
$

P. C A L I N G A E R T , Edit.or

An Automatic Grading Scheme
for Simple Programming
Exercises

J. B. HEXT AND J. W. WININGS
University of Sydney,* Sydney, Australia

A discussion is given of alterations that were made to a typical
university operating system to record the results of program-
ming exercises in three different languages, including assembly
language. In this computer-controlled grading scheme pro-
vision is made for testing with programmer-supplied data and
for final runs with system-supplied data. Exercises run under the
scheme may be mixed with other programs, and no special
recognition of exercises by the operators is necessary.

KEY WORDS AND PHRASES: automatic grading program, programming
exercises

CR CATEGORIES: 1.5, 2.43, 4.39

Introduction

In 1966 the University of Sydney's KDF 9 computer was
running student exercises under a conventional batch-
processing system. With the numbers of exercises amount-
ing to several hundred per week, and threatening to run
into thousands, it became desirable to provide some means
of recording, checking, and summarizing results. To meet
this need, the Basser Automatic Grading Scheme (BAGS)
was developed.

The idea of a computer-controlled grading scheme was
not new. Earlier work by Hollingsworth [1] had already
shown its value, and other reports described how the basic
idea could be elaborated for exercises in ALGOL [2, 3]. A
later paper by Temperly and Smith [4] describes a versatile
system for exercises in PL/1. BAGS, however, differs from
most other schemes in two major respects: first, it can
handle exercises in several different languages; second, it
requires no special action by the operators. Whereas most
other schemes embed their exercises in some larger pro-
grams, BAGS is simply part of the standard operating
system and its exercises are run as normal, batch-processed
jobs.

The basic requirements of the scheme were as follows:
(1) It should handle exercises in ALGOL, in M:NIGOL (a

subset of ALGOL) and in the KDF 9 Assembly Code.

* Basser Computing Department

(2) It should not place any additional burden on the
operators.

(3) It should record every attempt at an exercise, with
sufficient data for calculating a mark.

(4) I t should provide summaries on request for specified
classes and exercises over a given period.

In the following sections implementation of the scheme
and its method of grading are described, and experience
in its use is discussed. Sample exercises and results are also
given.

Implementat ion

By 1966 the batch-processing system had evolved into
the following sequence of operations:

(1) Loading a batch of source programs onto magnetic
tape in parallel with the processing of other jobs. These
programs could be in any of nine languages and could be
presented on 5-channel tape, 8-channel tape, or cards. A
variety of codes could be used, representing the standard
set of symbols used by the manufacturer's software.

(2) Converting this file to the standard code and to a
fixed format on another reel.

(3) Automatic processing of the file without operator
intervention. Complete hardware protection of the monitor
makes this possible for programs written in assembly code
as well as in higher level languages.

The changes to this basic system necessary to include a
general and flexible automatic grading scheme were almost
trivial. The format conversion program was altered to in-
sert, at the option of the programmer, one of several sets
of data made available for a particular exercise. Proces-
sors for three of the available languages were modified to
note the progress of the job; and the job control program,
which supervises the automatic processing of the file, was
made to write a four-word record of the performance of
each job onto magnetic tape. Separate programs were
written to form a cumulative file of records and to interro-
gate that file to produce a report for given classes and ex-
ercises. These operations are described in more detail be-
low.

Insertion of Data. A twelve-character program identi-
fier contains all control information required for a job in
the system. Six characters (including a check digit) identify
the class or an individual research project; one character
identifies the individual in the class; two characters specify
the language, and one the exercise. If the first of the re-
maining two characters is a "D" and the second is a deci-
mal digit, the system inserts a set of data following the

272 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 12 / Number 5 / May, 1969

user's program. This data is a sequence of characters, as if
supplied by the programmer himself. The examiner may
provide as many sets of data as he likes for a given exer-
cise. He may also choose, at the time the data is estab-
lished, whether one of these sets is to be selected at random
or whether the programmer is to specify which of the sets
he requires.

Language Processors. There are currently twelve com-
pilers, interpreters, simulators, assemblers, and macro-
processors incorporated in the system. Of these, three have
been modified to preserve data from student jobs for sub-
sequent grading. One is an ALGOL interpreter characterized
by excellent run-time diagnostics and slow execution speed.
The second is MINIGOL, a compatible subset of ALGOL
with good diagnostics and good execution speed. The third
is the input-output package used for assembly language
programs; catastrophic errors cause this package to be
entered, making it difficult, though not quite impossible,
for the cunning student to prevent a record being saved.
The grading data is preserved in general purpose registers
at job termination, and includes the twelve character
program identifier, the number of the data set, the central
processor time used during execution, two 48-bit results,
and a mark of 0 for a compilation failure, 1 for a run-time
failure, and 2 for successful termination.

Job Control Program. There is provision in the KDF 9
system for repeated overwriting of a fixed length block on
magnetic tape. This feature is utilized to allow the record
of each job to be stored on the system library tape, thus
avoiding the necessity of dedicating one of the four tape
drives to this purpose. On completion of a job, the control
program checks the program identifier to see whether it is
instructional; if so, the block for recording marks is read
from the system tape, the new four-word record (including
a 16-bit sum check) is added, and the block is rewritten.
I t proved possible to devise a format for this block which
makes it invisible to the other systems programs normally
used in maintaining library tapes.

There is space for 800 records in this block. Normally
the marks block is dumped to the cumulative file on
another reel daily. If the block fills during a batch, the
control program can call in a segment to dump the block
at that time. The control program can also recognize if it is
using a standard library tape (i.e. without provision for
the marks block) and if so, it can inhibit recording. The
date on which the block was initialized and the date it was
dumped are recorded on the cumulative file.

The recording process is quite independent of class,
language, exercise, or data set. I t can thus be used by a
number of different classes simultaneously, each using a
different set of exercises. Throughput achieved in this
system is up to 15 jobs per minute.

Method of Grading

The maximum mark for an exercise is 5. One mark is
gained for each of the following criteria:

(1) The program compiled successfully.

(2) The program ran to completion.
(3) The first result was correct.
(4) The second result was correct.
(5) The above four points were satisfied in sufficiently

short central processor time.
All the information necessary for assessing this mark is

recorded by the operating system as described above.
The program which calculates the mark is known as the

Report Program. For each exercise, the Report Program
contains five constants: these are the two correct results, a
tolerance for each result, and a time allowance. If an exer-
cise may take one of several data sets, there is a separate
result set for each.

A request to the Report Program gives a list of classes
and the exercises to be summarized for each. It also gives
two dates--blocks of marks are ignored if recorded outside
these two dates. A class is specified by a deck of cards: the
first card gives the class number, the second lists the exer-
cises to be checked, and the remainder list the members of
the class. There is one card per student, giving his one-
letter identifier and his name. This is the only point at
which BAGS is given the actual names of the students.

The Report Program lists results one page per class. A
sample page is shown in Figure 1. In the main table there
is one line per student and one column per exercise, and
each entry has the form i/j. This states that the student
made i attempts at the exercise and that his best mark was
j. The ideal mark, of course, is 1/5, indicating that his
program satisfied all five criteria first time. An additional

BASSER AUTOMATIC GRADING SCHEME

SUMMARY FOR CLASS 163b FOR PERIOD 28 /02 /68 TO 01 /07 /68

WE MA M2 TA TE TOTAL GRADE

JAUL M A 2 / 1 4 / 5 4 / 5 3 / 3 1 3 / 1 4 3 6 . 9 0
KAROLIS C B 1 / 5 1 / 5 1 / 5 115 2 / 5 6 / 2 5 9 6 . 6 7
KEEL ING J A C 4 / 2 5 / 5 6 / 5 215 I / 2 1 8 / 1 9 5 0 . 7 8
KENYON P H 0 2 / 3 I / 5 2 / 0 5 / 8 3 0 . 0 0
K I D o C E 1 / 5 2 / 2 l/O 4 / 7 2 6 , 6 7
K I T E D F A F 3 / 4 1 / 5 2 / 5 615 5 / 2 1 7 / 2 1 6 2 . 5 4
KNAGGS H d G 3 / 5 2 / 5 2 / 5 3 / 5 3 / 2 1 3 / 2 2 6 7 . 6 2
LANDAU L H 6 / 2 2 / 5 5 / 5 1 1 / 3 9 / 2 3 3 / 1 7 3 8 . 8 5
LUCKY U I I / 5 1 / 5 I / 5 1 / 5 1 / 5 5 / 2 5 I O 0 . O 0
LUTHER D d 3 / 3 2 / 5 3 / 3 4 / 5 5 1 / 3 6 3 / 1 9 4 7 . 4 0
MCFADYEN B E K 3 / 4 1 / 5 3 / 5 3 / 5 4 / 2 1 4 / 2 1 8 5 , C 3
MARR A d L 6/2 2/5 3 / I I / 5 l I / 2 23/15 46.19
M I L L E R R L M 7 / 5 1 / 5 2 / 5 4 / 5 1 2 / 2 2 6 / 2 2 ~] . 7 6
MITCHELL L J N 5 / 3 1 / 5 I / 5 3 / 5 5 / 2 1 5 / 2 0 G 0 , 4 0

CLASS AVERAGE 56,77

NUMBER OF RUNS
WITH RESULT

0 7 17 O 56 88
I lO 5 8 13 36
2 22 1 3 6 31 63
3 4 I I0 3 18
A 5 - 5
5 5 17 II I0 2 45

TOTAL RUNS 2 5 5

NOTE - I / J MEANS I RUNS WITH BEST MARK J

GRADE IS AVERAGE OF (100 * J) / (4 + I)

F I G . I .

Volume 12 / Number 5 / May, 1969 Communications of the ACM 273

column gives his total number of attempts and his total
mark, i.e. Zi/Zj. The final column gives his grade, calcu-
lated according to the formula

Grade = average of 100 X____j
4 + i

the average being taken over all the exercises being
marked. This formula will give 100 percent to the student
who scores 1/5 for every exercise. He is penalized for
every mark lost and for every additional attempt. After
six attempts, for example, a successful run scores only
50 percent. The average grade of the class is displayed
beneath the table in order to encourage an element of
competition between the classes.

The results also include a table giving statistics on the
attempts made at each exercise. The first row gives the
number of attempts at each exercise which scored 0 marks,
followed by the total over all exercises; the second row
gives the figures for attempts scoring 1 mark; and so on. A
final figure gives the total number of runs made by the
class. This table gives some indication of the difficulty of
the exercises, and the totals give a second summary of the
performance of the class.

Discuss ion

The experience has shown that a suitable operating
system can be extended to incorporate a simple grading
scheme without undue effort or disruption. The system
requires no extra work by the operators and only a mini-
mum of additional detail for the students. Exercises are
run as normal programming jobs and the recording process
is completely automatic.

The overhead involved for each exercise is quite small.
The recording takes about 2 seconds, this being the time
for adding a four-word result to the block on tape. When
disks are used instead, the time will be much less. Other
jobs are not affected at all; nor are they restricted in their
available core or any other facility. The only other cost is
in the daily updating and printing of the marks file.

I t will be apparent that the grading criteria, based only
on two results and a time, are considerably less sophisti-
cated than those of some other schemes. However, it has
been found that with suitably designed exercises two re-
sults and a time provide adequate checking for most pur-
poses. More detailed criteria were considered unnecessary,
since the grades are never used in assigning credit for the
course: they are required only for general feedback pur-
poses. (In assigning credit, too many uncomputable fac-
tors are involved, such as detailed technique, annotation,
etc.) The advantages of the simple criteria are the ease of
implementing the scheme and of supplying exercises to it:
all that is required in adding a new exercise is the provision
of data sets (if any) and corresponding results.

The Report Program could, of course, be extended in
various ways to provide other statistics and output. In
particular, additional credit should perhaps be given to a
student whose program can handle all the different data

sets; this would encourage him to allow for exceptional
conditions in the data. The Report Program could also
print out warning messages to students whose grades are
too low, or the reverse to those who do well. I t is a fairly
routine piece of data-processing and such changes would
not affect the operating system. The only change that is
planned in the operating system is the dumping of marks
on disk instead of on magnetic tape.

I t is easy, of course, for a student to cheat--the obvious
way is for him to copy someone else's program. Less
blatantly, he could test all his programs using a different
project number and then run his correct versions under his
own number. Alternatively, he could find out the correct
results by some devious means and assign them directly in
his program. Tests for possible cheating can be incor-
porated in the Report Program, based on the size of the
compiled program and the time of execution. But complete
safeguards are impossible and such loopholes in the system
are another reason why credit cannot be attached to any
grades produced by BAGS. Our experience has not found
cheating to be any problem.

The benefits of BAGS are along two lines. Firstly, it
provides information to the teacher on how well a class is
progressing. Students who fall behind in their practical
work can be prodded, and those who do especially well can
be commended. Secondly, the publication of weekly rec-
ords provides an incentive to the student which previously
was lacking. If the mark 1/5 is sufficiently glamorized, he
will be encouraged all the more to write his programs care-
fully and accurately.

During the past term, over 3000 runs, covering 24
different exercises, have been recorded for our main third-
year course. Several smaller classes have also been mon-
itored. With 1500 first-year students learning MrNIGOL
in the next two terms, and other new courses looming
ahead, these figures will further increase. The use of
BAGS, coupled with TV lectures, will greatly ease the
burden that they bring.

Acknowledgments. The implementation of BAGS has
been the combined effort of many people. In particular,
credit is due to D. Blatt for work on the input of cards
and the supplying of data sets; to Messrs. Haddon, Hore,
and Ncwey for work on the compilers; to D. Roudenko for
work on the Report Program; and to IV[. Ratner for calcu-
lating all the correct results. A final tribute should be paid
to the long-suffering students who endured the initial
trials of the system.

APPENDIX A

Three sample exercises are given below, partly to il-
lustrate the application of BAGS and partly for their
general interest as programming exercises. The first is to
be programmed in IV[INIGOL (AM), the second in ALGOL
(AW), and the third in KDF 9 Assembly Code (AT).
In each case, x and y refer to the two required results: in
MINmOL and ALGOL they must be the first two declared
variables and must be type real. In Assembly Code, they

274 Communica t ions o f t h e A C M V o l u m e 12 / Number 5 / May, 1969

must be left as standard floating-point numbers in two
designated registers.

EXERCISE AMB
The following functiou ln* (1 + X) is an approximation

for In (1 + X) in the range 0 _~ X ~ 1:

ln* (1 + X) = 0.9974,442X

- 0.4712,839X 2

+ 0.2256,685X 3

- 0.0587,527X 4

Compute the error term, i.e. In (1 + X) - ln* (1 + X),
for X = 0(0.02)1.0. Set

x = the mean of their absolute values;
y = the absolute value of the greatest error.

Draw (by hand) a graph of the error against X.

EXERCISE A W E

Declare a real procedure

Simpint (f, a, b, n)

which integrates the function f over the range (a, b)
using Simpson's rule with n intervals. This rule is given
by the approximation

(h/3) X (f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h)

+ " " -4- 2f(b -- 2h) + 4f(b -- h) -4-f(b))

where h = (b -- a) /n and n is even.
Declare the real procedure

trap (x) = 0.92 X cosh (x) -- cos (x)

and integrate it over (--1, 1) using 2, 4, 8, 16, . . . in-
tervals until two successive results differ by less than
10 -9. Set

x = the final result;
y = the final number of intervals.

Print out the results of the successive approximations:
what would the result have been if the accuracy required
was 10-6? Any comments?

EXERCISE AT4
Read an integer n from data, followed by an n X n

matrix A listed by rows (floating-point). Denote by R~(C~)
the sum of the absolute values of the elements in row i
(column i). Set

x = t r a c e (A) , i . e . A l l + A22 + . . - + A . n ;

y = maximum (R1, R2, . . . R . , C1, C2, . . . C,).

(x = sum of eigenvalues, y = upper bound on magnitude
of eigenvalues.)

RECEIVED AUGUST, 1968; REVlS~D NOVEMBER, 1968

R E F E R E N C E S

1. HOLLINOSWORTH, J. Automat ic graders for programming clas-
ses. Comm. A C M 3, 10 (Oct. 1960), 528-529.

2. NnuR, P. Automat ic grading of s t uden t s ' ALGOL program-
ming. B I T ~ (1964), 177-188.

3. FORSYTHE, G. E. AND WIRTH, N. Automat ic grading programs.
Comm. A C M 8, 5 (May 1965), 275-278.

4. TEMPERLY, J. F. AND SMITH, B . W . A grading procedure for
PL/1 s tuden t exercises. Comput. J . 10 (Feb. 1968), 368-370.

J. G. HERRIOT, Editor

The following algorithm by Bartels and Golub relates to the paper by the
same authors in the Numerical Analysis department of this issue, on pages
266-268.

This concurrent publication in Communications follows a policy an-
nounced by the Editors of the two departments, J. G. Herriot and J. F.
Traub, in the March 1967 issue.

A L G O R I T H M 350
S I M P L E X M E T H O D P R O C E D U R E E M P L O Y I N G
LU D ECO MP O S ITIO N * [H]
RICHARD H . BARTELS AND GENE H . GOLUB (Recd. 2 Aug.

1967 and 5 June 1968)
Computer Science Department, Stanford University,

Stanford, CA 94305
* This project was suppor ted in par t by contracts N S F GP948

and ONR N R 044 211.

K E Y WORDS AND PHRASES: simplex method, l inear pro-
gramming, LU decomposit ion, round-off errors, computa t iona l
s t ab i l i ty

CR CATEGORIES: 5.41

procedure linprog (m, n, kappa, G, b, d, x, z, ind, infeasible, un-
bounded, singular) ;
va lue m, n; i n t e g e r m, n, kappa; real z;
array G, b, d, x; in t e ge r array ind; l abe l infeasible, un-

bounded, singular;
c o m m e n t linprog a t tacks the l inear programming problem:

maximize drx

subjec t to Gx = b and x > 0

Detai ls about the methods used are given in a paper by Bar te l s
and Golub [Comm. A C M 12 (May 1969), 266-268].

The ar ray G[0 :m-1 , 0 :n - - l] contains the cons t ra in t coeffi-
cients. Ar ray b[0:m--1] contains the cons t ra in t vector , and
d[0:n--1] contains the object ive funct ion coefficients (cost
vector) . The computed solut ion will be s tored in x [0 :n -1] , and
z will have the maximum value of the object ive funct ion if
linprog t e rmina tes successfully. Error exit singular will be t aken
if a s ingular basis mat r ix is encountered. Er ror exit infeasible
will be t aken if the given problem has no basic feasible solut ion,
and exit unbounded will be t aken if the object ive funct ion is
unbounded. If kappa = O, problem (2) of the referenced paper
will be set up and phase 1 entered. If 1 < kappa _~ m -- 1, prob-
lem (4) of the paper will be set up and phase 1 entered. The las t
kappa columns of G will be preceded by the first m -- kappa
columns of the iden t i ty matr ix to form the init ial basis matr ix .
If kappa = m, phase 2 computa t ion will begin on problem (1)
wi th var iables numbered ind[O], . . . , ind[m--1] as the ini t ia l
basic var iables and var iables numbered ind[m], . . . , ind[n--1] as
the ini t ial nonbasic variables. Hence each component of ind must
hold an integer between 0 and n -- 1 specified by the user. Fi-
nally, if kappa > m, problem (3) will be set up, and phase 2
computa t ion will begin wi th var iables numbered ind[O], . . .
ind[m] as the ini t ial basic var iables and var iables numbered
i nd [m+l] , . - - , i n d [n + k a p p a - m - - 1] as the ini t ial nonbasic
variables. This opt ion is of in teres t only because linprog, upon
successful t e rmina t ion , leaves all var iable numbers recorded in

V o l u m e 12 / N u m b e r 5 / May, 1969 C o m m u n i c a t i o n s o f t h e ACM 275

