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Abstract. Statecharts is a visual formalism suitable for high-level system spec-

ification, while Verilog is a hardware description language that can be used for

both behavioural and structural specification of (hardware) systems. This paper

implements a semantics-preserving mapping from Graphical Statecharts to Ver-

ilog programs, which, to the best of our knowledge, is the first algorithm to bridge

the gap between Statecharts and Verilog, and can be embedded into the hard-

ware/software co-specification process [19] as a front-end.

1 Introduction

Statecharts [6, 7] is a visual formalism catering for high-level behaviourial specification

of embedded systems. Its hierarchical structure, orthogonal and broadcast communica-

tion features make the system specification compact and intuitive to understand. It is

a very good candidate for executable specification in system design [8]. Moreover, the

semantics of Statecharts has been extensively investigated [9, 12, 14, 15, 13] in recent

years. Some works also attempt to provide tools for formal verification of Statecharts

specifications [4], [14], [20].

Verilog [22], [17] is a widely used language for hardware description in industry [2],

[5], [11], [10] and also in research. Verilog is used to model the structure and behaviour

of digital systems ranging from simple hardware building block to complete systems.

Verilog semantics is based on the scheduling of events and the propagation of changes.

One early attempt to investigate the semantics of Verilog is the work of Gordon [5]

which explains how top-level modules can be simulated.

A Verilog program (or specification, as it is more frequently referred to) is a de-

scription of a device or process rather similar to a computer program written in C or

Pascal. However, Verilog also includes constructs specifically chosen to describe hard-

ware. One major difference from a language like C is that Verilog allows processes to

run in parallel. This is obviously very desirable if one is to exploit the inherently paral-

lel behaviour of hardware. In this work, we will make use of abstract Verilog [10], [18],

that is described in the next chapter.

On the other hand, Verilog is a hardware description language that has been widely

used by hardware designers. Its rich features make it a good candidate for low–level

system specifications. The formal semantics of Verilog was first given by Gordon [5] in

terms of simulation cycles. It has been thoroughly investigated afterwards [25], [24].



As the advantages of Statecharts and Verilog in embedded system design process

are complementary to each other, a natural question that can be raised is, can we make

use of both of them in system design? That is, can we use Statecharts as the high level

specification, while use Verilog as the low level description? This question has mo-

tivated our work and this paper shall provide a positive answer by bridging the gap

between Statecharts and Verilog. The compilation from Statecharts to Verilog can be

embedded into the hardware/software co-specification process [19]. A mapping algo-

rithm will be given in the following sections, where the soundness has been given in

Qin and Chin [18].

The rest of this paper is organized as follows. Sec 2 gives a brief introduction to

Statecharts and Verilog. Sec 3 presented the formal definition of the mapping function,

followed by its implementation in Sec 4. Sec 5 illustrates our mapping results using two

examples, while Sec 6 concludes the paper.

2 Preliminaries

2.1 Formal syntax of statecharts

Statecharts is a specification language derived from finite-state machines. The lan-

guage is rather rich in features including state hierarchy and concurrency. Transitions

can perform nontrivial computations unlike finite-state machines where they contain at

most input/output pairs. In this section we will describe Statecharts presented by David

Harel [6], [7], [9].

Statechart diagrams capture the behaviour of entities capable of dynamic behaviour

by specifying their responses to the event occurrences. Typically, it is used for describ-

ing the behaviour of classes, but statecharts may also describe the behaviour of other

model entities such as use cases, actors, subsystems, operations, or methods.

We use a simple textual representation of Statecharts, while our system can auto-

matically translate a graphical representation to the textual representation. The state-

charts language we adopt has some features that are not present in UML statecharts.

For example, broadcast communication is supported in our language but not in UML

statecharts.

As already mentioned in previous section, Statecharts is extensible by hierarchy,

orthogonality or broadcast communication. In this paper, we use the formal syntax of

statechart from [7] and [18]. The syntax of Statecharts formula is defined as follows

(quoting from [18]):

S : a set of names used to denote Statecharts. This is expected to be large enough to

prevent name conflicts.

Πe : a set of all abstract events (signals). We also introduce another set Π e to denote

the set of negated counterparts of events in Πe , i.e. Π e =df {e | e ∈ Πe}, where e
denotes the negated counterpart of event e, and we assume e = e.

Πa : a set of all assignment actions of the form v = exp.

σ : V ar → V al is the valuation function for variables, where V ar is the set of all

variables, V al is the set of all possible values for variables. A snapshot for variables v
is σ(v).



T : a set of transitions, which is a subset of S × 2Πe∪Π e × 2Πe∪Πa × Be × S,

where Be is the set of boolean expressions.

A term-based syntax of statecharts was introduced in [18] and [14], [15]. We re-

introduce it here for the benefit of the reader. The set SC is a set of Statecharts terms

that is constructed by the following inductively defined functions.

Basic : S → SC

Basic(s) =df |[s]|
Or : S × [SC] × T → SC

Or(s, [p1, ..., pl, ..., pn], pl, T ) =df |[s : [p1, ..., pl, ..., pn], pl, T ]|
And : S × 2SC → SC

And(s, {p1, ..., pn}) =df |[s : {p1, ..., pn}]|

Note that:

– Basic(s) : denotes a basic statechart named s.

– Or(s, [p1, ..., pl, ..., pn], pl, T ) : represents an Or-statechart with a set of sub-states

{p1, ..., pn}, where p1 is the default sub-state, pl is the current active sub–state, T is

composed of all possible transitions among immediate sub-states of s.

– And(s, {p1, ..., pn}) is an And-statechart named s, which contains a set of orthogonal

(concurrent) sub-states {p1, ..., pn} .

In this paper we use sub-state interchangeable as children of Or-state. Correspond-

ingly, we use children and region of And-state interchangeably. For statecharts that we

adopted in this work, we shall assume that each And-state will have at least two regions.

Furthermore, each region shall be an Or-state.

We shall take the textual representation of statecharts as input data for our core

mapping program. Our front-end algorithm will translate graphic charts to textual rep-

resentation automatically. As an example, we give below a simple graphical Statechart

and its corresponding textual representation.

P0

P1


P2


P1a
 P1b


P2a


P2b
 P2c


t2: b (true)

t3: c (true)


t1: a (true)


P0 = |[ S1: P1, P2 ]|
P1 = |[ S2: [ P1a, P1b ], P1a, t1 ]|
P2 = |[ S3: [ P2a, P2b, P2c ], P2a, t2, t3 ]|
P1a = |[ S4 ]|
P1b = |[ S5 ]||
P2a = |[ S6 ]|
P2b = |[ S7 ]|
P2c = |[ S8 ]|

t1 = < P1a, a , , true, P1b >
t2 = < P2a, b , , true, P2a >
t3 = < P2b, c , , true, P2c >

Fig. 1. A simple example of a Statechart and its textual representation.

2.2 Verilog

Verilog is a hardware description language that has been widely used in industry. Al-

though the Verilog IEEE standard [22] was released around ten years ago, the formal



semantics based on simulation cycles [5] has not been well-investigated until recently,

e.g. [11], [10]. In our work, we shall use a behaviourial subset of Verilog introduced in

[10] and [18]. This more abstract version of Verilog can be used to express designs at

various levels of hardware behaviour. Such an abstract design can be gradually refined

into an equivalent counterpart in the Verilog HDL which can provide a closer match

to the underlying architecture of the hardware. This process may be repeated until the

design is at a sufficiently lower level such that the hardware device can be synthesised

from it. There are two main features in abstract Verilog that are not present in Verilog

HDL, namely guarded choice extension and recursion. The translation from general

guarded choices to parallel composition in normal Verilog is achievable, although non-

trivial. The conversion of recursion to iteration is harder but there exists standard con-

version techniques to realise some subsets of them. Furthermore, for bounded recursion,

it is possible to inline the abstract Verilog code so as to remove recursion.

A Verilog program can be a parallel or a sequential process, but only parallel process

may contain sequence processes, not vice-versa. Here are some categories of syntactic

elements:

1. Parallel process

P ::= S | P ‖ P
where, S is a sequential process.

2. Sequential process can be formally described as following

S ::= PC (primitive command) | S;S (sequential composition)
| s ✁ b ✄ S (condition) | b ∗ S (iteration)
| (b&g S) [] ... [] (b&g S) (guarded choice) | fix X • S (recursion)

where, b is boolean condition, and
PC ::= skip | sink | ⊥ | → η (output event) | v = ex (assignment)
g ::= → η | @(x = v) (assignment guard))

| #1 (time delay) | eg (event control)
eg ::= η | eg & eg | eg & ¬eg
η ::= ↑ v (value rising) | ↓ v (value falling) | e (a set of abstract events)

Recall that a Verilog program can only be a parallel process at the top level, a se-

quential process cannot contain a parallel process. However, most real systems contain

many parallel processes possibly organised hierarchically. To solve this restriction, we

shall use algebraic laws [10] to expand a parallel process into a sequential one.

Here are some simple code examples:

– (e & (→ f) sink) [] (g & (→ h) sink)
– µX • (e (f X) )
– (a & (→ e) sink) ‖ (b & (→ f) sink)

3 Semantic-Preserving Mapping

Our algorithm that takes as input graphical statecharts and generates as output Verilog

code is based on the theoretical result presented in [18]. This mapping algorithm works

in a top-down manner starting from the root of the statechart and then moving to its



children. Each time, we consider the input statechart (each part of Statecharts) as a

singleton statechart and continue until no further applicable.

We present the mapping function L as originally proposed in [18] which produces

result based on the type of the source statechart:

Definition of mapping function L:

L : SC → Verilog

maps any statechart description into a corresponding Verilog process. It keeps un-

changed the set of variables employed by the source description, i.e.,

∀sc ∈ SC • vars(L(sc)) = vars(sc)
and it is inductively defined as follows.

– For a statechart sc = |[s]| constructed by Basic, L maps its input into an idle

program sink which can do nothing but let time advance, i.e.,

L(sc) =df sink

– For a statechart sc = |[s : {p1, ..., pn}]| constructed by And, L maps its input into

a parallel construct in Verilog.

L(sc) =df ‖1≤i≤n L(pi)
– For a statechart sc = |[s : [p1, ..., pn], pl, T ]| constructed by Or, we define L

by exhaustively figuring out the first possible transitions of sc if any, otherwise it

returns sink.

L(sc) =df

{

sink if T ∗(sc) = ∅
P otherwise

where
P =df []0≤k≤or-depth(sc) []{bτk & giτk & (&0≤j≤k hj) & g0τk L(resc(τk, sc)) |

τk ∈ T (activek(sc)) ∧ src(τk) = activek+1(sc) ∧
hj = &{¬giτ | τ ∈ T (activej−1(sc)) ∧ src(τ) = activej(sc)}}

and
active0(sc) =df sc
active1(sc) =df active(sc)
activei+1(sc) =df active(activei(sc))

For each statechart, we always assume each of its variables has bounded range,

and the set of possible events is finite, which implies that the set of its configurations

is finite. Therefore, the set of configurations (under transition relation) forms a well–

founded quasi order, which indicates the mapping function L is terminating.

Following are some formal notations used in the above definition. Firstly, the func-

tion or-depth : SC → N to calculate the “or–depth” of a statechart, which is defined as

follows:

- for a statechart sc = |[s]| constructed by Basic, or-depth(sc) =df 0;

- for a statechart sc = |[s : [p1, ..., pn], pl, T ]| constructed by Or, or-depth(sc) =df

or-depth(pl) + 1;

- for a statechart sc = |[s : {p1, ..., pn}]| constructed by And, or-depth(sc) =df

1.

The or-depth of an Or-chart just records the depth of the path transitively along its

active Or-sub-states. We stop going further once an And-state is encountered. The or-

depth of an And-chart is simply 1.



Secondly, the source and target state functions, src(τ) and tgt(τ), respectively repre-

sent the source and target state of a transition τ . Given a transition τ = &1≤k≤mτik ∈
T , where τik ∈ T ∗(pik), for 1 ≤ k ≤ m, and i1, ..., in is a permutation of 1, ..., n, we

define its source and target state as follow:

src(τ) =df (q1, ..., qn), where qik = src(τik ), for 1 ≤ k ≤ m, and qik =
active(pik), for m < k ≤ n;

tgt(τ) =df (r1, ..., rn), where rik = tgt(τik ), for 1 ≤ k ≤ m, and rik =
active(pik), for m < k ≤ n.

Note that T ∗(p) contains all possible transitions inside p along its transitive ac-

tive sub-state chain, i.e., T ∗(p) =df {τ | τ ∈ T ∧ src(τ) = pl} ∪ T ∗(pl). And

active(sc) denotes a current active sub-state of sc. With an Or-statechart sc = |[s :
[p1, ..., pn], pl, T ]|, we have active(sc) = pl. With an And-statechart sc = |[s :
{p1, ..., pn}]|, we have the active state as a vector of the active states of these con-

stituents, i.e., active(sc) =df (active(p1), ..., active(pn)).
Thirdly, we need to know the resulting statechart after a transition is taken. When a

transition τ occurs, any involved statechart can have changes in its (transitive) active

sub-states. We use a function:

resc : T × SC → SC

to return the modified statechart after performing a transition in a statechart. It is defined

inductively with regard to the type of the statechart.

- for a Basic-statechart sc, and any transition τ , resc(τ, sc) =df sc;
- for an Or-statechart sc = |[s : [p1, ..., pn], pl, T ]|, and a transition τ ,

resc(τ, sc) =df







sc[l 7→a2d(tgt(τ))], if τ ∈ T ∧ src(τ) = pl;
sc[l 7→resc(τ,pl)], if τ ∈ T ∗(pl);
sc, otherwise.

- for an And-statechart sc = |[s : {p1, ..., pn}]|, and a transition τ ,

resc(τ, sc) =df

{

scτ , if τ = &1≤k≤mτik ∈ T (sc);
sc, otherwise.

where scτ = sc[q1/p1, ..., qn/pn] is the statechart obtained from sc via re-

placing pi by qi, for 1 ≤ i ≤ n, qik = resc(τik , pik), for 1 ≤ k ≤ m, and

qik = pik , for m < k ≤ n.

The function a2d(sc) is used to change the active sub-state of sc into its default

sub-state, and the same change is applied to its new active sub-state. This function is

defined as:

- a2d(|[s]|) =df |[s]|
- a2d(|[s : [p1, ..., pn], pl, T ]|) =df |[s : [p1, ..., pn], a2d(p1), T ]|
- a2d(|[s : {p1, ..., pn}]|) =df |[s : {a2d(p1), ..., a2d(pn)}]|

The substitution sc[l 7→pm] for an Or-statechart sc = |[s : [p1, ..., pn], pl, T ]| is defined

by sc[l 7→pm] =df |[s : [p1, ..., pn], pm, T ]|



4 Implementation

Our implementation consists of two parts: a statechart editor (called Statechart E, is

a stencil of MS Visio) and a mapping program from statechart into abstract Verilog

(called AMSV-Automatic Mapping of Statechart into Verilog).

Statechart

drawing


(Statechart_E)


Mapping

(AMSV)


texture

representation


Code

generation


(AMSV)


abstract

Verilog


Fig. 2. Structure of the implementation.

Fig. 2 shows the stages of using our system. Users first draw their statecharts, using

Statechart E, which also automatically generates the corresponding textual representa-

tions. AMSV will then generate abstract Verilog code from textual representation of

these statecharts. In next two sections, we will discuss about Statechart E, AMSV, and

some other techniques used in the system.

4.1 Statechart editor

Statechart E is built with three main purposes:

– First, of course is for editing Statechart diagrams. The editor should be convenient

to use and easy to draw.

– Second, it should also be easy to export textual representation of statechart. This is

used by the mapping algorithm which converts statechart to abstract Verilog.

– Last, it should be easy to save the statecharts to other graphical formats (like bmp,

jpg, ps, eps, etc) This is important for portability and for documentation.

From these requirements, we built Statechart E as an add-on/embedded stencil in

Microsoft Visio. We make use of MS. Visio because Visio is a very powerful graphical

editor tool for drawing diagrams. Visio also supports many graphical formats for export-

ing our diagrams. Moreover, using Visio, we can not only draw statechart components

but also other shapes from suitable drawing types or stencils.

Features of Statechart E:

– A menu named Statechart is added to the menu bar of Visio. This menu contains

two functions, namely: Generate statechart and Add new statechart page. The first

function is used to export the current statechart to a textual file. This file is used as

input for the mapping program which to transform to abstract Verilog. The second

function is used to add a new page for current statechart diagram. To enable this

menu and its functions, users must allow a macro to be accepted when opening the

stencil.



– A set of masters is added to the stencil and this is used for constructing statecharts.

It consists of a state master, a default master (common for all kind of states), 8 tran-

sition masters (to help build complex statecharts), and vertical/horizontal separators

for And-state.

– Each master is accompanied by a program written in Visual Basic for Application

(VBA) to check data, events and perform actions of each master. Some masters

are linked to a window to allow input of needed data. This program also partially

checks the supplied data such as duplicate name, etc.

– We also allow users to build hierarchical statecharts. Users can easily extend a given

statechart by adding a new page (using the second function in menu Statechart)

and continue to extend the current statechart in a hierarchical manner in the new

page. Note that the generate function will read all components in all pages of the

statechart.

4.2 AMSV - Core mapping program

The second part, called AMSV (Automatic Mapping of Statechart into Verilog), is es-

sentially a Java program.

DFS algorithm As presented in section 3, the mapping algorithm has to deal with

each state; Basic, And, and Or states. It can construct the corresponding Verilog

code after the mapping algorithm has been applied to all states of the source statechart.

Nevertheless, how do we traverse all states of the input statechart? In the AMSV, we

make use of depth–first–search (DFS) algorithm [3] to reach all states of the statechart.

However, DFS works on each tree of nodes. To apply DFS we have to reconstruct

the source statechart into a tree of states. Fig. 3 shows an example of hierarchy tree (b)

for a simple statechart (a). Here, dashed arrows denote the children of an And-state (like

arrow from P0 to P1, P2), while the doted arrows point to the active sub-states of Or-

state (like arrow from P1 to P3 or P2 to P6). The solid arrows represent the transitions.
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Fig. 3. Hierarchy tree. a) Statechart example, b) hierarchy tree, and c) DFS route.

After reconstructing each statechart into a hierarchy tree, we apply a recursive func-

tion which maps each statechart to abstract Verilog. At each time, we only consider one

state, called the current state. Through this recursive function, we apply the mapping



algorithm to all states of the source statechart to obtain Verilog process code. These

codes are kept in a hash table for latter use. After that, we gather the output code (from

sub-states or from target states of all transitions to the current state) to generate final

abstract Verilog process.

For example, in the Fig. 3, first we start from the root state (like P0). After that, we

invoke the function itself if it is possible to go to current state’s children (P1, P2) or

target states of transitions (P3 to P4, P5). A systematic way of finding the next state is

described below. Fig. 3 c shows the route taken by our DFS traversal:

– each state is the target of transition: If there exists any transition from the current

state, go to the target state of the transition. Like transitions from P3 to P4 or P5.

The information of the transition will be memorized to generate output code. If

there are more than one transitions from current state, process it one by one. The

order between these transitions is not important.

– each state is a child of the And-state: If the current state is And-state, go to all

children. Like from P0 to P1 or P2. Information of children in that And-state will

be memorized during code generation, as acquired by the Verilog language.

– state is sub-state of Or-state: Just go to active state and continue as before. For

example, P3 and P6 are the active states of P1 and P2.

Recursion During the traversal to the states of a given statechart, it is possible for a

transition to re-occur. This may be due to non-termination. To solve this problem we

use a boolean array to remember all states which the program has already encountered.

If a program reaches a marked state, it just uses that information to generate a loop, and

then go back to previous state. This is meant to terminate a recursive transition.

Parallel expansion Recall from early discussion in Sec 2, we shall take into account

the parallel expansion of And-state. Whenever an And-state is reached, all information

(guards, conditions, etc) of the children of a current state are used for expansion. The

only exception is when the current state is the root. In this case we generate Verilog

code from all its children and gather it using the parallel operation (‖). This situation

was discussed in [23].

5 Examples

In this section, we illustrate the mapping algorithm via the following examples: a CD

player and a washing machine.

5.1 CD-player

Specification Fig. 4 shows the graphical statechart of a CD-player. It contains two or-

thogonal regions: Play control (PlayCtr) and Track information (TrackCtr), which

are used to control the playing mode and record the track information respectively. The

first region contains Stop, Play, Pause sub-states to control the playing mode,



while the second one contains only a sub-state, Track. Three buttons, Next, Prev,

and select a track, are associated with the Track state. The variable ct (that is,

current track) is used to keep record of the current position of the CD being played. We

assume ct is initially 0 whenever the CD-player is switched on.

In this model, Stop and Track are respectively two default sub-states of two

orthogonal regions. So when the CD-Player is switched on, both of them are entered

simultaneously. Upon the arrival of event Play pressed (that is, the Play button is

pressed), transition t1 is taken and state PlayingCtr is entered, where the default

sub-state Playing becomes active. Transitions t4 and t3 are used to alter between

state Playing and Paused. Transition t2 connects state PlayingCtr with state

Stop. When the control is in state PlayingCtr (either Playing or Paused), and

t2 is enabled, it will yield the Stop state (that is, the CD-player will stop).

In the orthogonal state TrackCtr, upon the arrival of events Next pressed or

Prev pressed, the variable ct (current track) will be changed according to the event.

Conditions (ct > 1) and (ct < Max(track)) are used to check the range of the ct. The

transition t7 is taken if users select any track in the range.
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Fig. 4. CD player with track information (ct).

For simplicity, we only added track information in this specification of a CD-player.

A real CD-player may contain other functionalities, like timer, forward, rewind, etc. We

can add these setting as parallel regions in a similar way.

After drawing the statechart specification in Statechart E, the following textual rep-

resentation is automatically generated:

CD-Player-ON = |[ S1: { PlayCtr, TrackCtr } ]|
PlayCtr = |[ S2: [ Stop, PlayingCtr ], Stop, { t1, t2 } ]|
TrackCtr = |[ S3: [ Track ], Track, { t5, t7, t6 } ]|
Stop = |[ S4 ]|
PlayingCtr = |[ S5: [ Playing, Paused ], Playing, { t3, t4 } ]|
Playing = |[ S6 ]|
Paused = |[ S7 ]|
Track = |[ S8 ]|

t1 = < Stop, { Play_pressed }, { ct=1 }, true, PlayingCtr >
t2 = < PlayingCtr, { Stop_pressed }, { ct=1 }, true, Stop >



t3 = < Paused, { Play_pressed }, { }, true, Playing >
t4 = < Playing, { Pause_pressed }, { }, true, Paused >
t5 = < Track, { Next_pressed }, { ct=ct+1 }, ct<max(track),

Track >
t7 = < Track, { Track_select }, { ct=trsl }, 0<ct<max(track)+1,

Track >
t6 = < Track, { Prev_pressed }, { ct=ct-1 }, ct>1, Track >

The first 8 lines are information of states. The rest are transitions.

Result The textual representation given in last section is taken as the input of our

algorithm AMSV, the output we obtain is the following code in abstract Verilog:

Result:
L_PlayCtr || L_TrackCtr

Where:
L_PlayCtr = fix X0. ( L_Stop )
L_TrackCtr = fix X2. (

( ( ( Next_pressed & @( ct=ct+1 ) & ( ct<max(track) ) X2 )
[] ( Track_select & @( ct=trsl ) & ( 0<ct<max(track)+1 ) X2 ) )

[] ( Prev_pressed & @( ct=ct-1 ) & ( ct>1 ) X2 ) ) )
L_Stop = ( ( Play_pressed & @( ct=1 ) )

( ( Stop_pressed & @( ct=1 ) X0 ) [] fix X1. ( L_Playing ) ) )
L_Playing = ( ( Pause_pressed & not Stop_pressed )

( ( ( Play_pressed & not Stop_pressed ) X1 )
[] ( Stop_pressed & @( ct=1 ) X0 ) ) )

note that we use fix (rather than µ) to denote the recursion. L state is the correspond-

ing result from state.

Here we can see that the L PlayCtrl and L TrackCtr are processes which are running

in parallel, where the recursive identifiers X0, X1, X2 represent three loop points.

5.2 Washing machine

Specification In this subsection, we discuss a washing machine with five setting func-

tions;Timer, Hot water, Rinse level,Water level, andPre-wash. Fig. 5

shows the user interface of the washing machine. Fig. 6 gives the statechart specifica-

tion of the washing machine corresponding to the interface, while Fig. 7 zooms into

the sub-state Washing-Ctr. Statechart in Fig. 6 contains six parallel regions corre-

sponding to five setting functions and the washing progress (Wash-Ctr). Each setting

region contains a sub-statechart to change the value of its function. For example, in the

Timer-Ctr region, the variable tm denotes the time that the washing machine has to

wait before it starts to wash. It can be changed by Inc or Dec buttons. Other variables

hw (hot water), rl (rinse level), wl (water level) and pw (pre-wash) are similar, and can

be changed via pressing corresponding buttons. The default values of these variables

are shown in Fig. 5 with black circles (hw = 0, rl = 0, wl = 0, and pw = 0) and

default timer is 0.
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Fig. 5. Interface of the washing machine.
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Fig. 6. Main statechart of a washing machine.

The Washing-Ctr is an Or-state as given in Fig. 7. The state Check-wait is

activated once state Washing-Ctr is entered. If tm is greater than 0, the machine

keeps waiting for tm time before the control moves to Pre-wash state. The transition

t18 calculates the value of the variable washtime based on the pre-wash setting. For

example, if pw is 0 then washtime = 1. The variable washtime is used to keep record

of the time that the clothes have been washed so far. It is explained as follows:

– washtime = 0: if pw = 1, need pre-wash.

– washtime = 1: if pw = 0, no need pre-wash, need powder, no spin.

– washtime = 2 or 3: wash without powder, spin.

– washtime > 3: finish.

Upon finishing, the machine beeps to inform the user.

The textual representation generated from Statechart E is printed in [23].
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Fig. 7. Statechart of Washing-Ctr in the washing machine.

Result We then run the AMSV algorithm to generate the Verilog program for the

washing machine. We only give some part of the target code here.

First of all, let us regard Washing-Ctr as a basic state (before we zoom into it). We

have the following Verilog program:

Result:
L_Wash-Ctr || L_Timer-Ctr || L_Water-Ctr || L_Prewash-Ctr ||

L_Hotwater-Ctr || L_Rinse-Ctr

Where:
L_Wash-Ctr = L_Idle
L_Idle = ( Start & @( washing=true ) sink )
L_Timer-Ctr =

fix X0. ( ( ( timer-increase & @( tm=tm+1 ) &
( tm<10 & washing=false ) X0 )

[] ( timer-decrease & @( tm=tm-1 ) &
( tm>1 & washing=false ) X0 ) ) )

L_Water-Ctr = fix X1. ( L_Normal )
L_Normal = ( ( Water-pressed & @( wl=1 ) ) L_Half )
L_Half = ( ( Water-pressed & @( wl=2 ) )

( Water-pressed & @( wl=0 ) X1 ) )
L_Light = ( ( Rinse-pressed & @( rl=1 ) ) L_Medium )



L_Medium = ( ( Rinse-pressed & @( rl=2 ) )
( Rinse-pressed & @( rl=0 ) X4 ) )

L_Prewash-Ctr = fix X2. ( L_Pre-w-no )
L_Pre-w-no = ( ( Pre-wash & @( pw=1 ) & ( washing=false ) )

( Pre-wash & @( pw=0 ) & ( washing=false ) X2 ) )
L_Hotwater-Ctr = fix X3. ( L_Cold )
L_Cold = ( ( Hot-water & @( hw=1 ) ) L_Warm )
L_Warm = ( ( Hot-water & @( hw=2 ) ) ( Hot-water & @( hw=0 ) X3 ) )
L_Rinse-Ctr = fix X4. ( L_Light )

The sink process in L Idle is used to denote the Washing-Ctrl process, as we

regard it as a basic state. On the other hand, if we consider Washing-Ctr as a stand-

alone statechart, the corresponding code for it is as follows:

Result:
L_Check-wait =

( ( ( & @( timer-cal ) & ( tm>0 ) ) L_Wait )
[] ( ( & @( check-pre-wash ) & ( tm=0 ) ) L_Pre-wash ) )

L_Start-washing =
( ( ( fill-water & ( washtime!=1 ) ) L_water-in

( & @( rewash ) & ( washtime<4 ) X0 ) )
[] ( ( & @( get-powder-in ) & ( washingtime=1 ) ) L_Powder-in

( & @( rewash ) & ( washtime<4 ) X0 ) ) )
L_Wait = ( ( & @( check-pre-wash ) & ( tm=0 ) ) L_Pre-wash )
L_Pre-wash = ( ( & @( washtime=1-pw ) )

fix X0. ( ( ( & @( rewash ) & ( washtime<4 ) X0 )
[] L_Start-washing ) ) )

L_water-in =
( ( ( ( & @( check-wl ) & ( hw=0 ) ) L_cold-w

( & @( rewash ) & ( washtime<4 ) X0 ) )
[] ( ( & @( check-wl ) & ( hw=2 ) ) L_hot-w

( & @( rewash ) & ( washtime<4 ) X0 ) ) )
[] ( ( & @( check-wl ) & ( hw=1 ) ) L_warm-w

( & @( rewash ) & ( washtime<4 ) X0 ) ) )
L_cold-w = ( ( & @( start-wash ) ) L_washing

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_warm-w = ( ( & @( start-wash ) ) L_washing

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_hot-w = ( ( & @( start-wash ) ) L_washing

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_washing = ( ( & @( washtime=washtime+1 ) ) L_water-out

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_water-out = ( ( & @( start-spin ) & ( washtime>1 ) ) L_Spin

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_Powder-in = ( ( fill-water ) L_water-in

( & @( rewash ) & ( washtime<4 ) X0 ) )
L_Spin = ( & @( Beep-finish ) & ( washtime=4 ) sink

( & @( rewash ) & ( washtime<4 ) X0 ) )

In the final code, the sink process in L Idle is replaced by the processL Check-wait.



6 Conclusion

In this paper we proposed an automatic mapping algorithm to translate high-level Stat-

echarts into low-level Verilog specifications. Our algorithm has been proved sound ear-

lier [18].

The system that we have built in Java provides a graphical interface for users to

draw their statecharts in MS Visio. Our mapping algorithm thus translates the graph-

ical representation into a textual representation, and then generates the corresponding

Verilog programs.

Some of related works on connecting Statecharts with other formalisms are pre-

sented in [1, 4, 16, 21, 20]. Beauvais et.al. [1] and Seshia et.al. [21] translate STATEM-

ATE Statecharts to synchronous languages Signal and Esterel respectively, aiming to

use supporting tools provided in the target formalisms for formal verification purposes.

However, all these translations are based on the informal semantics [9] lacking correct-

ness proofs. The authors of [4, 16] transform variants of Statecharts into hierarchical

timed automata and use tools (UPPAAL, SPIN) to model check Statecharts properties.

More recently, a translation from Statecharts to B/AMN is reported in [20]. However,

no correctness issue has been addressed. In comparison, the translation from Statecharts

to Verilog in this paper aims at code generation for system design. The mapping func-

tion that we implement in this paper is constructed based on formal semantics for both

the source and target formalisms and has been proven to be semantics-preserving [18].

Our compilation from Statecharts into Verilog can be used as a front-end of hard-

ware design or hardware/software co-design. After translating the input statechart spec-

ification into abstract Verilog code, we can proceed to obtain lower level descriptions,

as a prelude to hardware implementation, or we can pass the Verilog specification to a

hardware/software partitioning system [19].

In order to provide the concrete Verilog programs to users, future works include

guarded choices elimination and the replacement of the other structures of abstract Ver-

ilog, so that the AMSV can generate also concrete Verilog program. This should make

our tool especially useful for hardware designer.
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