The whole model of all weights are subsequently trained for 30 epochs
to fine-tune the network parameters and obtain the final model results.

4.3.3. Hyperparametric Evolution

The hyperparameters in deep neural network are the external variables that need to
be manually set and adjusted continuously to seek the optimal combination because the
model changes with the change of hyperparameters.

In this paper, the method based on Genetic Algorithm (GA) provided by YOLO v5 to
optimize the hyperparameters. GA is a computational model of biological evolution which
simulates the natural selection and genetic mechanism of Darwin’s biological evolution,
which searches the optimal solution by simulating the natural evolution process. The
default parameters are the hyperparameters learned by training on the coco data set,
and the hyperparameters are set to evolve once every 50 training epochs for a total of
100 evolutions. As a result, the optimal combination of hyperparameters is obtained in the
93rd pass, as the evolution process shown in Figure 15. The x-axis indicates the value of
hyperparameters, the y-axis indicates fitness, and different colors indicate the frequency of
the results, where yellow indicates a higher frequency. The final hyperparameter settings
used for training are as follows: initial learning rate lr0 = 0.01199, final learning rate
lr f = 0.05053, SGDmomentum = 0.90091.

Figure 15. Hyperparameter evolution process and final hyperparameter settings.
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The network is trained for 500 rounds using the hyperparameter combination obtained
through evolution, with the validation to evaluate the performance and prevent overfitting
in each round of iteration. As the training results shown in Figure 16, the detection accuracy,
recall and mAP tend to be stable around 100 rounds, and finally the detection accuracy on
the validation set is 0.957, and the recall is 0.907.

Figure 16. Loss function and training metrics.

4.3.4. Results and Evaluation

Based on the various corresponding relationship of the prediction result and ground
truth, the prediction result for the classification task is separated into four categories: TP
(true positive), TN (true negative), FP (false positive), and FN (false negative). In this paper,
the precision, recall, and F1 score of the detection model for various types of defects are
calculated to assess the defect detection performance.

The precision rate represents the ratio of true positive samples to predicted positive
samples, which measures the accuracy of the detection results. The recall rate represents
the ratio of samples predicted to be positive among all samples with a true positive value,
which measures the comprehensiveness of the detection results:

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

Both the accuracy of classification and the comprehensiveness of detection should be
taken into account in the classification problem. Therefore, F1 score is used to evaluate the
model by integrating precision and recall:

F1-score =
2

1
Precision + 1

Recall

=
2 · Precision · Recall

Precision + Recall
(28)

The detection results are displayed in Table 1. Each column represents the true category,
and the sum of each column represents the total number of defects in that category; each
row represents the predicted category, and the sum of each row represents the total number
of the defect prediction in that category. The average detection time of each frame is 0.074 s,
the precision of all types of defect detection is above 90%, the average recall rate is 90.67%,
and the F1 score is above 0.9 in this paper, which indicates that our proposed method can
basically detect all the defective areas of the pipeline inner wall while ensuring the accuracy,
and can provide a strong guarantee for the pipeline health detection.
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In the four types of defects, the recall rate of oxide layer peeling is low with some
missed detections, which may be the small gap between the peeling oxide layer and the
background part that causes some defective areas not detected. In addition, the classifica-
tion error cases often occur between the corrosion and sediment due to the high similarity
of the two types. The network prediction part needs to be further trained to improve the
detection accuracy and recall.

To evaluate the detection results of the defect detection model on the original dataset,
we use the model to detect defect regions on the original dataset and the generated dataset
separately, and the results are shown in Tables 2 and 3. The average accuracy of detection
on the original image is 90.07% and the average recall is 89.67%, which is similar to the
result on the integrated dataset, indicating that the defect detection model proposed in this
paper has the capability of practical application. However, the performance on the original
image is slightly inferior to that on the integrated data set because the background of the
original image is more complex and the transition at the edge of defective area is blurred,
making it difficult to delineate the exact defective area.

As seen in Tables 2 and 3, the detection results of the defect detection model on
the original and generated images are similar, indicating that the generated images
are clear, recognizable, and similar to the original images, and can be applied to train
the defect detection network. However, since the generated defect images are more
regular in shape, the accuracy and recall of detection are slightly higher than those of
the original images, which reduces the robustness training of network. The credibility
of the generated images can be further enhanced by improving the fusion strategy in
the future.

Table 1. Results of the pipeline defect detection model based on Cycle-GAN and YOLO v5.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 813 13 33 17 5 881 92.28%
Peeling 21 627 25 12 7 692 90.61%

Sediment 26 27 817 21 3 894 91.39%
Penetration 3 5 6 725 0 739 98.11%
Background 29 26 25 7

Total 892 698 906 782 93.10%
Recall 91.14% 89.83% 90.18% 92.71% 90.96%

F1-score 0.917 0.91 0.912 0.925 0.920

Table 2. Results of the defect detection model on original images.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 174 3 6 0 5 188 92.55%
Peeling 7 110 2 0 6 125 88.00%

Sediment 9 3 89 1 1 103 86.41%
Penetration 1 0 0 14 0 15 93.33%
Background 4 9 4 0

Total 195 125 101 15 90.07%
Recall 89.23% 88.00% 88.12% 93.33% 89.67%

F1-score 0.909 0.902 0.903 0.929 0.899
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Table 3. Results of the defect detection model on generated images.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 639 10 27 17 0 693 92.21%
Peeling 14 517 23 12 1 567 91.18%

Sediment 17 24 728 20 2 791 92.04%
Penetration 2 5 6 711 0 724 98.20%
Background 25 17 21 7

Total 697 573 805 767 93.41%
Recall 91.68% 90.23% 90.43% 92.70% 91.26%

F1-score 0.919 0.912 0.913 0.925 0.923

5. Discussion
5.1. Comparison with Different Preprocessing Strategies

In order to evaluate the effectiveness of the preprocessing strategy, the detection results
of the proposed preprocessing method were compared with another two versions of data
set: one is the original ring images without unfolding, and the other is the unfolding images
but without stitching. In addition to different preprocessing strategies, the subsequent
detection networks are consistent including the YOLO v5-based defect detection model
and the transfer learning strategy.

The defect detection results based on original ring images without unfolding are
shown in Table 4. The missed detection in the experiment is mainly the small-scale defective
area near the depth of the pipeline. The image distortion caused by the shooting angle
compressed the size of the defective area deep in the pipe, and furthermore, the image
quality degradation caused by the uneven illumination resulted in some missed detections.

The defect detection results based on the unfolded but not stitched images are shown
in Table 5. Some defective areas in unstitched images are incoherent, which results in missed
and false detection, as well as inaccurate classification. Additionally, the defect detection
model trained on the unstitched data set has a considerable gap in the detection results of
different categories, due to the imbalance among the various sample types. In particular,
the detection accuracy of sediment, which includes a small amount and insufficient features,
is a little lower than that of corrosion and oxide layer peeling.

The detection results of our proposed method and the two preprocessing methods
mentioned above are shown in Table 6. Compared to the detection results on original data
directly, the proposed data processing method improves detection precision by 10.79%,
recall by 6.1%, and F1-score by 0.084. While compared to the results on the unstitched
images, the proposed data processing method improves detection precision by 7.59%, recall
by 3.15%, and F1-score by 0.054. The comparison results clearly demonstrate that the
proposed pre-processing method of unfolding and stitching with balanced illumination
can significantly improve defect detection in this paper.

Table 4. Defect detection result based on original images.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 314 17 25 4 15 375 83.73%
Peeling 5 384 3 1 23 416 92.31%

Sediment 26 19 163 5 9 222 73.42%
Penetration 5 6 7 83 3 104 79.81%
Background 6 23 10 2

Total 356 449 208 95 82.32%
Recall 88.20% 85.52% 78.37% 87.37% 84.86%

F1-score 0.859 0.846 0.81 0.855 0.836
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Table 5. Defect detection result based on unstitched images.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 319 13 19 2 11 364 87.64%
Peeling 4 397 4 0 19 424 93.63%

Sediment 22 18 172 5 13 230 74.78%
Penetration 3 4 6 86 1 100 86.00%
Background 8 17 7 2

Total 356 449 208 95 85.51%
Recall 89.61% 88.42% 82.69% 90.53% 87.81%

F1-score 0.886 0.88 0.851 0.891 0.866

Table 6. Defect detection results of three preprocessing methods.

Original Unfold Ours (Unfold & Stitch)

Precision 82.32% 85.51% 93.10%
Recall 84.86% 87.81% 90.96%

F1-score 0.836 0.866 0.92

5.2. Data Enhancement by Cycle-GAN

The results of verifying the effectiveness of the sample augmentation strategy are
shown in Table 7. The data set without data enhancement is divided into three parts of
training, validation, and testing in the ratio of 8:1:1, which is fed into the head part of
YOLO v5 on the basis of the pre-training model with the same training strategy as the
proposed method. The detection result on the test set without data enhancement is shown
in Table 6, with the average precision rate of 43.20%, the average recall rate of 52.53%, and
the F1-score of 0.474. An overfitting phenomenon occurred in about 30 rounds during
network training, leading to the poor detection result on the test set, which indicates that
the network detection performance cannot meet the standards for the practical application.

Tables 2 and 7 show the detection results on original data using the augmented dataset
and the original dataset as training sets separately. Comparing Table 2 and Table 7, the
network model shows a significant improvement in detection performance after adding the
generated images in the training set. In the augmented training set, the generated samples
account for a larger proportion. The improvement of the model performance indicates that
the generated samples have high similarity to the original samples, which improves the
network feature extraction ability and robustness in complex environments.

Table 7. Defect detection result without data enhancement.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 15 1 2 0 6 24 62.50%
Peeling 3 7 0 0 4 14 50.00%

Sediment 6 1 6 1 3 17 35.29%
Penetration 1 0 1 1 1 4 25.00%
Background 4 4 2 0

Total 29 13 11 2 43.20%
Recall 51.72% 53.85% 54.55% 50.00% 52.53%

F1-score 0.566 0.579 0.583 0.556 0.474

5.3. Comparison with Different Attention Mechanisms

To test the effectiveness of the Transformer attention mechanism, three different defect
detection models based on YOLO v5 are trained with the same data set and training strategy
for comparison: (1) the original YOLO v5 model; (2) the YOLO v5 model with CBAM
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attention mechanism added to the backbone; and (3) the YOLO v5 model with SE attention
mechanism added to the backbone. The detection results of the three methods above are
shown in Tables 8–10, respectively, and compared with the proposed detection model in
Table 11. Compared to the original YOLO v5 model without an attention mechanism, the
precision of our proposed detection model is improved by 2.53%, the recall is improved by
2.66%, and the F1-score is improved by 0.026; when compared to the model with CBAM, the
precision of our model is improved by 1.75%, the recall is improved by 1.70%, and the F1-score
is improved by 0.017, while, compared to the model with SE, the precision is improved by
2.03%, the recall by 1.73%, and the F1-score by 0.018. The difference of detection results is
greatest in the small-scale defect detection, which demonstrates that the method incorporated
with the Transformer attention mechanism can improve the detection of small-scale defects.

Table 8. Defect detection results of YOLO v5 without attention mechanism.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 799 19 39 26 7 890 89.78%
Peeling 23 597 47 10 11 688 86.77%

Sediment 31 37 799 29 4 900 88.78%
Penetration 5 6 9 703 2 725 96.97%
Background 34 39 12 14

Total 892 698 906 782 90.57%
Recall 89.57% 85.53% 88.19% 89.90% 88.30%

F1-score 0.897 0.876 0.89 0.898 0.894

Table 9. Defect detection results of YOLO v5 with CBAM.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 805 17 38 21 7 888 90.65%
Peeling 27 609 41 12 11 700 87.00%

Sediment 29 33 803 21 4 890 90.22%
Penetration 4 7 5 711 2 729 97.53%
Background 27 32 19 17

Total 892 698 906 782 91.35%
Recall 90.25% 87.25% 88.63% 90.92% 89.26%

F1-score 0.904 0.889 0.896 0.908 0.903

Table 10. Defect detection results of YOLO v5 with SE.

Predicted Number
Ground-Truth Number

Corrosion Peeling Sediment Penetration Background Total Precision

Corrosion 809 21 33 27 6 896 90.29%
Peeling 23 603 49 9 14 698 86.39%

Sediment 31 29 811 25 3 899 90.21%
Penetration 4 8 4 709 3 728 97.39%
Background 25 37 9 12

Total 892 698 906 782 91.07%
Recall 90.70% 86.39% 89.51% 90.66% 89.32%

F1-score 0.905 0.883 0.899 0.905 0.902

5.4. Robust Analysis

Robustness refers to the ability of the model to maintain perfect detection results in
different scenarios, as an important metric of whether the model can be put into practical
application. Figures 17–20 shows the detection results of the proposed method on different
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types of pipeline images. For the distillation pipeline in Figure 17, corrosion is the most
common type of defect and difficult to detect due to the large scale change and complex
background, while the proposed method detects defective areas of various scales well with
the precise region division. For the catalytic pipeline in Figure 18 with mainly corrosion and
sediment as the defects, the proposed method can maintain accurate detection performance
even for small-scale sediment. For the reforming collection pipeline in Figure 19, oxide layer
peeling is the most common type of defect with a vague boundary and obscure features,
while the proposed method accurately divides the defective area in the bounding boxes.
In Figure 20, the drainage pipeline is dominated by the sediment of oil pollution with a
large coverage area, which makes it difficult for accurate detection. However, as a result,
the proposed method can detect all the oil pollution coverage. Therefore, the proposed
method can maintain satisfactory detection performance in different pipelines and complex
environments, and has strong robustness and high generalization ability.

Table 11. Defect detection results of different attention mechanisms.

None CBAM SE Ours (Transformer)

Precision 90.57% 91.35% 91.07 93.10%
Recall 88.30% 89.26% 89.32% 90.96%

F1-score 0.894 0.903 0.902 0.92

Figure 17. Detection result on the distillation pipeline

Figure 18. Detection result on the catalytic pipeline
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Figure 19. Detection result on the reforming collection pipeline

Figure 20. Detection result on the drainage pipeline

6. Conclusions

The petrochemical pipeline is an important transportation tool in industrial production,
while the inner wall of the pipeline has different degrees of defects during service. At
present, pipeline health detection mainly relies on manual work causing high cost and
low efficiency. In this paper, on the video data set shoot by the pipe-climbing robot, a
sample enhancement strategy based on Cycle-GAN and a defect detection system of the
pipeline inner wall based on improved YOLO v5 are proposed. The main contributions are
summarized as follows:

(1) Aiming at the image distortion during data collection, a geometric coordinate trans-
formation method is used to unfold the ring area of the pipe wall. For the uneven
illumination caused by robot lighting equipment, the brightness of the image is
equalized by the MSRCP algorithm;

(2) In order to make full use of the context information in the video data, an image stitching
algorithm based on SIFT feature is applied to stitch the continuous unfolded images of
the inner wall, obtaining a coherent and tiled image of the pipeline inner wall, which
can help the defect detection network to identify the defective area accurately;

(3) To address the issues of complex pipeline environment, a small amount of data and
unbalanced sample classes, a sample enhancement strategy based on cycle-GAN is
proposed in which local defective areas are randomly generated on the original inner
wall image. A total of 3200 images are generated as the augmented dataset for defect
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detection as expanded to about 5.5 times of the original, including 3565 corrosion
areas, 2797 oxide layers peeling areas, 3627 sediment areas, and 3124 penetration
areas. This data enhancement strategy not only enriches the diversity of samples, but
also solves the long-tail problem caused by the imbalance between sample classes.

(4) For the pipe wall defect detection task, the YOLO v5-based model is proposed. In
order to solve the overfitting problem caused by small samples and large models,
the transfer learning strategy is adopted to train the feature extraction network with
similar data sets. Aiming at the changing scale of the defective area, the Transformer
attention mechanism is integrated into YOLO v5 to help the network find the region
of interest in the complex background and improve the detection and recognition of
small-scale defects. The average detection precision of the proposed method on the
test set is 93.10%, the average recall rate is 90.96%, and the F1-score is 0.920.

The internal environment of the pipeline is complex, and this paper is aimed at
detecting the more common defects as corrosion, oxide layer peeling, sediment, and
penetration. In the future, we will collect more images of less common defect types and
incorporate them into the defect data set of the pipeline inner wall to improve the defect
detection system, so as to better serve pipeline health detection.
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Appendix A

The unfolded image I is shown in Figure A1, the coordinate of any point C is (x, y),
drawing a vertical line from C to the x-axis, the intersection point is B; then,

xB = xc = x, yB = 0, yc = y. (A1)

The coordinates in the corresponding original image U (Figure A2) are

A′B′ = x, B′C′ = y′. (A2)

Figure A1. Original image diagram.
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Figure A2. Unfolded image diagram.

Make a vertical line from B′ to O1 A′, and the vertical foot is D. Let the length of O1B′

be ρ, the length of O1D be s, and the length of B′D be h; the lengths of the three are

s = uB − u0, h = vB − v0, ρ =
√

s2 + h2 (A3)

where 0 ≤ x ≤ 2πr, 0 ≤ y ≤ ρ. In the original image U, any point F on the outer
circumference satisfies

u2
F + v2

F = r2 (A4)

so the corresponding point A′, B′ in unfolded image U satisfies

u2
A + v2

A = r2, u2
B + v2

B = r2 (A5)

where vA = v0. Assuming that the angles between the two points A′, B′ and the x-axis are
θ1, θ2, and ∠AOB is θ, the three satisfy the geometric relationship:

θ = θ2 − θ1, θ =
x
r

(A6)

θ1 = arcsin
vA
r

= arcsin
v0

r
(A7)

θ2 = θ + θ1 =
x
r
+ arcsin

v0

r
. (A8)

Therefore, the coordinates of B′(uB, vB) can be obtained as

uB = r× cos θ2 = r · cos
( x

r
+ arcsin

v0

r

)
(A9)

vB = r× sin θ2 = r · sin
( x

r
+ arcsin

v0

r

)
. (A10)

According to the triangle similarity theorem,

u− u0

s
=

v− v0

h
=

y
ρ

. (A11)

Therefore, the C′(u, v) coordinate can be obtained as

u = u0 + s
(

1− y
ρ

)
, v = v0 + h

(
1− y

ρ

)
. (A12)

When the actual center O1 of the pipeline does not coincide with the image center O,
the length ρ of O1B′ is a variable value, so the height y of the unfolded image changes with
the change of x, and the height of the unfolded image is unified as r:

y
ρ
=

y′

r
, u = u0 + s

(
1− y′

r

)
, v = v0 + h

(
1− y′

r

)
(A13)

When the actual center O1 of the pipeline coincides with the image center O,

u0 = v0 = 0 (A14)
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s = r · cos
x
r

, h = r · sin
x
r

, ρ = r, y = y′ (A15)

and the coordinate of C′(u, v) is

u = r · cos
x
r
·
(

1− y
r

)
= (r− y) cos

x
r

(A16)

v = r · sin
x
r
·
(

1− y
r

)
= (r− y) sin

x
r

(A17)
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