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Abstract 
 
In this paper we describe the Nimrod/O design optimization tool, and its application in computational fluid 
dynamics. Nimrod/O facilitates the use of an arbitrary computational model to drive an automatic 
optimization process. This means that the user can parameterise an arbitrary problem, and then ask the tool 
to compute the parameter values that minimize or maximise a design objective function. The paper 
describes the Nimrod/O system, and then discusses a case study in the evaluation of an aerofoil problem. 
The problem involves computing the shape and angle of attack of the aerofoil that maximises the lift to 
drag ratio. The results show that our general approach is extremely flexible and delivers better results than a 
program that was developed specifically for the problem. Moreover, it only took us a few hours to set up 
the tool for the new problem and required no software development. 

Introduction 
 
Computational science and engineering techniques have allowed a major change in the way that products 
can be engineered. Rather than building real world prototypes and performing experiments, a user can build 
a computational model that simulates the physical processes. Using such a model, many design alternatives 
can be explored computationally in a fraction of the time required. The technique has been applied widely 
in the areas of aviation, automotive engineering, environmental assessment and electromagnetics. 
 
In the past, we have produced a number of tools for assisting a user in performing a rigorous design 
experiment using an arbitrary computational model. The Nimrod [1] and EnFuzion [2] tools make it 
possible to describe a number of discrete design scenarios using a simple declarative programming 
language. The system then produces a number of discrete scenarios, each a unique combination of 
parameter values from the cross-product of the parameter ranges. If integer or floating point parameters are 
specified, a step count is used to discretise the domain. The scheme is very powerful, and has been used in a 
number of real world problems [3]. In order to speed the execution of the experiment, distributed computers 
are used  seamlessly to explore multiple scenarios in parallel. Whilst Nimrod and EnFuzion are optimized 
for clusters of computers, a “Grid Aware” version of Nimrod, called Nimrod/G [18], utilises resources on a 
global computational grid [4].  
 
The biggest disadvantage of Nimrod is that when very large search spaces are specified, or when a high 
degree of resolution in the parameter values is required, the number of scenarios may exceed the 
computational power available. Further, the user may not actually want to explore all design space, but may 
be satisfied with a “good” solution instead. This background motivated the development of Nimrod/O, a 
variant of the Nimrod system that performs a guided search of the design space, rather than exploring all 
combinations. Nimrod/O allows a user to phrase a question like: “What set of design parameters will 
minimise (or maxmise) the output of my model?”.  If the model computes metrics like cost, lifetime, etc, 
then it is possible to perform automatic optimal design. 
 
We believe the Nimrod/O system is unique in its ability to solve aribtrary problems without requiring the 
user to develop optimization code. In general, there are very few systems that allow a user to embed a 
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computational model within a larger problem solving environment, let alone perform automatic 
optimization. Some systems which have some of these properties are DAKOTA, NEOS, NetSolve and 
SciRun. The DAKOTA project at Sandia laboratories investigated the combination of optimization with 
computational models [5]. DAKOTA is a C++ based tool kit that allows a user to choose different 
optimization algorithms to guide the search for optimal parameter settings. DAKOTA has been successfully 
demonstrated on a number of structural mechanics applications. However, DAKOTA did not support rapid 
prototyping and still requires the construction of new programs for each different type of experiment which 
is performed. NEOS [6] is a distributed web based optimization engine that allows a user to solve 
optimization problems using special remote optimization servers. However, NEOS relies on the objective 
function being specified in an algebraic form and does not support objective functions implemented by 
CS&E models. Likewise, NetSolve [7] provides a web based engine for solving linear algebra problems, 
but does not explicitly address optimization using CS&E objective functions. SciRun [8], and its follow on 
Uintah [9], are interactive tools that allow a user to build a CS&E model very rapidly using a graphical 
programming interface. However, they do not support optimization In contrast, Nimrod/O supports 
optimization, distributed computing and rapid prototyping in one tool. 
 
In this paper we will discuss the Nimrod/O system and its application to a real world case study, the design 
of a simple, but optimal, aerofoil. We begin with a general discussion of automatic design optimization and 
the challenges it poses, and then expose the Nimrod/O architecture.  We compare the performance of 
Nimrod/O at solving the aerofoil design against a tailored solution built in Fortran.  

Searching for Optimal Designs 
Design optimization is not new. There are many examples, particularly from the operations research 
literature, of the use of optimization theory to find good solutions to real world problems [10]. However, 
almost all of this work has assumed that the objective function can be expressed algebraically. This means 
that it is possible to evaluate the function quickly when a new set of design parameters are generated. 
Further, it is often possible to differentiate the function, which assists algorithms that try to perform 
gradient descent. 
 
We are concerned with designs that are so complex that their effectiveness can only be evaluated by 
running a computational model. An important design goal is that the exact nature of the model is not 
important, and may be solved by a discrete event simulation or the solution of a set of partial differential 
equations. Because of this generality, it is necessary to run the model from the beginning each time the 
parameters are changed. Further, if derivatives of the objective function are required these are typically 
calculated using a finite difference approximation [11]. Because of this, the cost of executing the 
optimization algorithm is almost totally dominated by the cost of running the computational model. 
 
From a user's perspective, the problem can be phrased simply - minimise (or maximise) the objective 
function across a set of parameters. Because almost all real world problems have bounds on the legal 
parameter values, it is possible to bound the search by these limits. Further, it is often necessary to place 
further constraints on the solution. For example, additional functions that combine parameter values can be 
used to further reduce the domain. We allow a user to specify both hard and soft constraints. Hard 
constraints are enforced during the search process itself. If a hard constraint would be violated by a 
particular choice of parameter values, then that part of space is not explored. In contrast, soft constraints are 
implemented by adding a penalty value to the objective function. Accordingly, soft constraints can be 
violated during the search, but the objective function is artificially higher than if the constraint was 
satisfied. These techniques are standard in non-linear optimization [12]. 
 
In general, the objective functions under consideration are non-linear, may not be smooth and may contain 
a high degree of noise. In addition, parameters may be continuous or discrete, depending on the nature of 
the underlying problem. Thus, no single optimization procedure will work for all problems. Some problems 
will contain multiple local minima, and it is impossible to guarantee that  any one search algorithm will 
find the global minimum. Accordingly, Nimrod/O supports a range of algorithms, which can be executed 
multiple times (in parallel) from different starting locations. When a number of algorithms are used, each 
with different starting locations, it is possible to gain some insight into the nature of the objective function, 



and to generate a number of potential solution to the problem. Regardless of the search technique that is 
used, we assume that the computational model is well formulated, stable and robust across the parameter 
ranges. 

Nimrod/O Search Algorithms (to be expanded in final paper) 
At present, we have implemented four optimisation algorithms, namely a gradient search code called P-
BFGS [13][12], a Simplex search [20], a Divide-and-Conquer heuristic [13] and Simulated Annealing [23]. 
In this section we give a brief introduction to each of these algorithms. More details can be found in 
[13][14]. This section will be expanded in the final paper. In the case study reported in the paper we only 
used two of these algorithms, P-BFGS and Simplex. 

Nimrod/O Architecture 
 
Figure 1 shows a schematic of the Nimrod/O architecture. Nimod/O accepts a superset of the declarative 
“plan” files that are used to drive Nimrod, as discussed in [13]. In Nimrod/O additional statements are 
included that describe the optimization process that is to be used. Figure 2 shows and example of such a 
plan file, highlighting some of the new statements in Nimrod/O. 
 

 
Nimrod/O has been built to support an extensible range of optimization procedures. Each of these 
procedures requires the evaluation of an objective function in order to proceed. This is performed by a 
request to the Nimrod/G or EnFuzion remote job execution engines. The algorithm forms a set of parameter 
values and passes these to Nimrod/G or EnFuzion for evaluation against the model. The model is run on an 
appropriate platform and the objective function value is extracted from the model output. A cache is 
superimposed between Nimrod/O and the backend to reduce the number of calculations required if the 
same parameter values are requested more then once. A persistent database is attached to the cache to 
support restart if Nimrod/O is terminated prematurely. By storing all function values, the user can restart 
the system from scratch and proceed to the same position without rerunning the computational models, 
providing a recovery process in the event of machine or network failure. 
 
Nimrod/G and EnFuzion share a common API, and thus it is possible to execute the Nimrod/O model 
computations either on a local cluster, or on the Grid, depending on the available resources. This choice is 
transparent to the algorithms in Nimrod/O, and the selection of backend can be left to the user depending on 
the available resources and the number of processors required. Figure 3 shows the Nimrod/G and EnFuzion 
dispatchers in use. In the Nimrod screen on the left, the coloured boxes represent the different instances of 
the model, and these can be seen assigned to hosts on the Grid. In this particular example Nimrod is 
supporting three different Grid middleware services, namely, Legion[15], Globus [16] and a Condor [17]. 
The EnFuzion screen dump shows the different model instances as they run on the various nodes of the 
local cluster. The differences between Nimrod/G and EnFuzion are discussed in other papers [18]. 



 
parameter x float range from -20 to 20 
parameter y float range from 0 to 40 
parameter z text select anyof "Red" "White" "Blue" 
 
task main 
   copy  root:~/projs/* node:. 
   node:execute ./run.script $x $y $z > final.objfn 
   copy  node:final.objfn output.$jobname 
endtask 
 
method simplex 
   starts 5  
      starting points widespaced 3 5 
      tolerance 0.10 
   endstarts 
endmethod 
 
method bfgs 
   starts 5  
      starting points random 
      tolerance 0.10 
   endstarts 
endmethod 

Figure 2 - A sample Nimrod/O plan file. 
 

 

Figure 3 – Nimrod and EnFuzion enginesAn Aerofoil Case Study 
Previously, we have applied Nimrod/O to a number of different problems, ranging from air pollution 
studies, computational electromagnetics and stress analysis [13]. The case study reported in this paper 
concerns the design of a simple aerofoil. Initially, the problem was developed and solved without 
Nimrod/O at the Centre for Advanced Numerical Computation in Engineering & Science (CANCES). 
Specifically, a simple two dimensional aerofoil was modelled using a FLUENT simulation [19]. The shape 
of the simulation mesh was generated from the problem input parameters, and FLUENT was used to 
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compute the flowfield around the aerofoil, from which lift and drag properties were derived. In addition, a 
special Fortran program was written to take the solutions from the FLUENT simulation and iteratively 
search for an optimal wing design using a Simplex method [20]. The aerofoil mesh generated by GAMBIT, 
had 28089 nodes and 49426 elements, made up of 43090 triangular elements and 6336 quad elements. The 
convergence criteria for the FLUENT run were set at 1.0e-4. At the time, the experiment was used to 
investigate the applicability of optimization to the design of an aerofoil, with the goal of maximising the 
ratio of lift to drag. The solution took some time to develop because it required the development of code 
specifically tailored to the problem. 
 
 
The aerofoil shape and configuration is governed by three parameters - the angle of attack, the camber and 
the thickness, as shown in Figure 4. At a particular configuration of these parameters, the objective function 
value, the ratio of lift to drag, is maximised. Complete enumeration of the space is infeasible because the 
number of simulations required is excessive. 

 
 

Figure 4 - Aerofoil structure 
 
Following the earlier work performed at CANCES, we applied the Nimrod/O tool to the same problem. 
Again, the original FLUENT code was used to model the aerofoil, however, rather than using the Fortran 
code developed specifically for the problem, Nimrod/O was used to perform the search. The study was an 
outstanding success in three ways: 
 
• It only took about an hour to set up Nimrod/O on the Aerofoil problem. 
• The results that were generated by Nimrod/O were better than those of the specific code. 
• We were able to explore two algorithms by changing only the plan file 

 
Table 1 summarises the results of the work. The “Best Objective Function” column shows the highest value 
of the lift/drag ratio. The “Number of function evaluations” is the number of times the FLUENT simulation 
was executed. These simulations are much more expensive than the optimisation process itself. Therefore, 
the bulk of the run time is spent in executing the CFD code rather than performing the optimisation 
calculations. The table shows that our implementation of Simplex and P-BFGS both returned a better result 
than the tailored Fortran code, and the Nimrod/O Simplex did so with fewer function evaluations. Further, 
Simplex performed better than P-BFGS, and returned a value of 70.4 with fewer evaluations. The “Wall 
Clock Time” shows how long the Nimrod/O computations took on the VPAC AlphaServer SC1, consisting 
of Alpha EV68's running at 833 MHz. The Tailored Fortran code ran on a different system, so the “Wall 
Clock Time” is unknown for this method. However, the number of function evaluations for this code is 
higher than for the Nimrod/O Simplex, and this can be attributed to the different implementations. Further, 
because the Nimrod/O codes contained some parallelism, they required fewer steps than the sequential 
Tailored Fortran code.  The “Ave number of Procs” column shows the number of processors used on 
average per step of the algorithm. As expected, Simplex used fewer processors on average than P-BFGS 
since its internal concurrency is lower.  

 
Figure 4 shows the tracks followed by the Simplex (the black curve) and the P-BFGS (the blue curve) 
algorithms in the three dimensional space. We have drawn three different iso-surfaces of the objective 
function, coloured yellow, green and red. The red iso-surface corresponds to an objective function value of 
                                                             
1 32 Compaq ES40's (4 processors each ) connected by a Quadrics interconnect. 



60, green corresponds to 52 and the yellow one corresponds to 47. Thus, in both cases, the tracks show the 
algorithms iteratively improving the solution until they terminate near the global optimum. Whilst both 
searches began at similar locations, they followed different paths and converged to different local minima, 
with Simplex yielding a better result. An interesting observation is that both of the Nimrod/O algorithms 
that were used yielded good solutions without requiring multiple starting locations. This is presumably due 
to the relatively smooth nature of the objective function. A movie form of Figure 4 is available on the web 
at [22]. 
 

Method Algorithm Best 
Objective 
Function 

Angle of 
Attack 

Thickness Camber Number 
Function 

Evaluations 

Ave 
number 
of procs 

Wall 
Clock 
Time 

(hh:mm) 
Tailored 
Fortran 

Simplex 52.8 0.8 0.03 0.10 67 1 Unknown 

Nimrod/O Simplex 70.4 1.13 0.02 0.11 41 2.7 10:08 
Nimrod/O P-BFGS 65.6 2.98  0.05 0.08 121 6.4 17:13 

 
Table 1 - Case study results 

 
In this paper we have not discussed the parallel performance of Nimrod/O, as this is the topic of another 
paper. Table 1 shows that we only managed to utilise a small number of processors for each of the 
Nimrod/O runs, but since we only considered one run per method, the concurrency is not high. In other 
studies, we have demonstrated that it is possible to utilise a 64 processor cluster quite effectively by 
running multiple searches concurrently, yielding both a speedup over an enumerative search running on the 
same cluster and also running the search procedure on a single processor. More importantly, in this paper, 
we are concerned with the application of the tool to a new problem, highlighting its ease of use and 
excellent performance. 

 
Figure 4 – Simplex and P-BFGS search tracks 
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Conclusion 
In this paper we have described a new design tool called Nimrod/O, and have demonstrated its 
effectiveness on solving a simple, but realistic, CFD problem. In comparison with an existing tailored 
simplex search, Nimrod/O allowed us to explore two different optimisation algorithms very quickly, and 
without any code modification. Both of our algorithms out-performed the tailored code, yielding better 
results in less time. Importantly, the Nimrod/O design philosophy allowed us to perform automatic design 
without tuning or modifying the existing FLUENT simulation. The most dramatic result of the work was 
the ease of application – it only took us about an hour to set up Nimrod/O for  a new optimisation problem. 
 
Clearly our work is in its early stages – the case study shown here is only a very simple design. In a real 
world engineering environment, one would expect the computational models to be much more complex, 
involving multiple simulation techniques. Also, an industrial strength problem would have more 
parameters. How well our work scales can only be determined by experimentation. However, the early 
results reported here and in [13] are extremely encouraging. 
 
The choice of back end technology allows us to abstract the exact nature of the computational platforms, 
and thus the user is free to utilise machines ranging from a single high end workstation through to the 
computational Grid. We expect to perform some larger design experiments in the area of mechanical 
durability in the near future. 
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