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Centro de Cîencias Exatas e da Terra
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Resumo SMV [McM93] é uma linguagem apropriada para desenvolvimento de circuitos integrados e otimizada
para verificaç̃ao formal. VHDL [IEE93]é um formato de desenvolvimento apropriado para simulação e śıntese
de circuitos, mas ñao possui suporte para os propósitos de verificaç̃ao formal. A contribuiç̃ao deste artigóe a
integraç̃ao das duas abordagens através da definiç̃ao de regras sisteḿaticas para traduzir programas SMV em
descriç̃oes VHDL, provendo assim um componente importante para um ambiente de desenvolvimento automático
de circuitos que faz uso eficiente dos métodos formais. Nosso processo de tradução tem como alvo um subconjunto
espećıfico de VHDL voltadoà śıntese de circuitos. Conseqüentemente, a descrição VHDL produzida pode ser
automaticamente mapeada para dispositivos FPGA usando ferramentas de sı́ntese comerciais.

Abstract SMV [McM93] is a language suitable for integrated circuit design and optimized for formal verification.
VHDL [IEE93] is a design format suitable for simulation and synthesis, but poorly designed for formal verifica-
tion purposes. The contribution of this paper is the integration of the two approaches through the definition of
systematic rules to translate SMV programs into VHDL descriptions, providing thus an important component for
an automated circuit design environment making efficient use of formal methods. Moreover, our translation pro-
cess targets a synthesis-specific subset of VHDL language. Consequently, the produced VHDL descriptions may
be automatically mapped to standard FPGA devices using commercial synthesis tools.
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1 Introduction

In the last 30 years, the size of digital circuits has sustained an exponential growth. The task of designing hardware
systems has become incredibly complex and, consequently, is now extremely costly and error-prone. To cope with
the continued challenge of using the continuously increasing quantity of available silicon to design more complex
systems, the design automation comunity has seen whole new areas emerge in the last decade. High-level synthe-
sis [Ber93] has allowed a higher level of abstraction in the design process and has become mainstream. Formal veri-
fication methods [CW96] (such as theorem proving, equivalence checking and model checking [BCMD90]) aiming
to prove the correctness of the designs and commercial tools are now available.
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However, because the computational complexity of formal verification is so huge, in practice these methods are
used to find errors in critical parts of larger systems and they are today seen as a potential complement to traditional
verification methods, such as test generation and simulation.

Therefore, the integration of traditional integrated circuits and systems design with formal methods in a coherent
process is strategic for the production of error-free systems. Unfortunately, most formal verification tools have their
own input language and are in some way incompatible with other IC design software, which are usually based on
standard hardware description languages, such as VHDL [IEE93] or Verilog HDL. Most developments in formal ver-
ification are mainly realized in the realm of universities, and are available in academic tools, such as SMV [McM93].
SMV is used to fully automatically prove properties of the system beeing designed, but requires input in its own
language. On the one hand, SMV is optimized for formal verification, but is not compatible with any CAD tools.
On the other hand, VHDL may be used for a wide variety of purposes, including simulation and synthesis, but the
intrinsic complexity of the language makes it difficult to verify formally [BCS95]. In this paper, we propose a tool that
permits a design flow based on SMV, one of the most successful and widely used formal verification tool, and VHDL,
a dominant hardware-description language. This design flow had originally been used manually to produce a VHDL
description of a crossbar switch interconnection system. This experience showed that the translation is potentially
automatable.

This paper contributes with a translator from SMV to VHDL. The produced VHDL description is at the register
transfer level, and obeys common description rules at this level [IEE98]. This output can then be used to synthesize,
place and route the product on FPGA devices using off-the-shelf CAD tools. In this paper we present the concepts
that are used to build a translation tool from SMV to VHDL-RTL.

This paper is organized as follows. Section 2 briefly presents the SMV language and tool capabilities. Section 3
frames the VHDL language within this context, and Section 4 explains the translation process between both languages
and presents some results of this work under progress. Section 5 concludes and plans for future developements of this
work.

2 The symbolic model checker SMV

In general, model checking is an algorithm to check that a given structure is a model for a given formula expressed
in some logic. SMV is indeed a type of model checker that verifies if a finite-state system, called a Kripke structure,
satisfies properties written in the temporal logic CTL [CE81]. The verification algorithm, known as symbolic model
checking, is based on exhaustive search algorithm in the state space of the given systems and uses binary decision
diagrams [Bry86] to represent the structure state variables and transitions. SMV proofs are fully automatic, and
provide counterexamples when a specification property is not specified by the system.

Synchronous as well as asynchronous systems can be described in the input language of SMV. Examples of
designs that have been described and checked with SMV include protocols, software and hardware designs. The
specification logic CTL allows to express important classes of concurrency properties, such as safety, fairness, liveness
and freedom of deadlock. In addition, SMV can also compute quantitative properties, such as to check that an event
occurs within a certain time interval after another occurs.

2.1 Kripke structures

SMV input is a special-purpose language, in which the user can describe the system under design and its desired
properties. The semantics of the SMV description is defined in terms of Kripke structures, and the properties are
expressed in the temporal logic CTL. SMV then checks the specified properties against the corresponding Kripke
structure.

Let P be a finite set of boolean propositions, a Kripke structure overP is a quadrupleM = (S, T, I, L) where:

– S is a finite set of states.
– T ⊆ S × S is a transition relation, such that∀s ∈ S, ∃s′ ∈ S, (s, s′) ∈ T .



– I ⊆ S is the set of initial states.
– L : S → 2P is a labeling function and associates with each state a set of boolean propositions true in the state.

A formulaf is valid in structureM if it is valid for all initial states:

M |= f iff ∀s ∈ I,M, s |= f.

Kripke structures form a suitable type of models to characterize a concurrent system, and may be used to describe
software, protocols, synchronous or asynchronous hardware, etc.

2.2 The temporal logic CTL

CTL temporal logic formulas can be embedded in SMV source code and are interpreted as the specification of the
described system. CTL (Computation Tree Logic) formulas can describe properties of branching structures, such as
the execution tree of a Kripke structure. It is therefore possible to assert properties about all possible behaviors of a
system modeled in SMV.

Examples of properties that can be expressed in CTL are:

– AG¬(g1 ∧ g2) which stands forg1 andg2 are never true simultaneously, i.e. mutual exclusion.
– AG(r ⇒ AFg) everyr is eventually followed by ag, i.e. freedom of starvation.

2.3 SMV: the language

A SMV description consists of a hierarchy of interconnected modules, the top-most module is namedmain . Figure 1
presents an example of SMV description. As the described systems shall be finite, all data types are also finite
(enumerated and bounded integer types).

Figure 1 SMV description of 2 cascated inverters.

1 MODULE main
2 VAR
3 gate1 : inverter(gate2.output);
4 gate2 : inverter(gate1.output);
5 SPEC
6 (AG AF gate1.output) & (AG AF !gate1.output)
7 MODULE inverter(input)
8 VAR
9 output : boolean;
10 ASSIGN
11 init(output) := 0;
12 next(output) := !input;

Each module may contain several of the following components:

– The interface lists the formal parameters of the module. The formal parameters are instanciated with the actual
parameters in the body.

– The local state variables follow keywordVARand can be of type boolean, enumerated, integer interval, a module,
or an array of these.

– The keywordASSIGNstarts the definition of initial and next-state value for the local state variables, respectively
denotedinit andnext .



– Abbreviations for expressions can be introduced via keywordDEFINE.
– Temporal logic specifications follow keywordSPEC. See Section 2.2 for further details on the specification logic.

An interesting feature of SMV (line 5 in Figure 2) is the possibility to assign nondeterministically a value from
a set of values listed between braces. Nondeterminism is both a very useful tool at the early stages of the modeling
activity, and a powerful method to build simplified models of components. However there is no equivalent construct
in VHDL.

Figure 2 A piece of SMV code with a nondeterministic expression.

1 VAR
2 request : boolean;
3 state : ready,busy;
4 ASSIGN
5 next(state) := {ready,busy };

3 VHDL

VHDL and Verilog HDL are the two major textual hardware design languages today and are still evolving to acco-
modate demands of their user bases. Numerous commercial CAD environments are based on at least one of them.
VHDL is used mostly for simulation and synthesis. It is very versatile and allows a mix of different description styles,
usually classified as behavioral, data flow and structural descriptions.

A VHDL description of a system is generally composed by entities and architectures. An entity (Figure 3, lines 1-
5) describes the interface between the chip and the external world. This interface is defined by a clock signal (Figure 3,
lines 2) and a set of input and output signals. The architecture (Figure 3, lines 6-15) contains one or more processes
that describes the internal behaviour of the chip. This behaviour is achieved by a set of statements in the VHDL
language and defines how the output values and other internal signals are calculated from the input and internal
signals. VHDL has the ability to use entities/architectures as components of other systems and to define a library
of components for future reference. To achieve this, a component declaration (Figure 4, lines 2-6) , configuration
(Figure 5, lines 12-15) and instantiation (Figure 5, lines 8-9) is necessary.

VHDL semantics was originally defined in function of a simulation engine, called the kernel. The scope of the
language is general and cannot be straightforwardly synthesized to hardware. Consequently, synthesis tools put im-
portant syntactic and semantic restrictions on the VHDL descriptions they handle. These restrictions have been unified
into a draft standard for VHDL register transfer level (VHDL-RTL) synthesis, known as IEEE 1076.6, and currently
under process of approval [IEE98]. Since the main goal of our work is the production of an actual chip, we shall use
a VHDL subset that is compatible with these restrictions, providing a totally automated pathway from SMV to actual
hardware.

3.1 VHDL-RTL

VHDL-RTL[IEE98] is a subset of VHDL defined by a group of industry and academic experts that aims at defin-
ing a greatest common denominators to most, if not all, commercial synthesis tools. The definition of this subset
is now achieved, and its approval in a standardization body well advanced. Register transfer level synthesis tools
have each their own strengths and limitations and each of them handles different VHDL subsets. Consequently, tool
interoperability is limited and team work efficiency suffers from these incompatibilities.

[IEE98] defines how hardware elements, such as combinational logic, or edge-sensitive and level-sensitive se-
quential logic shall be described in VHDL. Moreover guidelines for verification of both combinational and sequential



elements are given and a precise syntax is included too. Since one of the aim of the VHDL-RTL standardization
process was to define a subset common to the most popular tools, the result has been a lowest common denominator
and lacks important features of the VHDL language, such as component support.

All these restrictions are addressed in the translation process to make the generated VHDL code compatible with
most synthesis tools.

4 Correspondence between SMV and VHDL-RTL

The VHDL data flow style has a lot of similarities with SMV, even though it lacks some abstract features such as
nondeterminism. In SMV, a description basically consists of variables which are assigned expressions that depends
on other variables, which is about the same that is done in VHDL data flow. However, in SMV, it is implicit that
all transitions are taken synchronously within a module, whereas this is not the case in VHDL. For instance, when
describing at the register transfer level, one shall explicitly declare a clock signal, and all registers shall fetch their
data on an edge of this signal.

In the remainder of this section, we shall detail how were handled the concepts of modularity (Section 4.1), and
we then present how the different parts of a SMV module description may be translated: parameters and variables
declarations in Section 4.2, assignments and macro definitions in Section 4.3, and we discuss how nondeterminism
is handled in Section 4.4. The specification part (line 6 in Figure 1) shall not be translated since the temporal logic
specification is not used in the register transfer level synthesis.

4.1 Modules and components

The module structure of SMV is hierarchical. The root module usually controls and interconnects other modules that
describe the different components of a system. A systematic translation of such hierarchy into a VHDL component
hierarchy is possible and we outline a strategy based on the SMV example of Figure 1. Each SMV module is translated
into an entity-architecture pair and a component declaration. For instance, the translation of the moduleinverterof
the example is given in Figure 3. Figure 4 contains the component declaration corresponding to our example. This
approach makes each SMV module a potential instantiable component in VHDL and gives flexibitity to the user.

Figure 3 VHDL equivalent for a SMV leaf module.

1 entity inverter is
2 port (clock: in STD ULOGIC;
3 input: in STD ULOGIC;
4 output: out STD ULOGIC);
5 end inverter;
6 architecture arch inverter of inverter is
7 begin
8 process
9 variable var output: STD ULOGIC;
10 begin
11 wait until clock = ’1’;
12 var output := not input;
13 output <= var output;
14 end process;
15 end arch inverter;



Figure 4 VHDL package with component declarations.

1 package declarations is
2 component inverter comp
3 port (clock: in STD ULOGIC;
4 input: in STD ULOGIC;
5 output: out STD ULOGIC);
6 end component;
7 end declarations;

When a module instantiates other modules, the corresponding VHDL entity and architecture shall make use of
the components previously created for the other modules, as shown in line 8 of Figure 5. However, a configuration
declaration is necessary to bind the components to their corresponding units (line 12 in Figure 5) and the VHDL-RTL
subset does not accept component configuration.

Figure 5 VHDL equivalent for SMV main module.

1 entity main is
2 port (clock: in STD ULOGIC;
3 outsig : out STD ULOGIC);
4 end main;
5 architecture arch main of main is
6 signal s1, s2: STD ULOGIC;
7 begin
8 gate1:inverter port map (clock=>clock, input=>s2, output=>s1);
9 gate2:inverter port map (clock=>clock, input=>s1, output=>s2);
10 outsig <= s1;
11 end arch main;
12 configuration conf main of WORK.main(arch main) is
13 for all: inverter use entity WORK.inverter(arch inverter);
14 end for;
15 end conf main;

Our solution is to copy the entire body of the component being instantiated instead of making the instantiation
itself. It may look a mindless solution, but it is the only possible solution without the use of component configuration
and that is certainly not a problem since the user will have the option to create two version of the same code, a VHDL
and a VHDL-RTL compatible one, thus making it possible for the user to choose which parts he wants to synthesize
to hardware.

4.2 Variables and signals

In SMV, data carrier objects are variables whereas, in VHDL, they can be either signals, and allow interprocess
communication, or variable and are restricted to local process access.

SMV has two variable declaration mechanisms:

– A formal parameter that can be instantiated with arbitrary expressions.
– A local variable that can be arbitrarily read and written inside and outside of its definition scope.



The signal declarations in VHDL are quite different. Firstly, signals cannot be referenced outside of their scope,
and have a mode which indicates the direction of the data flow they carry. Signals of modeout can be assigned but
their value cannot be read, signals of modein can be read but they cannot be assigned.

In summary, when translating SMV variables to VHDL objects, the following rules are obeyed:

– A variable that is only readed in the scope of a given module (a parameter of the module) is translated to an input
signal (modein ).

– A variable that receives assignments is translated to an internal variable, an output signal(modeout ) and an
assignment of the internal variable to the output signal.

SMV also has a concept of macros, or abbreviations. These macros are translated as VHDL signals, and the
analysis of the corresponding mode is the same. The difference between SMV variables and macros, is that variables
are storage elements, whereas macros are not.

4.3 Assignments

Once we have shown how to handle variables and macro declarations in VHDL, it is necessary to analyze assignments
and macro definitions which are grouped under the section ASSIGN and DEFINE.

There are three types of assignments in SMV: an initial assignment (init ), an next assignment (next ) and
a direct assigment that is not introduced by a keyword. Theinit statement is translated to VHDL as an initial
value on the declaration of that variable. The other two assignments are embedded as signal assignments into process
statements sensitive to the clock signal edges.

The source expressions used in macro definitions and variable assignments are usually trivial to traduce. Most
SMV expression constructs have a direct VHDL counterpart. A notable expression is the case expression, which
can be translated as sequence of cascadedif andelsif or as a conditional signal assignment statement. Another
important exception is nondeterminism, which is discussed in the next section.

4.4 Nondeterminism

SMV input language has two forms of nondeterminism. The first form is introduced with the keywordprocess .
When a SMV module instantiation is in theprocess mode, their execution is asynchronous. That is, at each step,
exactly one module is scheduled nondeterministically, which may incur starvation for some of the module instan-
tiations. SMV makes it possible to state a fairness constraint that eliminates this type of starvation. This first type
of nondeterminism is mainly used to model at the system level (another possible use is in the description of asyn-
chronous circuits). However VHDL has no similar constructs, most probably because it has not been designed to
describe at the system level of abstraction. We have identified two ways to resolve this discrepancy. The first solution
is to code the nondeterminism in VHDL, introducing auxiliary signals and a scheduler process, and the algorithm this
process shall execute remains an open issue. The second possible approach, which we have temporarily adopted, is
not handling descriptions that make use of this type of nondeterminism.

The second form of nondeterminism occurs in expressions (see line 5 in Figure 2). Syntactically, such expressions
consist of a list of subexpressions and semantically, the value is the value of one of these subexpressions, randomly
chosen. This type of nondeterminism may be used when some implementation decision has not yet been made.
VHDL has not this type of expressions, and we have identified several approaches to resolve this translation problem.
Suppose that a SMV variable is assigned nondeterministically one ofn values:v1, . . ., vn. We propose the following
3 solutions to the translation problem:

1. The translator choses one of the valuesvi, once for all. Note that this approach cuts off parts of the execution
tree of the Kripke structure. Consequently, liveness properties true of the SMV description may turn false in
the produced VHDL description. This phenomenon is common to most refinement techniques that usually only
preserve universal properties [GL94].



2. The user choses a value, also once for all. As previously, some properties may turn false in the produced VHDL
description.

3. The only possible way to model nondeterminism in VHDL are inputs [Cho74]. One possible approach is to
introduce a signal of modein that can taken different values to the interface of the VHDL description, and to
translate the nondeterministic expression as a conditional expression, depending on the value of the introduced
signal.

4.5 Preliminary results

We defined a complete set of translation rules from SMV to VHDL-RTL. We used this rules to translate manually
several small examples available in the SMV distribution (a bit counter, a semaphore and the bit inverters shown in
this paper) and thus validated our set of translation rules. A prototype tool has been implemented, based on SMV own
front-end scanner and parser, which makes it easy to integrate both the verifier and the translation tools. The VHDL
output produced by the translator for a small SMV description has been synthesized using a commercial tool [Max00].

5 Conclusion and future work

We defined a methodology to translate a synchronous subset of SMV, a language suitable for integrated circuit design
and optimized for formal verification, into a subset of VHDL, known as VHDL register transfer level, an emerging
standard for circuit synthesis. We showed that this methodology could be automated into a prototype tool. We claim
that this is the first step towards the definition of a circuit automated design flow that would start with the definition
of the model in a language that is suitable for formal verification, such as SMV. Once the designer has proved that
his initial model satisfies the requirement properties, a HDL description of the system could be automatically, or
semi-automatically, produced. This HDL description would then be fed as input to further stages of the circuit design,
using available synthesis technologies.

A prototype tool implementing the ideas presented in this paper has been implemented. Based on this prototype,
we plan to further validate our approach based on larger examples and case studies from the industry. The SMV
description of a circuit design will be translated to VHDL-RTL and ultimately synthesized to a Field Programmable
Gate Array (FPGA) using a set of commercial tools.
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